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Abstract
The article demonstrates computational efficiency of the probabilistic approach to knowledge extraction
using the FCA. In addition to the result previously proved by the author on sufficiency of a polynomial
number of hypotheses (concepts) about the causes of the target property under study, this paper will
give a polynomial upper bound on the average running time of the algorithm for generating one concept.
The proven result concerns a family of algorithms based on coupling Markov chains for arbitrary formal
contexts formed from the positive part of training sets. To get a good estimate for the length of trajectory
(before entering to some ergodic state) of such a chain, we had to enrich the representation of the training
sample by adding negation for every original binary attribute.
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1. Introduction

The extraction of knowledge using a binary similarity operation began in the early 1980s in the
works of Prof. V.K. Finn, who proposed the JSM-method of automatic generation of hypotheses
[1, 2].

This approach was named after the English philosopher, economist and logician John Stuart
Mill, whose ideas on Inductive Logic [3] served as the starting point of the JSM-method. The key
component of this approach is a binary similarity operation. In the beginning, this operation
was considered in isolation: most often as the intersection of sets of binary attributes describing
training examples. In this case, it was a way of finding a set of common attributes. Initially,
domains of objects (training and test examples) were Boolean algebras.

Then S.O. Kuznetsov proposed [4] to apply Formal Concept Analysis [5] to JSM-paradigm.
This discovery led to extension of domains of application by those, that can be described by
general lattices, and to invention of more efficient algorithms [6].

However, the JSM-method has a number of significant limitations that do not allow it to
cope with training samples of moderate size. One of them is exponential explosion, when a
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small training context generates exponentially large number of concepts [7]. Another one is the
appearance of so-called ’phantom’ concepts as accidental similarities between small number of
training objects each of which belongs to a different concept with larger extent [8]. It can be
argued that the appearance of such hypotheses corresponds to the over-fitting phenomenon.
This statement was experimentally confirmed in the master thesis of L.A. Yakimova [9].

To overcome these limitations, the author [10] proposed to use a probabilistic approach.
The idea is to generate a random sample of concepts by trajectories of Markov chain making
random walks through the concept lattice. We named our approach the VKF method in honor
of V.K. Finn and because of the abbreviation of the Russian term "Probabilistic Combinatorial
Formal method" to indicate effective processing using probabilistic algorithms and FCA of
various combinations of training objects for generating concepts.

Such algorithms are based on the "Close-by-One" operations 𝐶𝑏𝑂, for which the part with
respect to objects was proposed earlier by S.O. Kuznetsov [11] in the eponymous 𝐶𝑏𝑂 algorithm
for exhaustive generation of all candidates for hypotheses, the number of which in some
cases may be exponentially large. Using these operations, the author proposed to generate a
polynomial-size random subset of concepts, each element of which corresponds to one trajectory
of random walk across the corresponding lattice.

The author [12] has proved that it is sufficient to generate 𝑛·ln 2−ln 𝛿
𝜀 random concepts in

order to correctly predict all the 𝜀-important test objects with the reliability of 1− 𝛿.
Therefore, the single obstacle for polynomial complexity of full scheme of the VKF-method

is the absence of polynomial upper bound on the length of trajectories of Markov chain. The
main result of this paper is polynomial upper bound on the average length of trajectories of the
coupling Markov chain when the training context is dichotomized, i.e., expanded by additional
binary attributes that correspond to negations of all original attributes. Such expansion is useful
if the absence of an original attribute is allowed to be a part of cause for the target attribute.
Previously, only special cases of formal contexts (for instance, Boolean algebra and linear order)
were investigated. The new result concerns the general case of arbitrary lattice.

2. Background

2.1. Basic definitions and facts of FCA

Here we recall some basic definitions and facts from Formal Concept Analysis (FCA) [5].
A (formal) context is a triple (𝐺,𝑀, 𝐼) where 𝐺 and 𝑀 are finite sets and 𝐼 ⊆ 𝐺 ×𝑀 .

The elements of 𝐺 and 𝑀 are called objects and attributes, respectively. As usual, we write
𝑔𝐼𝑚 instead of ⟨𝑔,𝑚⟩ ∈ 𝐼 to denote that object 𝑔 has attribute 𝑚.

For 𝐴 ⊆ 𝐺 and 𝐵 ⊆ 𝑀 , define

𝐴′ = {𝑚 ∈ 𝑀 : ∀𝑔 ∈ 𝐴(𝑔𝐼𝑚)}, (1)

𝐵′ = {𝑔 ∈ 𝐺 : ∀𝑚 ∈ 𝐵(𝑔𝐼𝑚)}; (2)

so 𝐴′ is the set of attributes common to all the objects in 𝐴 and 𝐵′ is the set of objects possessing
all the attributes in 𝐵. The maps (·)′ : 𝐴 ↦→ 𝐴′ and (·)′ : 𝐵 ↦→ 𝐵′ are called derivation
operators (also polars) of the context (𝐺,𝑀, 𝐼).



