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Abstract
In settings such as e-recruitment and online dating, recommendation involves distributing limited opportunities, calling for
novel approaches to quantify and enforce fairness. We introduce inferiority, a novel (un)fairness measure quantifying a user’s
competitive disadvantage for their recommended items. Inferiority complements envy, a fairness notion measuring preference
for others’ recommendations. We combine inferiority and envy with utility, an accuracy-related measure of aggregated
relevancy scores. Since these measures are non-differentiable, we reformulate them using a probabilistic interpretation of
recommender systems, yielding differentiable versions. We combine these loss functions in a multi-objective optimization
problem called FEIR (Fairness through Envy and Inferiority Reduction), applied as post-processing for standard recommender
systems. Experiments on synthetic and real-world data demonstrate that our approach improves trade-offs between inferiority,
envy, and utility compared to naive recommendations and the baseline methods.

1. Introduction
Fairness in machine learning based recommendation sys-
tems attracts increasing research attention, driven both
by ethical and legal motivations. Here we focus on rec-
ommending items with limited availability, such as
job recommendation, online dating, and education re-
source recommendation. The need for users to compete
for recommended items distinguishes this recommenda-
tion setting from more standard ones such as e-commerce,
or movie or music recommendation, where items have
practically unlimited availability.

When multiple users are recommended the same item,
they enter a competition for that item. Only one or a few
will win and obtain the item, leaving the others empty-
handed. For example, a job seeker who applies for their
recommended jobs could fail to get employed if these jobs
were also recommended to better qualified rivals. This
competition aspect brings specific challenges to evaluate
and improve the fairness of recommendation strategies—
challenges that have hitherto not been recognized.

To discuss this setting, it is useful to consider two
possibly distinct kinds of affinity between a user and an
item: an item’s utility for the user (i.e. the user’s pref-
erence), and a user’s suitability (i.e. competitiveness)
for the item. In traditional recommender systems, only
utility is relevant, as suitability is directly related to the
competitive nature of the setting.

We consider two ways in which unfairness can arise
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in such settings. First, a fair recommendation system for
limited resources should ensure that users prefer their
own recommended items over those recommended to
others. This idea is captured by the notion of envy:
user A has envy towards user B if the utility of user B’s
recommendations in user A’s perspective is higher than
user A’s recommendations. Second, it is also arguably
unfair to an individual if her recommended items are
always also recommended to people more suitable to
them than her, as she would fruitlessly compete for it.
This idea is captured by the notion of inferiority: user
A is inferior to user B if A is less suitable than B to the
items recommended to both A and B. We argue that a
fair recommender system in this setting should yield low
envy and low inferiority for everyone.

As an illustration, consider the scenario of two users, 1

and 2, and three items, ○, □, and △. Let the utility scores

be represented by the matrix:
[︂
○0.2 □0.6 △0.9
○0.1 □0.8 △0.7

]︂
,

where the first row represents user 1’s scores and the
second row represents 2’s scores. Similarly, let the suit-
ability scores, or the chances of a user getting the item,

be represented by the matrix:
[︂
○0.3 □0.9 △0.4
○0.3 □0.8 △0.8

]︂
.

Examples: Recommending only △ to both users re-
sults in no envy, as the recommendations are equivalent
and thus neither user prefers the other’s. However, there
is high inferiority, as 1 is less suitable than 2, and thus
less likely to obtain △. Recommending ○ to 1 and □ to
2 results in high envy as 2’s recommendation has higher
utility for 1 than their own recommendation, but no in-
feriority, as both users are recommended an item that is
only recommended to themselves. Recommending ○ to
both users results in neither envy, nor inferiority, but has
low utility for both users. What is the best recommenda-
tion in this case depends on the chosen trade-off.
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The illustration above shows that both fairness notions
are necessary: minimizing inferiority tends to result in
less preferred jobs being recommended, which, if left un-
controlled, risks increasing envy. Moreover, there is also
a trade-off between utility and both notions of fairness,
particularly but not exclusively with inferiority.

Given the high stakes involved in many applications
of this setting (with job recommendation as a notable
example), there is an urgent need to adopt these notions
of fairness in practical applications. While there is some
work on the related notion of congestion and some lim-
ited work has been done on envy in recommender sys-
tems (see Sec. 4), we are unaware of any research di-
rectly addressing this need. This paper fills that gap, by
formalizing these concepts as well as by proposing the
FEIR (Fairness through Envy and Inferiority Reduction)
method for post-processing the results of any other rec-
ommendation algorithm, yielding recommendations with
low envy and low inferiority, while still maintaining high
utility. Our specific contributions are:

1. We propose and formalize inferiority as a new in-
dividual fairness concept that is complementary
to envy, when recommending items with limited
availability. To facilitate minimizing these no-
tions, we also derive their expected values with
respect to a probabilistic interpretation of recom-
mendation algorithms, resulting in differentiable
versions. (Sec. 2.1.)

