
Constructing decision quivers
Egor Dudyrev1,2,∗, Sergei O. Kuznetsov1 and Amedeo Napoli2

1HSE University, 20 Myasnitskaya St, Moscow, 101000, Russian Federation
2Université de Lorraine, CNRS, LORIA, F-54000 Nancy, France

Abstract
Rule Learning and Formal Concept Analysis (FCA) are two fields of science that study similar topic
yet speak in a very different terms. This paper describes rule-based machine learning models with
FCA-based terminology which results in decision quiver model. A decision quiver, discussed in the paper,
is a supervised machine learning model that is based on intents, generators of intents, and predictions
for each intent (or generator). We show that the finding of the optimal set of intents is a cornerstone
task in constructing a decision quiver (and thus, any rule-based model). The paper finishes with the
baseline algorithm to construct decision quivers. The algorithm produces machine learning models that
are much smaller than the state-of-the-art ensembles of decision trees, yet that offer the similar quality
of predictions.

Keywords
Supervised Machine Learning, Explainable Artificial Intelligence, Formal Concept Analysis

1. Introduction

Rule Learning [1] and Formal Concept Analysis (FCA) [2] are two fields of science that study
similar topic yet speak in a very different terms. Rule Learning searches for rules that could
accurately predict the attributes of unseen data. While FCA focuses on studying dependencies
in only the given data. This paper attempts to combine the language of FCA and the goal of
Rule Learning in one model called Decision Quivers. Thus, we combine the mathematicity of
FCA with the applicability of Rule learning.

Rule learning is a mature and well-recognised research area mainly concerned with finding
the Boolean rules (i.e. ”rules”) from the given attributes that are able to predict the value of
“target” attribute. One specific configuration of a rule-based model – an ensemble of decision
trees – is considered among the state-of-the-art machine learning models on tabular data.
However, the last big increment in the prediction quality of the ensembles was introduced in the
year 2016 [3] and is based on ensembling decision trees that are known since (at least) the year
1986 [4]. The later studies on Rule learning focus on interpreting and explaining big rule-based
models, ensembles of decision trees especially [5] [6] [7] [8]. We attribute the lack of novel

Published in Sergei O. Kuznetsov, Amedeo Napoli, Sebastian Rudolph (Eds.): The 11th International Workshop ”What
can FCA do for Artificial Intelligence?”, FCA4AI 2023, co-located with IJCAI 2023, August 20 2023, Macao, S.A.R. China,
Proceedings, pp. 69–80.
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open egor.dudyrev@loria.fr (E. Dudyrev); skuznetsov@hse.ru (S. O. Kuznetsov); amedeo.napoli@loria.fr (A. Napoli)
Orcid 0000-0002-2144-3308 (E. Dudyrev); 0000-0003-3284-9001 (S. O. Kuznetsov); 0000-0001-5236-9561 (A. Napoli)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:egor.dudyrev@loria.fr
mailto:skuznetsov@hse.ru
mailto:amedeo.napoli@loria.fr
https://orcid.org/0000-0002-2144-3308
https://orcid.org/0000-0003-3284-9001
https://orcid.org/0000-0001-5236-9561
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

state-of-the-art models in the area to the lack of a good formalism to describe rule-based models.
Such formalism could also propose new ways to interpret and explain big rule-based models.
Formal Concept Analysis is a formalism aimed at analysing data based on discrete (often

binary) descriptions. The FCA focus on binary descriptions promises its good applicability to
become a formalism for rule-based models.
The natural connections between FCA and rule-based machine learning were covered in

many works: [9] [10] [11] [12] [13] [14]. This paper does not attempt to highlight any new
connection between FCA and rule-based models. Instead, we discuss a model for rule-based
machine learning called Decision Quiver. The model is defined using the very basic notions
of FCA – closed descriptions and generators. The notion of generators allows decision quiver
describe any other rule-based model. While the notion of closed descriptions greatly shrinks
the search space while constructing the model.

The paper is structured as follows. Section 2 recalls the basics of Formal Concept Analysis and
Supervised Machine Learning, and defines Decision Quivers. Section 3 introduces the pipeline
and the simple algorithm to construct decision quivers. Section 4 evaluates the algorithm on
some of LUCS-KDD datasets. Section 5 concludes the paper.

2. Background

This subsection introduces definitions we use throughout the paper. Firstly, we provide the
basic terms of Formal Concept Analysis to describe the rule models. Secondly, we describe the
space of premises that contains the machine learning models discussed in the paper. Thirdly,
we describe the main topics of a binary classification in the language in the FCA notation.

