
A Note on Counting Basic Choice Functions with
Formal Concept Analysis
Dmitry I. Ignatov

HSE University, Moscow, Russia

Abstract
The paper aims at not only counting how many basic choice functions exist on a finite set of alternatives
(all, non-empty, single-element valued) but shows how to do this with the help of Formal Concept
Analysis. Moreover, we introduce the contextual representation of a choice function by considering
the formal context of its map from 2𝐴 to 2𝐴. We also characterise these contexts as nominal scales of a
certain size and build a lattice of all choice functions with their help. Last but not least, we study the
asymptotic behaviour of those obtained and new counting formulas that do not have a closed form.
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1. Introduction

Choice Theory is formalised with the help of Order Theory [1, 2] and has applications not
only in Social Sciences but also in Artificial Intelligence, e.g. to model and learn preferences of
agents [3, 4]. In particular, it deals with set-valued functions defined on a set of alternatives, i.e.
variants that an individual or (rational) agent can choose based on her preferences or utility
function [5, 6, 1].

In this paper, inspired by earlier works on choice functions and Lattice Theory [5, 6, 2]
(including Formal Concept Analysis (FCA) as its applied branch [7, 8]), we characterise concept
lattices induced by point-wise representations of choice functions considered as formal contexts
and count basic choice functions (all, non-empty, single-element valued) for a fixed number of
alternatives.

The previous work of Monjardet and Raderanirina [2] studies the space of all choice functions
fulfilling certain axioms (called heredity, concordance, and outcast), which forms lattices if one
of the axioms is fulfilled. The works of Revenko and Kuznetsov [9, 8] consider various axioms on
set functions as (formal) attributes and perform attribute exploration [10] (an interactive semi-
automatic procedure of hypotheses generation in terms of attribute implications and checking
them by an expert) with functions on sets up to four elements. Not only choice functions were
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considered in [9, 8] since the choice functions are intensive, but extensity property was also
included.

Other related works on FCA and Choice Theory include learning individual and collective
preferences [11], enchaining consensus voting procedures [12], for example, in consensus
clustering [13], studying games on concept lattices [14, 15], and attribute ranking in formal
concepts with Shapley values [16].

The paper is organised as follows. In Section 2 we give basic definitions from FCA and
for considered families of choice functions. Section 3 contains our main results split in three
subsections on the proposed conceptual representation of choice functions, three counting
formulas, and their asymptotic behaviour, respectively. The last section concludes the paper.

2. Basic Notions

2.1. Formal Concept Analysis

We recall several definitions from Formal Concept Analysis [7], an applied branch of modern
Lattice Theory. We reproduce basic definitions from our tutorial [17], for more details see also
textbook [18].

A formal context 𝕂 = (𝐺,𝑀, 𝐼 ) consists of two sets 𝐺 and 𝑀 and a relation 𝐼 between 𝐺 and
𝑀. The elements of 𝐺 are called the objects and the elements of 𝑀 are called the attributes of the
context. The notation 𝑔𝐼𝑚 or (𝑔, 𝑚) ∈ 𝐼 means that the object 𝑔 has attribute 𝑚.

A special type of context defined on any set 𝑆 is used in the next section: the nominal scale
ℕ𝑆 ∶= (𝑆, 𝑆, =).

For 𝐴 ⊆ 𝐺 and 𝐵 ⊆ 𝑀, let

𝐴′ ∶= {𝑚 ∈ 𝑀 ∣ (𝑔, 𝑚) ∈ 𝐼 for all 𝑔 ∈ 𝐴}

𝐵′ ∶= {𝑔 ∈ 𝐺 ∣ (𝑔, 𝑚) ∈ 𝐼 for all 𝑚 ∈ 𝐵}.

These operators are called derivation operators or concept-forming operators for 𝕂 = (𝐺,𝑀, 𝐼 ).

Proposition 1. Let (𝐺,𝑀, 𝐼 ) be a formal context, for subsets 𝐴,𝐴1, 𝐴2 ⊆ 𝐺 and 𝐵 ⊆ 𝑀 we have

1. 𝐴1 ⊆ 𝐴2 ⇒ 𝐴′
2 ⊆ 𝐴′

1 (antimonotony of ′),
2. 𝐴1 ⊆ 𝐴2 ⇒ 𝐴′′

1 ⊆ 𝐴′′
2 (monotony of ′′),

3. 𝐴 ⊆ 𝐴′′ (extensity of ′′),
4. 𝐴′ = 𝐴′′′ (hence, 𝐴⁗ = 𝐴″, i.e. idempotency of ′′),
5. (𝐴1 ∪ 𝐴2)′ = 𝐴′

1 ∩ 𝐴′
2,

Similar properties hold for subsets of attributes.