A concept of the context (𝐺,𝑀, 𝐼) is defined to be a pair (𝐴,𝐵), where 𝐴 ⊆ 𝐺, 𝐵 ⊆ 𝑀 ,
𝐴′ = 𝐵, and 𝐵′ = 𝐴. The first component 𝐴 of the concept (𝐴,𝐵) is called the extent of the
concept, and the second component 𝐵 is called its intent. The set of all concepts of the context
(𝐺,𝑀, 𝐼) is denoted by B(𝐺,𝑀, 𝐼).

Let (𝐺,𝑀, 𝐼) be a context. For concepts (𝐴,𝐵) and (𝐶,𝐷) in B(𝐺,𝑀, 𝐼) we write (𝐴,𝐵) ≤
(𝐶,𝐷), if 𝐴 ⊆ 𝐶 . The relation ≤ is a partial order on B(𝐺,𝑀, 𝐼).

A subset 𝐴 ⊆ 𝐺 is the extent of some concept if and only if 𝐴′′ = 𝐴 in which case the unique
concept of which 𝐴 is the extent is (𝐴,𝐴′). Similarly, a subset 𝐵 of 𝑀 is the intent of some
concept if and only if 𝐵′′ = 𝐵 and then the unique concept with intent 𝐵 is (𝐵′, 𝐵).

Proposition 1. Let (𝐺,𝑀, 𝐼) be a context. Then (B(𝐺,𝑀, 𝐼),≤) is a lattice with join and meet
given by ⋁︁

𝑗∈𝐽
(𝐴𝑗 , 𝐵𝑗) = ((

⋃︁
𝑗∈𝐽

𝐴𝑗)
′′,

⋂︁
𝑗∈𝐽

𝐵𝑗), (3)

⋀︁
𝑗∈𝐽

(𝐴𝑗 , 𝐵𝑗) = (
⋂︁
𝑗∈𝐽

𝐴𝑗 , (
⋃︁
𝑗∈𝐽

𝐵𝑗)
′′); (4)

Corollary 1. For context (𝐺,𝑀, 𝐼) the lattice (B(𝐺,𝑀, 𝐼),≤) has (𝑀 ′,𝑀) as the bottom
element and (𝐺,𝐺′) as the top element. In other words, for all (𝐴,𝐵) ∈ B(𝐺,𝑀, 𝐼) the following
inequalities hold:

(𝑀 ′,𝑀) ≤ (𝐴,𝐵) ≤ (𝐺,𝐺′). (5)

For (𝐴,𝐵) ∈ B(𝐺,𝑀, 𝐼), 𝑔 ∈ 𝐺, and 𝑚 ∈ 𝑀 define

𝐶𝑏𝑂((𝐴,𝐵), 𝑔) = (𝐴,𝐵) ∨ ({𝑔}′′, {𝑔}′), (6)

𝐶𝑏𝑂((𝐴,𝐵),𝑚) = (𝐴,𝐵) ∧ ({𝑚}′, {𝑚}′′), (7)

so according to (4) 𝐶𝑏𝑂((𝐴,𝐵), 𝑔) is equal to ((𝐴 ∪ {𝑔})′′, 𝐵 ∩ {𝑔}′) and according to (3)
𝐶𝑏𝑂((𝐴,𝐵),𝑚) is equal to (𝐴 ∩ {𝑚}′, (𝐵 ∪ {𝑚})′′).

The useful properties of introduced operations are summarized in the following Lemmas.

Lemma 1. Let (𝐺,𝑀, 𝐼) be a context, (𝐴,𝐵) ∈ B(𝐺,𝑀, 𝐼), 𝑔 ∈ 𝐺, and 𝑚 ∈ 𝑀 . Then

𝑔 ∈ 𝐴 ⇒ 𝐶𝑏𝑂((𝐴,𝐵), 𝑔) = (𝐴,𝐵), (8)

𝑚 ∈ 𝐵 ⇒ 𝐶𝑏𝑂((𝐴,𝐵),𝑚) = (𝐴,𝐵), (9)

𝑔 /∈ 𝐴 ⇒ (𝐴,𝐵) < 𝐶𝑏𝑂((𝐴,𝐵), 𝑔), (10)

𝑚 /∈ 𝐵 ⇒ 𝐶𝑏𝑂((𝐴,𝐵),𝑚) < (𝐴,𝐵). (11)

Lemma 2. Let (𝐺,𝑀, 𝐼) be a context, (𝐴,𝐵), (𝐶,𝐷) ∈ B(𝐺,𝑀, 𝐼), 𝑔 ∈ 𝐺, and 𝑚 ∈ 𝑀 . Then

(𝐴,𝐵) ≤ (𝐶,𝐷) ⇒ 𝐶𝑏𝑂((𝐴,𝐵), 𝑔) ≤ 𝐶𝑏𝑂((𝐶,𝐷), 𝑔), (12)

(𝐴,𝐵) ≤ (𝐶,𝐷) ⇒ 𝐶𝑏𝑂((𝐴,𝐵),𝑚) ≤ 𝐶𝑏𝑂((𝐶,𝐷),𝑚). (13)



2.2. Random walks by coupled Markov chain

To avoid the open problem of calculation of mixing time of general Markov chain we proposed
[10] to use the coupled Markov chain for random walks across the concept lattice. The states of
this chain are ordered pairs of concepts. The stopping time of the random walk algorithm is the
first moment of entering to some ergodic (recurrent) state of the coupled Markov chain. Every
ergodic state of the coupled Markov chain is a pair of equal concepts. Denote the set of such
states by 𝐸.