2.1. Formal Concept Analysis

In Formal Concept Analysis the data is represented as a formal context 𝐾 = (𝐺,𝑀, 𝐼), which is
a triple of a set of objects 𝐺, a set of attributes 𝑀 and the relation 𝐼 ⊆ 𝐺 × 𝑀 among them.
A running example of a formal context is provided in Table 1 (together with “Target 𝕐”

column and “test objects” rows that will be introduced in the following sections). To lighten the
notation, we will represent a subset of attributes from the running example as a concatenation
of these attributes: e.g. we denote the subset of attributes {𝑐, ℎ} as 𝑐ℎ.

We call any subset of attributes 𝐷 ⊆ 𝑀 a description. And we denote the set of all descriptions
(i.e. the powerset of 𝑀) as 2𝑀:

2𝑀 = {𝐷 ∣ 𝐷 ⊆ 𝑀} (1)

Now we can define two “prime” operations: 𝐴′ would describe all attributes 𝑀 shared by
objects𝐴 ⊆ 𝐺, and 𝐵′ would describe all objects 𝐺 covered by attributes 𝐵 ⊆ 𝑀. Prime operations:

𝐴′ = {𝑚 ∈ 𝑀 ∣ ∀𝑔 ∈ 𝐴 ∶ (𝑔, 𝑚) ∈ 𝐼 }, 𝐴 ⊆ 𝐺
𝐵′ = {𝑔 ∈ 𝐺 ∣ ∀𝑚 ∈ 𝐵 ∶ (𝑔, 𝑚) ∈ 𝐼 }, 𝐵 ⊆ 𝑀

(2)

Two prime operations, combined together, result in “double prime” operator (⋅)″ that has
the properties of a closure operator. For example, if 𝐵 is a subset of attributes 𝑀 then 𝐵″ is the
closure of 𝐵 on set 𝑀.

Attributes 𝑀 Target 𝕐
l w c h 𝜏

Objects
𝐺

dog x x x 100%
corn x 0%

bream x x x 0%
egg 0%

Test
objects

reed x x ? (0%)
frog x x x x ? (0%)

Attr.
names

lives on land lives in water can move has limbs is mammal

Table 1
Running example of a formal context with additional target column 𝕐 and test objects

∅

l c h w

lc lh ch cw hw

lch chw

dog,corn,
bream, egg

dog,corn

dog,bream

dog bream

Figure 1: Descriptions of the example context grouped by the subsets of objects they describe. Descrip-
tions of the empty set of objects are omitted.

In FCA terminology, a closed description 𝐵 ⊆ 𝑀, 𝐵″ = 𝐵 is also referred to as an intent. The
set of all intent is denoted by 𝔹 and, together with set inclusion order, forms a lattice :

𝔹 = {𝐵 ⊆ 𝑀 ∣ 𝐵″ = 𝐵} (3)

Two different subsets of attributes 𝐷, 𝐸 ⊆ 𝑀,𝐷 ≠ 𝐸 can describe the same set of objects
𝐷′ = 𝐸′ and, consequently, have the same closure 𝐷″ = 𝐸″. Such descriptions are called
equivalent. Equivalence class [𝐷] of description 𝐷 ⊆ 𝑀 is denoted as [𝐷]:

[𝐷] = {𝐸 ⊆ 𝑀 ∣ 𝐸″ = 𝐷″}. (4)

Line diagram on Figure 1 shows the descriptions of a context from the running from Table 1
grouped by the equivalence classes. Descriptions equivalent to 𝑀 (that describe no objects) are
omitted as they would make the diagram harder to read.
In each equivalence class [𝐷], 𝐷 ⊆ 𝑀, there is a single maximal description 𝐷″ = 𝐵 (also

called closed description or intent) and possibly many minimal descriptions, that are called

“keys”. Let 𝐵 ⊆ 𝑀 be a closed description 𝐵″ = 𝐵, then 𝑘𝑒𝑦𝑠(𝐵) is the set of minimal descriptions,
equivalent to 𝐵:

𝑘𝑒𝑦𝑠(𝐵) = {𝐸 ∈ [𝐵] ∣ ∄𝐷 ∈ [𝐵] s.t. 𝐷 ⊂ 𝐸}, 𝐵 ⊆ 𝑀 (5)

2.2. Supervised Machine Learning

This subsection covers the basic ideas of Supervised Machine Learning and introduces our
notation for these terms.

Let us define a formal context (𝐺,𝑀, 𝐼), a space of target values 𝕐, and a target label 𝜏 (𝑔) ∈ 𝕐
for each object 𝑔 ∈ 𝐺. The task of supervised machine learning is to find a function 𝜓 that maps
any description 𝑋 ⊆ 𝑀 to a target value 𝜓(𝑋) ∈ 𝕐 so that, for any object 𝑔 ∈ 𝐺, the prediction
𝜓(𝑔′) would be close to the target label 𝜏 (𝑔). The “closeness” of target labels 𝜏 and predictions 𝜓
on objects 𝐺 is evaluated by non-negative loss functionℒ(𝜏 , 𝜓 ∣ 𝐺) ∈ ℝ+, whereℒ(𝜏 , 𝜓 ∣ 𝐺) = 0
means that 𝜓 is optimal. Here we provide two loss functions that can be used to evaluate the
prediction function 𝜓: negative F1-scoreℒ𝐹1 for binary classification task (i.e. when 𝕐 = {0, 1}),
and Mean Squared Error (MSE) ℒ𝑀𝑆𝐸 for regression task (i.e. when 𝕐 = ℝ).