Note that traditionally {𝑔}′ and {𝑚}′ are written as 𝑔′ and 𝑚′ for brevity.
For 𝕂 = (𝐺,𝑀, 𝐼 ) , the operators (⋅)″∶ 2𝐺 → 2𝐺, (⋅)″∶ 2𝑀 → 2𝑀 are closure operators, i.e.

idempotent, extensive, and monotone.
A formal concept of a formal context 𝕂 = (𝐺,𝑀, 𝐼 ) is a pair (𝐴, 𝐵) with 𝐴 ⊆ 𝐺, 𝐵 ⊆ 𝑀, 𝐴′ = 𝐵

and 𝐵′ = 𝐴. The sets 𝐴 and 𝐵 are called the extent and the intent of the formal concept (𝐴, 𝐵),



respectively. The subconcept-superconcept relation is given by (𝐴1, 𝐵1) ≤ (𝐴2, 𝐵2) iff 𝐴1 ⊆ 𝐴2
(𝐵2 ⊆ 𝐵1).

The set of all formal concepts of a context 𝕂 together with the order relation ≤ forms a
complete lattice called the concept lattice of 𝕂 and denoted by 𝔅(𝕂).

2.2. Choice Functions

A choice function on a set 𝐴 is defined as map 𝐶 ∶ 2𝐴 → 2𝐴 such that 𝐶(𝐴) ⊆ 𝐴 (intensity
property).

In what follows, we adopt terminology from [1]. Let 𝒜 be the set of all non-empty subsets of
𝐴, while 𝒞 be the set of all choice functions on 𝐴. The subset 𝒞+ of 𝒞 contains only non-empty
choice functions, i.e. 𝐶(𝑋) ≠ ∅ for all 𝑋 ∈ 𝒜.

The set of all single-valued functions 𝒞 contains 𝐶̂ such that |𝐶̂(𝑋)| = 1 for all 𝑋 ∈ 𝒜.

3. Main Results

3.1. Conceptual Representation

Let us form the context representing a choice function as follows 𝕂𝐶 ∶= (𝐺,𝑀, 𝐼 ) with 𝐺 ∶= 2𝐴,
𝑀 ∶= 2𝐴, 𝐼 ⊆ 2𝐴 × 2𝐴, where for 𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀, 𝑔𝐼𝑚 iff 𝐶(𝑔) = 𝑚. It is clear that the domain of
𝐶, 𝑑𝑜𝑚(𝐶), is 𝐺, while 𝑟𝑎𝑛𝑔𝑒(𝐶) ⊆ 𝑀.

Contexts representing non-empty and single-valued functions are denoted 𝕂𝐶+ ∶=
(𝒜,𝒜 , 𝐼𝐶+) and 𝕂𝐶̂ ∶= (𝒜,𝒜 , 𝐼𝐶̂), respectively, where 𝑔𝐼𝐶+𝑚 ⟺ 𝐶+(𝑔) = 𝑚 and for the
last context 𝑔𝐼𝐶̂𝑚 ⟺ 𝐶̂(𝑔) = 𝑚 and |𝑚| = 1.

Proposition 2. Let 𝐶 ∈ 𝒞, 𝐶+ ∈ 𝒞+, 𝐶̂ ∈ 𝒞 and |𝐴| = 𝑛, then the concept lattices of 𝕂𝐶 =
(2𝐴, 2𝐴, 𝐼𝐶),𝕂𝐶+ = (𝒜,𝒜 , 𝐼𝐶+) and𝕂𝐶̂ = (𝒜,𝒜 , 𝐼𝐶̂) are isomorphic to the lattices of nominal scales
𝑁𝑛 = ([𝑘], [𝑘], =)1 where 𝑘 = |𝑟𝑎𝑛𝑔𝑒(𝐹)| for 𝐹 ∈ {𝐶, 𝐶+, 𝐶̂} and 1) 1 ≤ 𝑘 ≤ 2𝑛, 2) 𝑛 ≤ 𝑘 ≤ 2𝑛 − 1,
and 3) 𝑘 = 𝑛, respectively.