Data: context (𝐺,𝑀, 𝐼), external function 𝐶𝑏𝑂( , )
Result: random concept (𝐴,𝐵) ∈ B(𝐺,𝑀, 𝐼)
𝑋 := 𝐺 ⊔𝑀 ; (𝐴,𝐵) := (𝑀 ′,𝑀); (𝐶,𝐷) = (𝐺,𝐺′);
while ((𝐴 ̸= 𝐶) ∨ (𝐵 ̸= 𝐷)) do

select random element 𝑥 ∈ 𝑋 ;
(𝐴,𝐵) := 𝐶𝑏𝑂((𝐴,𝐵), 𝑥);
(𝐶,𝐷) := 𝐶𝑏𝑂((𝐶,𝐷), 𝑥);

end
Algorithm 1: Coupling Markov chain

The algorithm terminates when the upper and lower concepts coincide. The condition on
remaining of ordering between two concepts (𝐴,𝐵) ≤ (𝐶,𝐷) at any intermediate step of the
while loop of Algorithm 1 follows from Lemma 2.

The classical theorem of Markov chain Theory about transient (non-ergodic) states [13]
implies almost surely termination of algorithms 1, i.e. finiteness of a trajectory until it enters to
some ergodic state with probability 1.

Consider the moment 𝑇𝑖(𝐸) = min{𝑡 : 𝑋𝑡 ∈ 𝐸,𝑋0 = 𝑠𝑖} of the first entering to 𝐸, starting
with an arbitrary transient state 𝑠𝑖 = (⟨𝐴,𝐵⟩ < ⟨𝐶,𝐷⟩) /∈ 𝐸.

Theorem 1. The moment 𝑇𝑖(𝐸) is Markov one for every transient state 𝑠𝑖.

Proof. We need to prove P [𝑇𝑖(𝐸) < ∞ | 𝑋0 = 𝑠𝑖] = 1.
Use decomposition {𝑋𝑡 ∈ 𝐸,𝑋0 = 𝑠𝑖} =

⋃︀
𝑛≤𝑡 𝑈𝑛(𝑠𝑖), where

𝑈𝑛(𝑠𝑖) = {𝑋𝑛 ∈ 𝐸,𝑋𝑛−1 /∈ 𝐸, . . . ,𝑋1 /∈ 𝐸,𝑋0 = 𝑠𝑖}.

Transient States Theorem asserts

lim
𝑡→∞

P [𝑋𝑡 /∈ 𝐸 | 𝑋0 = 𝑠𝑖] → 0. (14)

Disjointedness of different 𝑈𝑛(𝑠𝑖) and formula (14) imply

P{𝑋𝑡 ∈ 𝐸 | 𝑋0 = 𝑠𝑖} =
∑︁
𝑛≤𝑡

P [𝑈𝑛(𝑠𝑖) | 𝑋0 = 𝑠𝑖] → 1,

if 𝑡 → ∞.
Since 𝑈𝑛(𝑠𝑖) = {𝑇𝑖(𝐸) = 𝑛} the 𝜎-additivity leads to needed conclusion.



As direct corollary of the theorem 1 we conclude that the termination of algorithm 1 takes
place almost surely (i.e. with probability 1).

The goal of current research is to obtain a polynomial upper bound on the average length of
trajectories of the coupling Markov chain. In general, it is an open problem. In sequel, we’ll
provide such bound, when the training context is expanded by additional binary attributes that
correspond to negations of all existing attributes (dichotomic expansion).

Example 1. Dichotomic expansion of the left context is the right one.

𝐺×𝑀 𝑚1 𝑚2 𝐺×𝑀+ 𝑚1 ¬𝑚1 𝑚2 ¬𝑚2

𝑔1 1 1 𝑔1 1 0 1 0
𝑔2 1 0 𝑔2 1 0 0 1
𝑔3 0 1 𝑔3 0 1 1 0
𝑔4 0 0 𝑔4 0 1 0 1

The expanded context corresponds to the lattice

⊤
𝑔3 𝑔4𝑔2𝑔1

𝑚1 𝑚2 ¬𝑚2 ¬𝑚1

⊥

where ⊤ = ⟨∅, {𝑚1,¬𝑚1,𝑚2,¬𝑚2, }⟩, 𝑔𝑗 = ⟨{𝑔𝑗}, {𝑔𝑗}′⟩, 𝑚𝑗 = ⟨{𝑚𝑗}′, {𝑚𝑗}⟩, ¬𝑚𝑗 =
⟨{¬𝑚𝑗}′, {¬𝑚𝑗}⟩, and ⊥ = ⟨{𝑔1, 𝑔2, 𝑔3, 𝑔4}, ∅⟩.