ℒ𝐹1(𝜏 , 𝜓 ∣ 𝐺) = 1 − 2
∑𝑔∈𝐺 𝜏 (𝑔)𝜓 (𝑔′)

∑𝑔∈𝐺 (1 − 𝜏(𝑔)𝜓 (𝑔′))

ℒ𝑀𝑆𝐸(𝜏 , 𝜓 ∣ 𝐺) = 1
|𝐺|

∑
𝑔∈𝐺

(𝜏(𝑔) − 𝜓(𝑔′))2

It should be noted that, since the loss functionℒ is evaluated on objects𝐺, the “best” prediction
function 𝜓 for these objects would be the function 𝜓 ∶ 𝑔′ ↦ 𝜏(𝑔) that predicts the label 𝜏 (𝑔)
of every objects 𝑔 ∈ 𝐺 based on its description 𝑔′. Such function 𝜓 would give zero loss on
objects 𝐺 but it will not extrapolate well on new descriptions, not shared by objects 𝐺. This
issue is often mitigated by introducing the “test” formal context (𝐺test, 𝑀, 𝐼test)with target labels
𝜏test ∶ 𝐺test → 𝕐. Then, prediction function 𝜓 is constructed by minimizing the loss on “train”
context (𝐺,𝑀, 𝐼), but the final evaluation of the loss of function 𝜓 is done on the test context
(𝐺test, 𝑀, 𝐼test). In the running example from Table 1, objects 𝐺test are denoted as Test objects.

In what follows we use the “average” operation over the target space (Equation 6). We assume,
therefore, that the space 𝕐 is “averageble”, i.e. for every list of tuple of target values 𝑌, its average
avg(𝑌) is also a target value from 𝕐. This assumption does not make the following reasoning
too specific, as many Supervised Machine Learning problems can be reformulated to satisfy it.
For example, binary classification task suggests only two target values 𝕐bin = {0, 1}. However,
it can be reformulated as a regression task with 𝕐 = [0, 1] where the values of 𝕐 represent the
probability of an object to belong to the positive class 1 ∈ 𝕐bin.

avg(𝑌) = 1
|𝑌 |

∑
𝑦∈𝑌

𝑦, 𝑌 ∈ 𝕐1 ∪ 𝕐2 ∪ … ∪ 𝕐∞ (6)

2.3. Rule set

Given a description 𝑋 ⊆ 𝑀, a rule-based machine learning model makes prediction 𝜓(𝑋) based
on a set of rules of the form: “if 𝑋 is described by 𝑃 ⊆ 𝑀 then predict 𝜚(𝑃) ∈ 𝕐”. That is, every

rule is characterised by a pair (𝑃, 𝜚(𝑃)) where 𝑃 ⊆ 𝑀 is a subset of attributes called premise,
and 𝜚(𝑃) ∈ 𝕐 is a prediction of premise 𝑃. A rule set is a pair (𝒫 , 𝜚) where 𝒫 ⊆ 2𝑀 is a set of
premises and 𝜚 is a function that maps each premise to a target value (𝜚 ∶ 𝒫 ↦ 𝕐).

Now, let us consider two special cases when predicting with rule set (𝒫 , 𝜚). Let 𝑋 ⊆ 𝑀 be a
description and let 𝑃1, 𝑃2 ∈ 𝒫 be two comparable premises covered by 𝑋: 𝑃1 ⊂ 𝑃2 ⊆ 𝑋. Then
we follow the intuition that a more precise premise 𝑃2 should give a more precise prediction
𝜚(𝑃2), therefore we only use premise 𝑃2 to make a prediction about the target of 𝑋. Now,
let 𝑃1, 𝑃2 ∈ 𝒫 be incomparable premises, covered by 𝑋: 𝑃1 ⊈ 𝑃2, 𝑃2 ⊈ 𝑃1, 𝑃1 ⊆ 𝑋, 𝑃2 ⊆ 𝑋.
Then we use both premises 𝑃1, 𝑃2 to make a prediction for 𝑋 by averaging their predictions
𝜓(𝑋) = avg((𝜚(𝑃1), 𝜚(𝑃2))).
With these ideas in mind we define prediction function 𝜓(𝒫 ,𝜚) ∶ 2𝑀 → 𝕐 for rule set (𝒫 , 𝜚)

as follows:

𝜓(𝒫 ,𝜚)(𝑋) = avg((𝜚(𝑃) ∣ 𝑃 ∈ 𝒫𝑋,max)), 𝑋 ⊆ 𝑀 (7)

where 𝒫𝑋,max = {𝑃 ∈ 𝒫 ∣ 𝑃 ⊆ 𝑋 , ∀𝑃2 ∈ 𝒫 ∶ (𝑃 ⊂ 𝑃2) ⟹ (𝑃2 ⊈ 𝑋)} (8)

Prediction 𝜚(𝑃) for a premise 𝑃 ∈ 𝒫 is often computed as the average of target labels of
objects described by 𝑃:

𝜚(𝑃) = avg((𝜏 (𝑔) ∣ 𝑔 ∈ 𝑃 ′)) (9)

Example 1. Let us provide an example of a rule set (𝒫 , 𝜚) constructed on the example context 1.
For the sake of readability, we represent the rule set as a set of implications {𝑃 ⟹ 𝜚(𝑃) ∣ 𝑃 ∈ 𝒫 }:

{∅ ⟹ 25%, 𝑙 ⟹ 50%, 𝑙𝑐 ⟹ 100%, 𝑙ℎ ⟹ 100%, 𝑤 ⟹ 0%}. (10)

Let us make a prediction for object reed with description 𝑋 = 𝑙𝑤. There are three premises
from 𝒫 that can be applied for 𝑋: {∅, 𝑙, 𝑤}. Out of these three, there are two maximal descriptions:
𝒫𝑋,max = {𝑙, 𝑤}. The former predicts that reed is mammal with 𝜚(𝑙) = 50% probability, and the
latter predicts that reed is mammal with 𝜚(𝑤) = 0% probability. Therefore, the final prediction is
𝜓(𝒫 ,𝜚)(𝑋) = 25% probability of reed being a mammal.

Analogously, let us predict whether object frog with description 𝑋 = 𝑙𝑤𝑐ℎ is a mammal. All
premises of 𝒫 can be applied for the given 𝑋. However, only three of them are maximal: 𝒫𝑋,max =
{𝑙𝑐, 𝑙ℎ, 𝑤}. The corresponding premise predictions are 𝜚(𝑙𝑐) = 100%, 𝜚(𝑙ℎ) = 100%, 𝜚(𝑤) = 0%.
Therefore, the final prediction is 𝜓(𝒫 ,𝜚)(𝑋) = 67% probability of frog being a mammal.

This process of making predictions is schematically depicted in Figure 2.

X = lw {l, w} (50%, 0%) 25% = ψ(P,%)(X)
PX,max % avg.

X = lwch {lc, lh, w} (100%, 100%, 0%) 67%= ψ(P,%)(X)
PX,max % avg.

Figure 2: The pipeline of making predictions with Rule Set of Example 1 for a reed (𝑋 = 𝑙𝑤) (top
subfigure) and a frog (𝑋 = 𝑙𝑤𝑐ℎ) (bottom subfigure)

2.4. Implicitly equivalent premises

Let us rewrite the predictions from Example 1 in more details, considering what objects from 𝐺
we use to make predictions.

For object reed with description 𝑋 = 𝑙𝑤 the set 𝒫 contains two maximal premises describing
𝑋: 𝒫𝑋,max = {𝑙, 𝑤}. Premise 𝑙 describes training objects 𝑙′ = {𝑑𝑜𝑔, 𝑐𝑜𝑟𝑛} ⊂ 𝐺 with corresponding
target labels 𝜏 (𝑑𝑜𝑔) = 100%, 𝜏 (𝑐𝑜𝑟𝑛) = 0% whose average label is 50%. Premise 𝑤 describes
training object 𝑤 ′ = {𝑏𝑟𝑒𝑎𝑚} ⊂ 𝐺 with target label 𝜏 (𝑏𝑟𝑒𝑎𝑚) = 0%. So the rule set (𝒫 , 𝜚) from
Example 1 predicts that reed is mammal with 25% probability.

For object frog with description 𝑋 = 𝑙𝑤𝑐ℎ the set 𝒫 contains three maximal premises describ-
ing 𝑋: 𝒫𝑋,max = {𝑙𝑐, 𝑙ℎ, 𝑤}. Premise 𝑙𝑐 describes training object 𝑙′ = {𝑑𝑜𝑔} ⊂ 𝐺 with target label
𝜏 (𝑑𝑜𝑔) = 100%; premise 𝑙ℎ describes the same training object training object 𝑤 ′ = 𝑙′ = {𝑑𝑜𝑔} ⊂ 𝐺
with target label 𝜏 (𝑑𝑜𝑔) = 100%; and premise 𝑤 describes training object 𝑤 ′ = {𝑏𝑟𝑒𝑎𝑚} ⊂ 𝐺 with
target label 𝜏 (𝑏𝑟𝑒𝑎𝑚) = 0%. So the rule set (𝒫 , 𝜚) from Example 1 predicts that frog is mammal
with 67% probability.

This process of making predictions is schematically depicted in Figure 3.