Proof. 1) 𝑟𝑎𝑛𝑔𝑒(𝐶) may vary from {∅} set to 2𝐴, which means that the number of 𝑚 ∈ 2𝐴 such
that 𝑚′ ≠ ∅ varies from 1 to 2𝑛. Equality 2) follows from the condition ∀𝑔 ∈ 𝒜 ∶ |𝑔| = 1 ⇒
𝑔′ = {𝑔} (by intensity of 𝐶(𝑔)). Equality 3) follows from the previous condition and condition
∀𝑔 ∈ 𝒜 ∃𝑎 ∈ 𝐴 ∶ 𝑔′ = {𝑎} ∧ 𝑎 ∈ 𝑔.

The interpretation of concepts in such lattices is straightforward. Let 𝑚 ∈ 𝑀 = 2𝐴, then
(𝑚′, 𝑚) contains the image 𝑚 as the intent and its preimage 𝑚′ (or the fibre 𝐶−1({𝑚}), the set all
of sets that mapped to {𝑚}) as the extent. Note that {𝑚}″ = {𝑚} and there are no other concepts
than (𝑚′, 𝑚), (𝐺, 𝐺′) and (𝑀′, 𝑀).

The following example is inspired by our previous work on how university entrants are
choosing their departments [19].

1We use [𝑛] for {1, 2, … , 𝑛}



Example 1. Let us consider a set 𝐴 with three alternatives 𝑎1 (Computer Science faculty), 𝑎2
(Mathematical faculty), and 𝑎3 (Faculty of Economics). It is known that if an individual 𝑆 has
preferences represented by a binary relation 𝑃, then they can be rationalised by a choice function
under certain conditions [1]. Since the choice is not necessarily effective (a single-alternative
outcome), our individual may choose two alternatives 𝐶(𝐴) = {𝑎1, 𝑎2} out of three.

𝕂𝐶
∅ 𝑎1 𝑎2 𝑎3 𝑎 1

,𝑎
2

𝑎 1
,𝑎

3

𝑎 2
,𝑎

3

𝑎 1
,𝑎

2,
𝑎 3

∅ ×
𝑎1 ×
𝑎2 ×
𝑎3 ×
𝑎1, 𝑎2 ×
𝑎1, 𝑎3 ×
𝑎2, 𝑎3 ×
𝑎1, 𝑎2, 𝑎3 ×

Figure 1: An example context for 𝕂𝐶 and its concept lattice diagram.

Definitely, she loves Mathematics and Computer Science so the choice between those two is not
final, 𝐶({𝑎1, 𝑎2}) = {𝑎1, 𝑎2}. When only a single faculty out of the last two is available, she chooses
it. However, when only the faculty of Economics is offered, she refuses and probably takes a year
gap (it might be a very pity that there is no choice among the favourite faculties). However, when
educational tracks for mathematics and economics are compared, she might decide to apply both.
So, the choices might seem to be not fully rational (in terms of common sense), but they are in line
with the definition of 𝐶(⋅).

The line diagram of the corresponding concept lattice 𝔅(𝕂𝐶) on the left in Fig. 1 is drawn in
Concept Explorer. We use the so-called reduced labelling when nodes (representing concepts) are
labelled with object names when objects are first time added to the extent of a concept (when we go
from the bottom concept to the topmost one) and attribute names when attributes are first time
added to the intent of a concept (when we go in top-to-bottom direction). Note that we use shorthand
𝐶𝑆, 𝑀, and 𝐸 in the attribute labels (the latter denote choices on all alternative subsets), and 𝑎1, 𝑎2,
and 𝑎3 in the object labels (the latter denote the subsets of all the alternatives).

Note that our attributes are sets of alternatives and {𝑎3}, {𝑎1, 𝑎3}, and {𝑎1, 𝑎2, 𝑎3} can be eliminated
from the 𝕂𝐶 without affecting the lattice structure. The obtained concept lattice is isomorphic to
the so-called diamond lattice 𝑀5.

The lattice of a choice function can be defined via point-wise intersection and union. Let
us order objects of 𝐺 = 2𝐴 first by their cardinality and lexicographically for sets of equal
cardinality such that 𝑔0 = ∅,… , 𝑔2𝑛−1 = 𝐴. Now, every choice function 𝐶 is represented by its
point-wise vector of images 𝑖𝑚(𝐶) = (⋃𝑔′0, ⋃ 𝑔′1, … ,⋃ 𝑔′2𝑛−1)

2. Note that 𝑔′0 = {∅}.
For the example in Fig. 1, we have 𝑖𝑚(𝐶) = (∅, {𝑎1}, {𝑎2}, ∅, {𝑎1, 𝑎2}, {𝑎1}, {𝑎2, 𝑎3}, {𝑎1, 𝑎2}).