The coupled Markov chain starts with state (⊥ ≤ ⊤). A trajectory of the random walk depends
on random choices from 𝐺 ⊔𝑀+.

Consider an example of such trajectory. Assume that 𝑔1 is selected at the 1st step, then the chain
goes to state (⊥ ≤ 𝑔1). The choice of 𝑔2 at the 2nd step leads to (⊥ ≤ 𝑚1). If the chain selects
¬𝑚1 at the 3rd step, then the state becomes (¬𝑚1 ≤ ⊤). The choice of 𝑔4 at the 4th step leads to
(¬𝑚1 ≤ 𝑔4). After selection of 𝑔3 at the 5th step the trajectory goes to ergodic state (¬𝑚1 ≤ ¬𝑚1),
and algorithm 1 stops.

3. Technical Tools

In [14] the author developed a useful tool to estimate the average length of trajectories of
coupling Markov chain through recurrence relations.

Lemma 3.
E [𝑇𝑖(𝐸)] = 1 +

∑︁
𝑠𝑗 /∈𝐸

E [𝑇𝑗(𝐸)] · P [𝑋1 = 𝑠𝑗 |𝑋0 = 𝑠𝑖]

for every 𝑠𝑖 /∈ 𝐸.



Proof. Additivity of the average gives

E [𝑇𝑖(𝐸)] =
∞∑︁
𝑛=1

𝑛 · P [𝑈𝑛(𝑠𝑖)|𝑋0 = 𝑠𝑖] , (15)

where 𝑈𝑛(𝑠𝑖) = {𝑋𝑛 ∈ 𝐸,𝑋𝑛−1 /∈ 𝐸, . . . ,𝑋1 /∈ 𝐸,𝑋0 = 𝑠𝑖}.
Then

E [𝑇𝑖(𝐸)] =

∞∑︁
𝑛=1

𝑛 · P [𝑈𝑛(𝑠𝑖)|𝑋0 = 𝑠𝑖] =

=
∞∑︁
𝑛=1

P [𝑈𝑛(𝑠𝑖)|𝑋0 = 𝑠𝑖] +
∞∑︁
𝑛=2

(𝑛− 1) · P [𝑈𝑛(𝑠𝑖)|𝑋0 = 𝑠𝑖] =

= 1 +
∞∑︁
𝑘=1

𝑘 · P [𝑋𝑘+1 ∈ 𝐸,𝑋𝑘 /∈ 𝐸, . . . ,𝑋1 /∈ 𝐸|𝑋0 = 𝑠𝑖] = 1+

+
∑︁
𝑠𝑗 /∈𝐸

∞∑︁
𝑘=1

𝑘 · P [𝑋𝑘+1 ∈ 𝐸,𝑋𝑘 /∈ 𝐸, . . . ,𝑋2 /∈ 𝐸|𝑋1 = 𝑠𝑗 ] · P [𝑋1 = 𝑠𝑗 |𝑋0 = 𝑠𝑖] =

= 1 +
∑︁
𝑠𝑗 /∈𝐸

E [𝑇𝑗(𝐸)] · P [𝑋1 = 𝑠𝑗 |𝑋0 = 𝑠𝑖] .

Here we sequentially use identity (15), the Markov property for moment 𝑇𝑖(𝐸) (theorem 1)
and the Law of Total Probability.

This easily results in an upper bound of the order 𝑂(𝑛 · ln𝑛) on the average length of
trajectories of algorithm 1 for 𝑛-dimensional Boolean algebra case.

A more striking result from [14] concerns the average trajectory length of the algorithm 1 for
linear orders. Here the upper bound of 4 on the average length does not depend on the number
of elements of the linear order.

Example 2. Apply lemma 3 to the lattice from example 1.
This lattice allows us to define a distance between ordered candidates (i.e. components of a state).

State 𝑠0 = (⊥ ≤ ⊤) has distance 3. States 𝑠1 = (⊥ ≤ 𝑔1), . . . , 𝑠4 = (⊥ ≤ 𝑔4), 𝑠5 = (𝑚1 ≤ ⊤),
𝑠6 = (𝑚2 ≤ ⊤), 𝑠7 = (¬𝑚2 ≤ ⊤), 𝑠8 = (¬𝑚1 ≤ ⊤) have distance 2. States with distance 1
are divided into 2 groups (external and internal ones). External states are 𝑠9 = (⊥ ≤ 𝑚1), 𝑠10 =
(⊥ ≤ 𝑚2), 𝑠11 = (⊥ ≤ ¬𝑚2), 𝑠12 = (⊥ ≤ ¬𝑚1), and 𝑠13 = (𝑔1 ≤ ⊤), . . . , 𝑠16 = (𝑔4 ≤ ⊤).
Internal states correspond to edges 𝑠17 = (𝑚1 ≤ 𝑔1), . . . , 𝑠24 = (¬𝑚1 ≤ 𝑔4). The rest states are
ergodic ones (with distance 0).