X = lw {l, w}
{dog, corn} (100%, 0%) 50%

25% = ψ(P,%)(X)

{bream} (0%) 0%

PX,max
l′

w′

τ

τ

avg.

avg.

avg.

avg.

X = lwch {lc, lh, w}

{dog} (100%) 100%

67% = ψ(P,%)(X){dog} (100%) 100%

{bream} (0%) 0%

PX,max

lc′

lh′

w′

τ

τ

τ

avg.

avg.

avg.

avg.

avg.

avg.

Figure 3: The explicit pipeline of making predictions with Rule Set of Example 1 for a reed (𝑋 = 𝑙𝑤)
(top subfigure) and a frog (𝑋 = 𝑙𝑤𝑐ℎ) (bottom subfigure)

Notice that two premises {𝑙𝑐, 𝑙ℎ} ⊂ 𝒫 used for target prediction of object frog (𝑋 = 𝑙𝑤𝑐ℎ)
have the same extent: 𝑙𝑐′ = 𝑙ℎ′ = {𝑑𝑜𝑔}. Therefore, the information that subset of objects {𝑑𝑜𝑔}
has average target of 100% is used two times inside the rule set. In fact , if we count only one
premise with extent {𝑑𝑜𝑔} dog when making the final prediction 𝜓(𝒫 ,𝜚) we will get the value
50%, which is closer to the true value 0% than 67%.
There are many possible ways to overcome this issue. For example, one can construct rule

set (𝒫 , 𝜚) such that the set 𝒫 would only contain premises that are either comparable or
contradicting (i.e. ∀𝑃1, 𝑃2 ∈ 𝒫 ∶ 𝑃1 ⊆ 𝑃2 or 𝑃2 ⊆ 𝑃1 or ∃𝑚 ∈ 𝑃1, s.t. “not 𝑚” ∈ 𝑃2). This is
the approach, used by decision trees. One can also construct rule set (𝒫 , 𝜚) such that the all
premises in 𝒫 are closed (i.e. 𝒫 ⊆ 𝔹 ⊆ 2𝑀). Then, there will be no two premises that describe
the same set of objects. This is the approach commonly used in FCA literature.
In this paper we propose another approach by enriching the rule set (𝒫 , 𝜚) with the set of

closures ℬ of premises 𝒫: ℬ = {𝑃″ ∣ 𝑃 ∈ 𝒫 }.

2.5. Decision Quiver

The previous sections introduced equivalent descriptions and covered their importance for
making predictions with rule sets. This section presents Decision Quiver: a rule set model
enriched with the information about equivalent descriptions.

The model of Decision Quiver was introduced in [15] as a directed multigraph (i.e. a quiver)
with intents as nodes, generators as edges, and predictions for each nodes. This paper inherits
the name of Decision Quiver but presents its definition in a more set-theoretic way, as we have
found the latter to be more concise.

Definition 1. Let (𝐺,𝑀, 𝐼) be a (training) context and 𝔹 be its set of closed descriptions, a
decision quiver is a triplet 𝑄 = (𝒫 ,ℬ, 𝜚) of premises 𝒫 ⊆ 2𝑀, their intents ℬ ⊂ 𝔹 ∶ {𝑃″ ∣ 𝑃 ∈
𝒫 } = ℬ, and predictions 𝜚 ∶ ℬ → 𝕐 for every intent.

Given a description 𝑋 ⊆ 𝑀, prediction 𝜓(𝒫 ,ℬ,𝜚)(𝑋) is computed as the average of predictions
𝜚 of maximal intentsℬ𝑋,max ⊆ ℬ, whose generators 𝒫𝑋 ⊆ 𝒫 are covered by 𝑋.

𝜓(𝒫 ,ℬ,𝜚)(𝑋) = avg((𝜚(𝐵) ∣ 𝐵 ∈ ℬ𝑋,max)), (11)

where ℬ𝑋,max = {𝐵 ∈ ℬ ∣ ∃𝑃 ∈ 𝒫𝑋,max s.t. 𝐵 = 𝑃″, ∄𝑃2 ∈ 𝒫𝑋,max s.t. 𝐵 ⊂ 𝑃″2 } (12)

𝒫𝑋,max = {𝑃 ∈ 𝒫 ∣ 𝑃 ⊆ 𝑋 , ∀𝑃2 ∈ 𝒫 s.t. (𝑃 ⊆ 𝑃2) ⟹ (𝑃2 ⊈ 𝑋)} (13)

Example 2. Let us provide an example of a decision quiver (𝒫 ,ℬ, 𝜚) having the same premises
as a rule set (𝒫 , 𝜚) from Example 1. For the sake of readability, we represent the quiver (𝒫 ,ℬ, 𝜚)
as two sets of implications: {𝑃 ⟹ 𝐵 ∣ 𝑃 ∈ 𝒫 , 𝐵 ∈ ℬ, 𝑃″ = 𝐵} and {𝐵 ⟹ 𝜚(𝐵) ∣ 𝐵 ∈ ℬ}:

𝒫 → ℬ ∶{∅ ⟹ ∅, 𝑙 ⟹ 𝑙, 𝑙𝑐 ⟹ 𝑙𝑐ℎ, 𝑙ℎ ⟹ 𝑙𝑐ℎ, 𝑤 ⟹ 𝑐ℎ𝑤},
ℬ → 𝕐 ∶{∅ ⟹ 25%, 𝑙 ⟹ 50%, 𝑙𝑐ℎ ⟹ 100%, 𝑐ℎ𝑤 ⟹ 0%} = 𝜚.