2we use ⋃ as a set unfolding operation since 𝑔′
𝑖 = {𝑚𝑗} and 𝐶(𝑔𝑖) ≡ ⋃𝑔′

𝑖



For two functions 𝐶1 and 𝐶2, the supremum and infimum of their point-wise vectors of images

𝑖𝑚(𝐶1) = (⋃𝑔𝐼10 ,⋃𝑔𝐼11 , … ,⋃𝑔𝐼12𝑛−1) and 𝑖𝑚(𝐶2) = (⋃𝑔𝐼20 ,⋃𝑔𝐼21 , … ,⋃𝑔𝐼22𝑛−1)

(primes are taken in the respective contexts) are defined as follows:

𝑖𝑚(𝐶1)⋁ 𝑖𝑚(𝐶2) = (⋃𝑔𝐼1𝑖 ∪⋃𝑔𝐼2𝑖 )2
𝑛−1
𝑖=0 ,

𝑖𝑚(𝐶1)⋀ 𝑖𝑚(𝐶2) = (⋃𝑔𝐼1𝑖 ∩⋃𝑔𝐼2𝑖 )2
𝑛−1
𝑖=0 .

Their existence is guaranteed by set intersection and union on images of choice functions.
Let 𝐴 = [𝑛], then triple 𝔏(𝐶) = (𝐼𝑚(𝒞 ),⋁,⋀)3 forms a lattice with 0 = (∅)2

𝑛−1
𝑖=0 and 1 =

(∅, {1}, … , [𝑛]), while 𝔖 = (𝐼𝑚(𝒞+),⋀) is an upper-semilattice and 𝔄 = (𝐼𝑚(𝒞 ), ≤) forms an
antichain with respect to the point-wise set inclusion of components ≤ (∀𝐶1, 𝐶2 ∈ 𝒞 ∶ 𝑖𝑚(𝐶1) ≤
𝑖𝑚(𝐶2) ⟺ ⋃𝑔𝐼1𝑖 ⊆ ⋃𝑔𝐼2𝑖 for 𝑖 ∈ [2𝑛 − 1]).

3.2. Counting Cardinalities

Let us prove the following proposition on the cardinality of 𝒞𝑛, 𝒞+
𝑛 , 𝒞𝑛 where |𝐴| = 𝑛.

Proposition 3.

|𝒞𝑛| = 2𝑛2
𝑛−1

(1)

|𝒞+
𝑛 | =

𝑛
∏
𝑘=1

(2𝑘 − 1)(
𝑛
𝑘) (2)

|𝒞𝑛| =
𝑛

∏
𝑘=1

𝑘(
𝑛
𝑘) (3)

Note that (1) and (2) have been proven in [20] according to [1] (where they are given without
proof). We give our proof of (1) and (2) with the help of FCA.

Proof. 1) Let us consider 1 = (∅, {1}, … , [𝑛]) it corresponds to𝕂𝐶𝑖𝑑 = (2𝐴, 2𝐴, 𝐼𝑖𝑑), where 𝐶𝑖𝑑(𝑋) =
𝑋 for 𝑋 ⊆ 𝐴 and 𝐼𝑖𝑑 ∶==. For each other choice function, 𝑖𝑚(𝐶) is below 1 in the lattice 𝔏(𝒞 ),
which means that ⋃𝑔𝑖′ ⊆ ⋃𝑔𝐼𝑖𝑑𝑖 , where ′ is taken in the 𝕂𝐶. Thus each row of 𝕂𝐶 has |2⋃𝑔𝐼𝑖𝑑𝑖 |
variants and the choice of each row is independent (we are ready for the product rule).

2𝑛−1
∏
𝑘=0

2| ⋃ 𝑔𝐼𝑖𝑑𝑖 | = ∏
𝑋⊆𝐴

2|𝑋 | =
𝑛

∏
𝑘=0

2𝑘(
𝑛
𝑘)

The last step is due to the presence of each set of size 𝑘 (𝑛𝑘) times. The sum
𝑛
∑
𝑘=0

𝑘(𝑛𝑘) equals

𝑛2𝑛−1.