Denote the length of trajectory starting from state 𝑠0 by 𝑇3. The states with distance 2 determine
a random walk of length 𝑇2. External states initiate trajectories of length 𝑇𝐸

1 , and internal ones
start trajectories of length 𝑇𝑀

1 .
Lemma 3 leads to E𝑇3 = 1 + E𝑇2 and system of equations⎧⎪⎨⎪⎩

E𝑇2 = 1 + 3
8E𝑇2 +

2
8E𝑇

𝐸
1 + 2

8E𝑇
𝑀
1

E𝑇𝐸
1 = 1 + 1

8E𝑇2 +
2
8E𝑇

𝐸
1 + 2

8E𝑇
𝑀
1

E𝑇𝑀
1 = 1 + 2

8E𝑇
𝐸
1 + 2

8E𝑇
𝑀
1

(16)



The solution E𝑇2 = 288
72 = 4 of the system (16) leads to the value E𝑇3 = 1 + 4 = 5 of the

average length of trajectory of algorithm 1 for the context considered in example 1.

Now we extend component-wise the 𝐶𝑏𝑂 operations to states of coupling Markov chain

𝐶𝑏𝑂((⟨𝐴,𝐵⟩ ≤ ⟨𝐶,𝐷⟩) , 𝑔) = (𝐶𝑏𝑂(⟨𝐴,𝐵⟩, 𝑔) ≤ 𝐶𝑏𝑂(⟨𝐶,𝐷⟩, 𝑔))

and
𝐶𝑏𝑂((⟨𝐴,𝐵⟩ ≤ ⟨𝐶,𝐷⟩) ,𝑚) = (𝐶𝑏𝑂(⟨𝐴,𝐵⟩,𝑚) ≤ 𝐶𝑏𝑂(⟨𝐶,𝐷⟩,𝑚)) .

Then we define a (partial) order between states 𝑠𝑖 = (⟨𝐴𝑖, 𝐵𝑖⟩ ≤ ⟨𝐶𝑖, 𝐷𝑖⟩) and 𝑠𝑗 =
(⟨𝐴𝑗 , 𝐵𝑗⟩ ≤ ⟨𝐶𝑗 , 𝐷𝑗⟩) of coupling Markov chain as following

𝑠𝑗 ⩽ 𝑠𝑖 ⇔ ⟨𝐴𝑖, 𝐵𝑖⟩ ≤ ⟨𝐴𝑗 , 𝐵𝑗⟩ ≤ ⟨𝐶𝑗 , 𝐷𝑗⟩ ≤ ⟨𝐶𝑖, 𝐷𝑖⟩. (17)

Lemma 2 easily implies

Lemma 4. For any ordered pair of states 𝑠𝑗 ⩽ 𝑠𝑖, any 𝑔 ∈ 𝐺, and any 𝑚 ∈ 𝑀
𝐶𝑏𝑂(𝑠𝑗 , 𝑔) ⩽ 𝐶𝑏𝑂(𝑠𝑖, 𝑔) and 𝐶𝑏𝑂(𝑠𝑗 ,𝑚) ⩽ 𝐶𝑏𝑂(𝑠𝑖,𝑚) hold.

We denote the number of training objects by 𝑘 = |𝐺| and the number of attributes by
𝑛 = |𝑀 |.

Lemma 5. E𝑇𝑗(𝐸) ≤ E𝑇𝑖(𝐸) for any ordered pair of transient states 𝑠𝑗 ⩽ 𝑠𝑖 of coupling Markov
chain.

Proof. Define coupled random walk of ordered pair of states 𝑋𝑡 ⩽ 𝑌𝑡 as following:

P
[︀
𝑋1 = 𝑠′𝑗 , 𝑌1 = 𝑠′𝑖 | 𝑋0 = 𝑠𝑗 , 𝑌0 = 𝑠𝑖

]︀
=

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑙
𝑛+𝑘 , 𝑙 = |{𝑔 ∈ 𝐺 : 𝑠′𝑗 = 𝐶𝑏𝑂(𝑠𝑗 , 𝑔), 𝑠

′
𝑖 = 𝐶𝑏𝑂(𝑠𝑖, 𝑔)}|+

+|{𝑚 ∈ 𝑀 : 𝑠′𝑗 = 𝐶𝑏𝑂(𝑠𝑗 ,𝑚), 𝑠′𝑖 = 𝐶𝑏𝑂(𝑠𝑖,𝑚)}|
0, ¬∃𝑔 ∈ 𝐺

[︁
𝑠′𝑗 = 𝐶𝑏𝑂(𝑠𝑗 , 𝑔), 𝑠

′
𝑖 = 𝐶𝑏𝑂(𝑠𝑖, 𝑔)

]︁
&

&¬∃𝑚 ∈ 𝑀
[︁
𝑠′𝑗 = 𝐶𝑏𝑂(𝑠𝑗 ,𝑚), 𝑠′𝑖 = 𝐶𝑏𝑂(𝑠𝑖,𝑚)

]︁ .