Contrary to the rule set (𝒫 , 𝜚) from Example 1, the quiver (𝒫 ,ℬ, 𝜚) “knows” that premises 𝑙𝑐
and 𝑙ℎ are equivalent as they correspond to the same closure 𝑙𝑐ℎ. Therefore, when making prediction
for a frog with description 𝑋 = 𝑙𝑤𝑐ℎ, the quiver uses only two subsets of objects: {𝑑𝑜𝑔} = 𝑙𝑤𝑐ℎ′
with average target equal to 100%, and {𝑏𝑟𝑒𝑎𝑚} = 𝑐ℎ𝑤 ′ with average target equal to 0%. This
prediction process is schematically represented on Figure 4.

X = lwch {lc, lh, w}
lch 100%

50% = ψ(P,B,%)(X)

chw 0%

PX,max

lc′′

lh′′

w′′

%

%

avg

avg

Figure 4: The pipeline of making predictions with Decision Quiver based on a Rule Set of Example 1 for
a frog (𝑋 = 𝑙𝑤𝑐ℎ)

3. Quivers construction pipeline

The previous section introduced target-based and arrow-based decision quivers. Now, let us
discuss, how these quivers can be constructed.

3.1. Algorithm to find the optimal quiver

Decision quiver 𝑄 = (𝒫 ,ℬ, 𝜚) consists of three elements. Note that prediction function
𝜚 ∶ ℬ → 𝕐 depends on intentsℬ and not the premises 𝒫. And considering the training formal
context, every premise 𝑃 ∈ 𝒫 describes the same objects as itc closure 𝐵 ∈ ℬ, 𝑃″ = 𝐵. So, when
making predictions on the training context, the choice of a specific subset of premises 𝒫 is
irrelevant. Therefore, the task of finding the optimal quiver (𝒫 ,ℬ, 𝜚) on the training formal
context reduces to finding the optimal rule set (ℬ, 𝜚) whose premises are limited to intents.
After finding (ℬ, 𝜚) one should select the optimal set of premises 𝒫 to construct a quiver

(𝒫 ,ℬ, 𝜚) that would be generalisable to the test data. However, since premises with the same
intent describe the same objects, they are empirically indistinguishable. Thus, the choice of
the premises 𝒫 relies on a priori intentions: for example, one may want to make premises as
precise as possible (then 𝒫 = ℬ), or as general as possible (then 𝒫 = ⋃𝐵∈ℬ 𝑘𝑒𝑦𝑠(𝐵)).
More formally, let ℒ be a loss function, (𝐺,𝑀, 𝐼) be a training context, and 𝑄opt =

(𝒫opt,ℬopt, 𝜚opt) be the quiver, that achieves the minimal loss ℒ on the context (𝐺,𝑀, 𝐼):
ℒ(𝜏 , 𝜚𝑄opt

∣ 𝐺) → 0. Then, the task of finding such optimal quiver 𝑄opt can be separated into
three independent steps:

0. Fix the search space of intents 𝔹search ⊆ 𝔹 of context (𝐺,𝑀, 𝐼),
1. Find the optimal rule set (ℬopt, 𝜚opt) of intents ℬopt ⊆ 𝔹search and their predictions

𝜚opt ∶ ℬopt → 𝕐,
2. Construct the set of premises 𝒫opt of intents ℬopt.

The initial step of the pipeline is fixing the search space 𝔹search. For the sake of simplicity,
in this paper we assign the search space 𝔹search to be the space of all intents 𝔹. The ways to
minimise the search space is one of the future research directions.

The first and the main step of the algorithm is finding the optimal rule set (ℬopt, 𝜚opt) where
the choice of premises is limited to intents from the search space: ℬopt ⊆ 𝔹search. Remind that
the prediction function 𝜚opt is often evaluated the same way for every intent. For example,
similar to Equation 9, prediction 𝜚opt(𝐵) for an intent 𝐵 ∈ 𝔹 is the average target label of objects
𝐵′ described by intent 𝐵. Thus, the search for optimal rule set (ℬopt, 𝜚opt) is a search for optimal
subset of intents ℬopt ⊆ 𝔹search:

ℬopt = arg min
ℬ⊆𝔹search

ℒ(𝜏 , 𝜓(ℬ,𝜚) ∣ 𝐺) (14)

The last step of the pipeline is to construct the set of premises𝒫opt of quiver 𝑄opt to generalise
the latter to the possible test descriptions. Here we propose two options for the set of generators
𝒫opt: the set of closed descriptions𝒫closed = ℬopt, and the set of keys𝒫keys = ⋃𝐵∈ℬopt

keys(𝐵).