3𝐼𝑚(𝒞 ) = {𝑖𝑚(𝐶) ∣ 𝐶 ∈ 𝒞 }



Table 1
Counting sequences for |𝒞 +

𝑛 |, |𝒞𝑛|, and |𝒞𝑛| up to 𝑛 = 5

Formula OEIS sequence 1 2 3 4 5

|𝒞𝑛| https://oeis.org/A061301 2 16 4096 4294967296 1208925819614629174706176
|𝒞 +

𝑛 | – 1 3 189 26254935 392654823152462915625
|𝒞𝑛| https://oeis.org/A229333 1 2 24 20736 309586821120

2) Now, we are not allowed to consider ⋃𝑔𝐼𝑖𝑑𝑖 = ∅, which implies subtraction of 1 (i.e. 2𝑘 − 1)
when counting variants for the choice of a row in the context 𝕂𝐶+ = (𝒜,𝒜 , 𝐼𝐶+ ⊆). Here
𝐼𝑖𝑑 ⊆ 𝒜 × 𝒜 so 𝑔0 (also 𝑚0) is excluded and the product starts with 𝑘 = 1.

3) Here, compared to the previous case, since we can choose only single-element sets among
all 𝑚 ∈ 𝐴, 2𝑘 − 1 is simply replaced by 𝑘.

Note that Monjardet and Raderanirina [2] claim that the lattice of all choice functions on a
set of alternatives 𝐴 is Boolean (i.e. atomistic and distributive) with 𝑛2𝑛−1 atoms, which directly
implies the proof of (1). Some authors also rediscovered this value without addressing prior
works by Monjardet and Raderanirina [21].

We also note that the beginning values by equations 1 and 3 are listed in OEIS: see integer
sequences https://oeis.org/A061301 and https://oeis.org/A229333, respectively.

Before we go to the asymptotic analysis, let us also list some beginning values of these
sequences by equations 1–3 in Table 1.

3.3. Asymptotic Analysis

The values represented by equations 2 and 3 have no closed-form formulas but are smaller than
the size of the whole space of choice functions. Our goal here is to figure out their asymptotic
behaviour to better understand how the sizes of the posets, |𝒞+

𝑛 |, |𝒞𝑛|, and |𝒞𝑛|, interrelated.

Proposition 4.
log2 |𝒞

+
𝑛 | = 𝑛2𝑛−1 + 𝑂(2𝑛𝑛−1/2)

Proof. Let us apply log2 to the product (2).

log2 |𝒞
+
𝑛 | =

𝑛
∑
𝑘=1

(
𝑛
𝑘
) log2 2

𝑘 +
𝑛
∑
𝑘=1

(
𝑛
𝑘
) log2(1 − 1/2𝑘)

The first sum equals (1), while the second is more laborious since it has no closed form. Since
log2 𝑥 ≤ 𝑥 − 1 for all 𝑥 > 0, we obtain

𝑛
∑
𝑘=1

(
𝑛
𝑘
) log2(1 − 1/2𝑘) ≤

𝑛
∑
𝑘=1

(
𝑛
𝑘
)(−1/2𝑘) = − (3

2
)
𝑛
+ 1

https://oeis.org/A061301
https://oeis.org/A229333
https://oeis.org/A061301
https://oeis.org/A229333


Since 1/2 ≤ (1 − 1/2𝑘) < 1 for 𝑘 ≥ 1, we have −2𝑛 ≤
𝑛
∑
𝑘=1

(𝑛𝑘) log2(1 − 1/2𝑘). However, we can

do better with the lower bound if pull out the maximal binomial coefficient, i.e. the middle (or
central) binomial coefficient.

𝑛
∑
𝑘=1

(
𝑛
𝑘
) log2(1 − 1/2𝑘) ≥ (

𝑛
⌊𝑛/2⌋

)
𝑛
∑
𝑘=1

log2(1 − 1/2𝑘) ≥ (
𝑛

⌊𝑛/2⌋
)

∞
∑
𝑘=1

log2(1 − 1/2𝑘)

∞
∑
𝑘=1

log2(1 − 1/2𝑘) = log2

∞
∏
𝑘=1

(1 − 1/2𝑘) = log2 𝜙(1/2) ≈ −1.79192, where

𝜙(𝑞) ≡ (𝑞)∞ ≡ (𝑞; 𝑞)∞ =
∞
∏
𝑘=1

(1 − 𝑞𝑘) is the Euler function [22], and (𝑞)∞ and (𝑞; 𝑞)∞ are

𝑞-Pochhammer symbols [23].