Lemma 4 implies P [𝑋1 ⩽ 𝑌1 | 𝑋0 ⩽ 𝑌0] = 1.
Since ⟨𝐴𝑖, 𝐵𝑖⟩ = ⟨𝐶𝑖, 𝐷𝑖⟩ for ⟨𝐴𝑖, 𝐵𝑖⟩ ≤ ⟨𝐴𝑗 , 𝐵𝑗⟩ ≤ ⟨𝐶𝑗 , 𝐷𝑗⟩ ≤ ⟨𝐶𝑖, 𝐷𝑖⟩ implies

⟨𝐴𝑖, 𝐵𝑖⟩ = ⟨𝐴𝑗 , 𝐵𝑗⟩ = ⟨𝐶𝑗 , 𝐷𝑗⟩ = ⟨𝐶𝑖, 𝐷𝑖⟩, then by definitions it follows that

P [𝑋𝑡 = 𝑌𝑡 ∈ 𝐸 | 𝑋0 = 𝑠𝑗 ⩽ 𝑌0 = 𝑠𝑖] ≥ P [𝑌𝑡 ∈ 𝐸 | 𝑋0 = 𝑠𝑗 ⩽ 𝑌0 = 𝑠𝑖] . (18)

Recall that for an integer-valued random variable 𝑍 , the equality E𝑍 =
∑︀∞

𝑡=0 P [𝑍 > 𝑡] is
fulfilled. Now 𝑋𝑡 /∈ 𝐸 ⇔ 𝑇𝑖(𝐸) > 𝑡 and 𝑌𝑡 /∈ 𝐸 ⇔ 𝑇𝑗(𝐸) > 𝑡.

Therefore, equation (18) implies

P [𝑇𝑗(𝐸) > 𝑡 | 𝑋0 = 𝑠𝑗 , 𝑌0 = 𝑠𝑖] ≤ P [𝑇𝑖(𝐸) > 𝑡 | 𝑋0 = 𝑠𝑗 , 𝑌0 = 𝑠𝑖] ,

and the summation over 𝑡 leads to the required result.



4. Main result

In the following we’ll assume 𝐺′ = ∅. This is easily achieved by eliminating all the attributes
common to all training objects.

Let’s dichotomize the context, i.e., enrich the set of attributes by introducing an attribute
for the negation ¬𝑚𝑗 of every binary attributes 𝑚𝑗 ∈ 𝑀 . This construction often has a useful
meaning: we want the absence of a attribute to be a new attribute, i.e., we propose dichotomic
scaling of the context (according to [5]).

The enriched set of attributes will be denoted by 𝑀+, and we denote its power by 2𝑛 = |𝑀+|.
Usually 2𝑛 ≪ 𝑘 = |𝐺|, which we will assume in the future. Enrich the training context to
𝐼 ⊆ 𝐺×𝑀+ by the rule:

𝑔𝐼¬𝑚𝑗 ⇔ ¬(𝑔𝐼𝑚𝑗).

Divide all transient states into 2 groups:

𝑉 = {𝑠 = (⟨𝐴,𝐵⟩ < ⟨𝐶,𝐷⟩) : ∃𝑚 ∈ 𝑀+ [𝑚 ∈ 𝐵]} (19)

and
𝑊 = {𝑠 = (⟨𝐴,𝐵⟩ < ⟨𝐶,𝐷⟩) : ∀𝑚 ∈ 𝑀+ [𝑚 /∈ 𝐵]}. (20)

It is clear that the state 𝑠0 = (⊥ < ⊤) ∈ 𝑊 . By lemma 5 for any 𝑠𝑗 ∈ 𝑊 , E𝑇𝑗(𝐸) ≤ E𝑇0(𝐸).
By the definition of the set 𝑉 and the lemma 5 for any 𝑠𝑗 ∈ 𝑉 we have E𝑇𝑗(𝐸) ≤ E𝑇𝑖(𝐸),

where 𝑠𝑖 = (⟨{𝑚}′, {𝑚}′′⟩ < ⊤) ∈ 𝑉 for any 𝑚 ∈ 𝐵 with 𝑠𝑗 = ⟨𝐴,𝐵⟩.
Let’s introduce an integer-valued random variable 𝑍 taking the value 𝑞 on the event

{𝑋𝑞 = (⊥ = ⊥), 𝑋𝑞−1 /∈ 𝑉, . . . ,𝑋1 /∈ 𝑉,𝑋0 = 𝑠0}, which determines the minimum number
of steps of the algorithm 1 by states from 𝑋𝑡 ∈ 𝑊 until we get 𝑋𝑞 = (⊥ = ⊥).

Lemma 6.

E𝑍 =

∞∑︁
𝑙=1

P [𝑍 ≥ 𝑙] ≤ (𝑘 + 2𝑛) ·
(︂
ln(2𝑛) +

1

1− 𝑒−1

)︂
for context 𝐼 ⊆ 𝐺×𝑀+ with 2𝑛 = |𝑀+| ≤ 𝑘 = |𝐺|.