3.2. Algorithm to find the optimal subset of intents

This paper uses the very basic greedy discrete optimisation algorithm to find the optimal subset
of intents (i.e. solving the task from Equation 14).

When finding the optimal subset of intents ℬopt ⊆ 𝔹search we operate the fixed set training
context (𝐺,𝑀, 𝐼), the fixed targets 𝜏 ∶ 𝐺 → 𝕐, and the fixed way to compute the prediction 𝜚(𝐵)

for an intent 𝐵 ∈ 𝔹search (see eq. 9). Therefore, for the sake of brevity, we define the training
loss ℒtrain(ℬ) of a subset of intents ℬ as follows:

ℒtrain(ℬ) = ℒ(𝜏 , 𝜓(ℬ,𝜚) ∣ 𝐺). (15)

The algorithm (to find ℬopt given 𝔹search):

0. Start with ℬ containing the top intent ℬ = {∅″},
1. Find the intent 𝐵opt ∈ 𝔹search that gives the minimal loss, when added to the current set

of intents ℬ:
𝐵opt = argmin𝐵∈𝔹search

ℒtrain(ℬ ∪ {𝐵})
2. Add intent 𝐵opt to the set ℬ,
3. Repeat the steps 1, 2 while the set ℬ contains less than ℬmax ∈ ℕ elements and the loss

decrease is higher than 𝜖 ∈ ℝ+:
repeat until |ℬ| ≤ ℬmax, and ℒtrain(ℬ)−ℒtrain(ℬ∪{𝐵opt})>𝜖.

4. Experiments

The main limitation for the current algorithm is that considers the intents search space 𝔹search
as the set of all intents 𝔹. Therefore, we can only apply the algorithm on the datasets where
we can compute the intents 𝔹. For the experiments we chose nine dataset from LUCS-KDD
repository [16] that are discretized versions of real-world datasets from UCI repository. The set
of intents 𝔹 for every dataset was computed by LCM algorithm implemented in Scikit-mine
repository.

The selected datasets give the task of multi-class classification. For example, Iris dataset asks
to classify a flower into one of the three types (Setosa, Versicolour, and Virginica) based on
its petal and sepal lengths and widths. We used F1 score with weighted averaging as a loss
function so that it can be applied to all datasets with no adjustments.

For each dataset we fit a gradient boosting model provided by Sci-Kit learn [17] and XGBooost
[3] to get the state-of-the-art prediction quality scores. Then we construct two decision quivers
for each dataset: one makes predictions via intents (denoted by ”Quiver, intents”), and the other
makes predictions via keys of these intents (denoted as ”Quiver, keys”).
Table 2 compares the test prediction quality of models on the selected datasets. One can

see that the Gradient boosting models gave the best scores. However, in some cases, quiver
models showed comparable decision quality: e.g. Iris, Congres, Breast, Flare datasets. Also,
on this data, we see almost no differences between quivers that make predict with intents
and quivers that prediction with keys. The only dataset where the difference occurs is Zoo
dataset. Currently, we cannot explain this fact as we assumed the difference would be much
more apparent. So we should proceed with more profound studies comparing intents and keys
as means for predictions.
Now, let us compare the sizes of the models, provided in Table 3. One can see that quiver

models contain no more that 6 intents for all the datasets. While each gradient boosting consists
of one hundred of decision trees. Note that each decision tree in each gradient boosting consist
of many Boolean rules. In that regard, decision quiver model are more efficient, as they are able
to achieve the similar prediction quality score with much lesser number of rules.

Table 2
Test F1 score

Dataset Quiver, intents Quiver, keys Grad. Boosting sklearn XGBoost

zoo 0.819 0.869 1.000 0.929
iris 0.967 0.967 0.967 0.967
ecoli 0.703 0.703 0.757 0.808
congres 0.909 0.909 0.909 0.920
breast 0.936 0.936 0.936 0.936
ticTacToe 0.745 0.745 0.984 0.990
flare 0.878 0.878 0.901 0.880
led7 0.460 0.460 0.774 0.769
nursery 0.863 0.863 0.988 1.000

Table 3
Model complexity in size and in construction time

Dataset Model size Construction time (seconds)
intents in quiver # trees, GB sklearn # trees, XGBoost Quiver GB, sklearn XGBoost

zoo 6 100 100 12.333 0.159 0.057
iris 3 100 100 2.250 0.067 0.047
ecoli 3 100 100 161.508 0.223 0.125
congres 2 100 100 158.786 0.039 0.037
breast 3 100 100 0.786 0.028 0.032
ticTacToe 5 100 100 53.155 0.060 0.065
flare 1 100 100 661.792 0.204 0.196
led7 5 100 100 2.047 0.961 0.726
nursery 5 100 100 1165.161 2.774 0.835

However, the better algorithm to construct decision quivers should be developed. As the
current algorithm construct the quivers for too long. For example, on Nursery dataset, it took
XGBoost 0.8 seconds to construct 100 decision trees, and it took decision quivers algorithm 19
minutes to select 5 intents.