The variable term ( 𝑛
⌊𝑛/2⌋) is 𝑂(2𝑛𝑛−1/2) since for even 𝑛, we have ( 𝑛

𝑛/2) = √
2
𝜋𝑛2

𝑛(1 +

𝑂(1/𝑛)) [24] and the following inequalities are known 2𝑛
𝑛 ≤ ( 𝑛

⌊𝑛/2⌋) < √2/𝜋 ⋅ 2𝑛𝑛−1/2 [25].

Proposition 5.

lim
𝑛→∞

|𝒞+
𝑛 |

|𝒞𝑛|
=

∞
∏
𝑘=1

(1 − 1
2𝑘
)(

𝑛
𝑘) diverges to zero.

Proof. From the proof of the previous proposition it follows that

𝜙(1/2)√2/𝜋⋅2
𝑛𝑛−1/2 ≤

𝑛
∏
𝑘=1

(1 − 1
2𝑘
)(

𝑛
𝑘) ≤ 2−(

3
2 )

𝑛
+1 where 𝜙(1/2) ≈ 0.2888.

When 𝑛 tends to ∞, both sides tend to 0, and since no terms of the partial product are zeros,
the whole product is said to diverge to zero [26, 27].

Proposition 6.
log2 |𝒞𝑛| = Θ(2𝑛 log2 𝑛) .

Proof. To prove the statement we need to show that there are constants 𝑐1, 𝑐2 > 0, such that
𝑐12𝑛 log2 𝑛 ≤ log2 |𝒞𝑛| ≤ 𝑐22𝑛 log2 𝑛 for all 𝑛 > 𝑛0.

We can pull out the largest value that log2 𝑛 takes

log2 |𝒞𝑛| =
𝑛
∑
𝑘=1

(
𝑛
𝑘
) log2 𝑘 ≤ log2 𝑛

𝑛
∑
𝑘=1

(
𝑛
𝑘
) = (2𝑛 − 1) log2 𝑛.

For the lower bound we can split the sum into two parts as follows:

𝑛
∑
𝑘=1

(
𝑛
𝑘
) log2 𝑘 ≥

⌊𝑛/2⌋−1
∑
𝑘=1

(
𝑛
𝑘
) log2 𝑘 +

𝑛
∑

𝑘=⌊𝑛/2⌋
(
𝑛
𝑘
) log2

𝑛
2
≥

𝑛
∑

𝑘=⌊𝑛/2⌋
(
𝑛
𝑘
) log2

𝑛
2
≥



≥ log2
𝑛
2

𝑛
∑
𝑘=1

(
𝑛
𝑘
)/2 = 1

2
(log2 𝑛 − 1)(2𝑛 − 1) .

The last result can be sharpened to log2 |𝒞𝑛| = 2𝑛 log2 𝑛(1 + 𝑂(1/𝑙𝑜𝑔2𝑛)). By changing 𝑘 to

𝑛 − 𝑘 we get
𝑛
∑
𝑘=1

(𝑛𝑘) log2 𝑘 =
𝑛−1
∑
𝑘=0

(𝑛𝑘) log2(𝑛 − 𝑘) and pull out log2 𝑛, which gives us the term

(2𝑛 − 1) log2 𝑛 and the remaining term is

𝑛−1
∑
𝑘=0

(
𝑛
𝑘
) log2(1 − 𝑘/𝑛) ≤ −1

𝑛

𝑛−1
∑
𝑘=0

(
𝑛
𝑘
)𝑘 = −

𝑛−1
∑
𝑘=0

(
𝑛 − 1
𝑘 − 1

) = 1 − 2𝑛−1 .

4. Conclusion

Monjardet and Raderanirina [2] inform that not all spaces of choice functions with given
properties have been explored in the sense that concrete counting formulae exist while a few
beginning values are known.

For example, the lattice of choice functions satisfying hereditary axiom has size |𝔏(𝒞𝐻
𝑛 )| =

(𝐷𝑛−1)𝑛, where 𝐷𝑛 is the 𝑛-th Dedekind number [2]. And thus we get the new value |𝔏(𝒞𝐻
10)|

with recently obtained 𝐷9 [28]4 (with FCA):

28638657766829841112846915166759849881236610.

We hope to continue this work on combinatorial properties of choice functions with FCA
tools for their representation and counting and perform asymptotic analysis (if necessary).
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