Proof. We divide the summands into disjoint subsets of 𝐼0 ⊔
⨆︀∞

𝑟=1 𝐼𝑟, where 𝐼0 =
{1 ≤ 𝑙 < (𝑘 + 2𝑛) · ln(2𝑛)} and

𝐼𝑟 = {(𝑘 + 2𝑛) · (ln(2𝑛) + 𝑟 − 1) ≤ 𝑙 < (𝑘 + 2𝑛) · (ln(2𝑛) + 𝑟)}.

It is clear that
∑︀(𝑘+2𝑛)·ln(2𝑛)−1

𝑙=1 P [𝑍 ≥ 𝑙] ≤ (𝑘 + 2𝑛) · ln(2𝑛).
In order for the event 𝑍 ≥ 𝑙 to occur, it is necessary that at least one attribute (out of 2𝑛) is

selected, so that no example in the series of length 𝑙 is selected in which this attribute is not
present. Therefore, by Boole’s inequality

P [𝑍 > 𝑙] ≤ 2𝑛 ·
(︂
1− 1

𝑘 + 2𝑛

)︂𝑙

.

For 𝐼𝑟



(𝑘+2𝑛)·(ln(2𝑛)+𝑟)−1∑︁
𝑙=(𝑘+2𝑛)·(ln(𝑛)+𝑟−1)

P [𝑍 > 𝑙] ≤
(𝑘+2𝑛)·(ln(2𝑛)+𝑟)−1∑︁

𝑙=(𝑘+2𝑛)·(ln(2𝑛)+𝑟−1)

𝑘 ·
(︂
1− 1

𝑘 + 2𝑛

)︂𝑙

≤

≤ (𝑘 + 2𝑛) · 2𝑛 ·
(︂
1− 1

𝑘 + 2𝑛

)︂(𝑘+2𝑛)·(ln(2𝑛)+𝑟−1)

≤

≤ (𝑘 + 2𝑛) · 𝑒ln 2𝑛 · 𝑒−(ln(2𝑛)+𝑟−1) = (𝑘 + 2𝑛) · 𝑒−𝑟+1.

The summation over 𝑟 gives

∞∑︁
𝑙=(𝑘+2𝑛)·ln(2𝑛)

P [𝑍 ≥ 𝑙] ≤ (𝑘 + 2𝑛) ·
∞∑︁
𝑟=1

𝑒−𝑟+1 =
𝑘 + 2𝑛

1− 𝑒−1
.

Let’s denote the upper bound from lemma 6 by 𝑡𝑎𝑖𝑙.
We consider disjoint events

𝐻𝑙(𝑠𝑗) = {𝑋𝑙 = 𝑠𝑗 ∈ 𝑉,𝑋𝑙−1 /∈ 𝑉, . . . ,𝑋1 /∈ 𝑉,𝑋0 = 𝑠0}. (21)

We denote event {𝑋𝑡+𝑙 ∈ 𝐸,𝑋𝑡+𝑙−1 /∈ 𝐸, . . . ,𝑋𝑙+1 /∈ 𝐸} ∩ 𝐻𝑙(𝑠𝑗) by 𝐺𝑡,𝑙(𝑠𝑗), and the
union

⨆︀
𝑠𝑗∈𝑉 𝐺𝑡,𝑙(𝑠𝑗) by 𝑈𝑡,𝑙.

It is clear that we have a decomposition of the event into disjoint parts

{𝑋𝑡+𝑙 ∈ 𝐸,𝑋𝑡+𝑙−1 /∈ 𝐸, . . . ,𝑋0 = 𝑠0} =

=
⨆︁

𝑠𝑗∈𝑉
({𝑋𝑡+𝑙 ∈ 𝐸,𝑋𝑡+𝑙−1 /∈ 𝐸, . . . ,𝑋𝑙+1 /∈ 𝐸} ∩𝐻𝑙(𝑠𝑗))⊔

⊔ {𝑋𝑡+𝑙 = (⊥ = ⊥), 𝑋𝑡+𝑙−1 /∈ 𝑉, . . . ,𝑋1 /∈ 𝑉,𝑋0 = 𝑠0}.

We need

E𝑇0(𝐸) =
∞∑︁

𝑚=1

𝑚 · P [𝑋𝑚 ∈ 𝐸,𝑋𝑚−1 /∈ 𝐸, . . . ,𝑋1 /∈ 𝐸 | 𝑋0 = 𝑠0] . (22)

It is clear that E𝑇0(𝐸) = E𝑇 ′
0(𝐸) + E𝑍 , where 𝑇 ′

0(𝐸) is restriction of 𝑇0(𝐸) on⨆︀∞
𝑡=1

⨆︀∞
𝑙=1𝐺𝑡,𝑙.