5. Conclusion

In this paper we have presented decision quivers as a formalism for describing rule-based
machine learning models. We showed that description quiver can describe any rule-based
model. And, by incorporating closed descriptions, it can possibly suggest efficient algorithms to
create more optimal machine learning models.

We have also presented a general pipeline to construct decision quivers. We showed that the
most important part of the pipeline is finding the optimal set of intents. Thus, many FCA-based
algorithm can be used to construct decision quivers. The current baseline algorithm for quivers
construction is very slow, compared to the state-of-the-art models. However, it can produce
much smaller models with the similar prediction quality.

References

[1] J. Fürnkranz, D. Gamberger, N. Lavrač, J. Fürnkranz, D. Gamberger, N. Lavrač, Rule
learning in a nutshell, Foundations of Rule Learning (2012) 19–55.

[2] B. Ganter, R. Wille, Formal Concept Analysis, Springer, Berlin, 1999.
[3] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the

22nd acm sigkdd international conference on knowledge discovery and data mining, 2016,
pp. 785–794.

[4] J. R. Quinlan, Induction of decision trees, Machine learning 1 (1986) 81–106.
[5] C. Rudin, Stop explaining black box machine learning models for high stakes decisions

and use interpretable models instead, Nature Machine Intelligence 1 (2019) 206–215.
doi:10.1038/s42256-019-0048-x.

[6] C. Bénard, G. Biau, S. Da Veiga, E. Scornet, Interpretable random forests via rule extraction,
in: International Conference on Artificial Intelligence and Statistics, PMLR, 2021, pp.
937–945.

[7] H. Lakkaraju, S. H. Bach, J. Leskovec, Interpretable decision sets: A joint framework
for description and prediction, in: Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 2016, pp. 1675–1684.

[8] E. Dudyrev, I. Semenkov, S. O. Kuznetsov, G. Gusev, A. Sharp, O. S. Pianykh, Human
knowledge models: Learning applied knowledge from the data, Plos one 17 (2022) e0275814.

[9] S. O. Kuznetsov, Machine learning and formal concept analysis, in: Concept Lattices: Sec-
ond International Conference on Formal Concept Analysis, ICFCA 2004, Sydney, Australia,
February 23-26, 2004. Proceedings 2, Springer, 2004, pp. 287–312.

[10] B. Ganter, S. O. Kuznetsov, Hypotheses and version spaces, in: ICCS, volume 2746, Springer,
2003, pp. 83–95.

[11] E. Dudyrev, S. O. Kuznetsov, Decision concept lattice vs. decision trees and random forests,
in: Formal Concept Analysis: 16th International Conference, ICFCA 2021, Strasbourg,
France, June 29–July 2, 2021, Proceedings 16, Springer, 2021, pp. 252–260.

[12] R. Belohlavek, B. De Baets, J. Outrata, V. Vychodil, Inducing decision trees via concept
lattices, International journal of general systems 38 (2009) 455–467.

[13] T. Hanika, J. Hirth, Conceptual views on tree ensemble classifiers, International Journal
of Approximate Reasoning (2023) 108930.

[14] Š. Horvát, L. Antoni, O. Krídlo, A. Szabari, S. Krajči, Generalized decision directed acyclic
graphs and their connection with formal concept analysis (2022).

[15] E. Dudyrev, S. O. Kuznetsov, A. Napoli, Description quivers for compact representation of
concept lattices and ensembles of decision trees, in: D. Dürrschnabel, D. López Rodríguez
(Eds.), Formal Concept Analysis, Springer Nature Switzerland, Cham, 2023, pp. 127–142.

[16] F. Coenen, The lucs-kdd discretised/normalised arm and carm data library, 2003. URL:
http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine learning in python, the
Journal of machine Learning research 12 (2011) 2825–2830.

http://dx.doi.org/10.1038/s42256-019-0048-x
http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/

	1 Introduction
	2 Background
	2.1 Formal Concept Analysis
	2.2 Supervised Machine Learning
	2.3 Rule set
	2.4 Implicitly equivalent premises
	2.5 Decision Quiver

	3 Quivers construction pipeline
	3.1 Algorithm to find the optimal quiver
	3.2 Algorithm to find the optimal subset of intents

	4 Experiments
	5 Conclusion