Theorem 2. For the dichotomized (enriched) training context 𝐼 ⊆ 𝐺×𝑀+ with 2𝑛 = |𝑀+| ≤
𝑘 = |𝐺| the upper bound on the average length of trajectories of algorithm 1 is

E𝑇0 ≤
(𝑘 + 2𝑛)(𝑘2 + 𝑘(2𝑛+ 1) + 4𝑛2 + 2𝑛)

2𝑛(𝑘2 + 𝑘 + 2𝑛)
+

(𝑘 + 1)(𝑘 + 2𝑛)

𝑘2 + 𝑘 + 2𝑛
𝑡𝑎𝑖𝑙.

Proof. Let’s denote 𝑅 =
∑︀𝑛

𝑙=1
1

𝑘+2𝑛 (𝑇𝑓𝑙 + 𝑇¬𝑓𝑙), where 𝑇𝑓𝑙 = 𝑇𝑖(𝐸) for 𝑠𝑗 =
(⟨{𝑓𝑙}′, {𝑓𝑙}′′⟩ < ⊤), and similarly for 𝑇¬𝑓𝑙 .

Then Markov property implies



E𝑇 ′
0(𝐸) =

∞∑︁
𝑡=1

∞∑︁
𝑙=1

(𝑡+ 𝑙) · P𝑈𝑡,𝑙 =

=
∞∑︁
𝑡=1

𝑡 ·
∑︁
𝑠𝑗∈𝑉

P [𝑋𝑡 ∈ 𝐸,𝑋𝑡−1 /∈ 𝐸, . . . ,𝑋1 /∈ 𝐸 | 𝑋0 = 𝑠𝑗 ] ·
∞∑︁
𝑙=1

P [𝐻𝑙(𝑠𝑗)] +

+

∞∑︁
𝑙=1

𝑙 ·
∑︁
𝑠𝑗∈𝑉

P [𝐻𝑙(𝑠𝑗)] ·
∞∑︁
𝑡=1

P [𝑋𝑡 ∈ 𝐸,𝑋𝑡−1 /∈ 𝐸, . . . ,𝑋1 /∈ 𝐸 | 𝑋0 = 𝑠𝑗 ] ≤

≤
∑︁
𝑠𝑗∈𝑉

E𝑇𝑗(𝐸) · P [𝑋1 = 𝑠𝑗 | 𝑋0 = 𝑠0] +
∑︁
𝑠𝑗∈𝑉

∞∑︁
𝑙=1

𝑙 · P [𝐻𝑙(𝑠𝑗)] ≤

≤ E𝑅+
𝑘 + 2𝑛

2𝑛
,

where the last term is the average of geometrically distributed random variable of the time
before first selection of some attribute.

The Law of Total Probability and lemma 5 imply

E𝑇𝑓𝑙 ≤ 1 +

𝑛∑︁
𝑖=1

1

𝑘 + 2𝑛

(︀
E𝑇𝑓𝑖 + E𝑇𝑓�̄�

)︀
− 1

𝑘 + 2𝑛
· E𝑇𝑓�̄�

+
𝑘

𝑘 + 2𝑛
E𝑇0(𝐸).

Therefore,

E𝑅 ≤ 2𝑛

𝑘 + 2𝑛

[︂
1 + E𝑅+

𝑘

𝑘 + 2𝑛
E𝑇0(𝐸)

]︂
− 1

𝑘 + 2𝑛
E𝑅.

Hence,
𝑘 + 1

𝑘 + 2𝑛
E𝑅 ≤ 2𝑛

𝑘 + 2𝑛
+

2𝑛𝑘

(𝑘 + 2𝑛)2
E𝑇0(𝐸).

Substitute E𝑅 ≤ 2𝑛
𝑘+1 + 2𝑛𝑘

(𝑘+1)(𝑘+2𝑛)E𝑇0(𝐸) into

E𝑇0(𝐸) ≤ E𝑅+
𝑘 + 2𝑛

2𝑛
+ 𝑡𝑎𝑖𝑙,

and obtain
𝑘2 + 𝑘 + 2𝑛

(𝑘 + 1)(𝑘 + 2𝑛)
E𝑇0(𝐸) ≤ 2𝑛

𝑘 + 1
+

𝑘 + 2𝑛

2𝑛
+ 𝑡𝑎𝑖𝑙,

which leads to the required result.

5. Conclusion

In this article we have presented a significant advancement in solving the open problem of the
VKF method about finding a polynomial upper bound on the average length of trajectories of
a coupling Markov chain - the average time of computation by the probabilistic algorithm 1,
which generates concepts of the training context for knowledge extraction. Only special cases,



such as Boolean algebra and linear order, were investigated earlier. The important step is based
on the dichotomic scaling of a training context.

Combining the new result with the previously obtained polynomial lower bound on the
sufficient number of concepts, we obtain a fully polynomial scheme for extracting knowledge
using a binary similarity operation implemented in the VKF-method.

Experimental studies of author’s PhD student L.A. Yakimova demonstrate that probabilistic
approach to FCA-based knowledge extraction (in combination with "Counterexample Forbidding
Condition") is practically not subject to the phenomenon of over-fitting (through generation of
’phantom’ candidates), unlike the classical JSM-method.
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