2. Leveraging these differentiable versions, we pro-
pose the FEIR algorithm, a model-agnostic post-
processing method of the output scores of any
upstream recommendation algorithm for all user-
item pairs. FEIR seeks a fairer score matrix by
solving a multi-objective optimization problem
with the goal of minimizing the expected envy
and inferiority, and maximizing the expected util-
ity. (Sec. 2.2.)

3. We investigate FEIR’s ability to trade-off both
fairness measures and utility in extensive experi-
ments both on synthetic and real data. We also
demonstrate superiority of FEIR compared with
the baseline methods. (Sec. 3.)

2. Method
In this section, we first give quantifications of utility,
envy and inferiority in the deterministic setting and the
probabilistic setting (Sec. 2.1). Second, we formulate the
problem of finding a good recommendation strategy as a
multi-objective optimization problem solvable by mini-
mizing a weighted sum of loss terms, leading to the FEIR
method (Sec. 2.2).

2.1. Quantification
Let 𝑎 = (𝑎1, . . . , 𝑎𝑚) be 𝑚 users, 𝑏 = (𝑏1, . . . , 𝑏𝑛) be
𝑛 items. A recommender system recommends 𝑘 items
to every user. The utility matrix 𝑈 is an 𝑚× 𝑛 matrix,
where each entry 𝑈𝑖,𝑗 ∈ (0, 1) represents the utility of
item 𝑏𝑗 to user 𝑎𝑖, so that each row 𝑈 𝑖,: represents the
utility function of 𝑎𝑖 evaluated on all the items. The
suitability matrix 𝑆 is also an 𝑚× 𝑛 matrix where each
entry 𝑆𝑖,𝑗 ∈ (0, 1) represents the suitability (matching
degree), between user 𝑎𝑖 and item 𝑏𝑗 .

2.1.1. Deterministic setting

𝑈 gives us the item-wise utility, but in recommenda-
tion we need to measure the utility of a list of 𝑘 items.
Note that this list is a 𝑘-sized multiset constructed from 𝑏
with repeated recommendations allowed, although in prac-
tice the chance of repetition is very slim when 𝑘 ≪ 𝑛.
Another motivation of allowing repetition is for mathe-
matical convenience as shown in 2.5.

Let 𝐶𝑘 be an𝑚×𝑛 counting matrix where each entry
𝐶𝑘

𝑖,𝑗 ∈ N0 is the number of occurrences of job 𝑏𝑗 in the
recommendation for 𝑎𝑖. Then each row 𝐶𝑘

𝑖,: represents
the recommendation list for 𝑎𝑖 such that

∑︀𝑛
𝑗=1 𝐶

𝑘
𝑖,𝑗 = 𝑘

for all 𝑖. We omit the superscript 𝑘 if the context is clear.

Definition 2.1 (User utility). The utility of the recom-
mendation for job seeker 𝑎𝑖 is a simple summation of the
utility of each job to 𝑎𝑖 in 𝑎𝑖’s list:

𝑢(𝑎𝑖,𝑈 ,𝐶𝑖,:) =

𝑛∑︁
𝑗=1

𝑈𝑖,𝑗𝐶𝑖,𝑗 .

Envy measures the comparative utility from each indi-
vidual’s perspective. It captures the idea that an individ-
ual may feel envy towards another if another person’s
recommended items have higher utility to them, wrt.
their own utility.1

Definition 2.2 (User envy). The envy from 𝑎𝑖 to 𝑎𝑖* is:

𝑒(𝑎𝑖, 𝑎𝑖* ,𝑈 ,𝐶) =

𝑛∑︁
𝑗=1

𝑈𝑖,𝑗(𝐶𝑖*,𝑗 − 𝐶𝑖,𝑗).

Inferiority represents the disadvantage of one user to
another when they compete for the same items, such as
applying for the same jobs. It is measured based on the
suitability between users and items, represented by the
matrix 𝑆.

1If repetition is not allowed, the formulation would use an indicator
function representing whether item 𝑗 is recommended to user 𝑖.
The major drawback of this formulation is that its probabilistic
counterpart (the process of sampling without replacement) follows
the hypergeometric distribution, which is computationally difficult.
Further investigation is left future work.



Definition 2.3 (User inferiority). The inferiority from
𝑎𝑖 to 𝑎𝑖* is:

𝑓(𝑎𝑖, 𝑎𝑖* ,𝑆,𝐶) =

𝑛∑︁
𝑗=1

max(0, 𝑆𝑖*,𝑗 − 𝑆𝑖,𝑗)

·min(1, 𝐶𝑖,𝑗𝐶𝑖*,𝑗).

Inferiority captures the difference in suitability be-
tween user 𝑎𝑖 and 𝑎𝑖* towards all the common recom-
mended items, i.e., inferiority is only concerned with
items recommended to both users. Note that, if any item
occurred more than once, we only count it once, this is
to consider the competition between them over the same
item only once.

Definition 2.4. Utility, envy, and inferiority on the sys-
tem level are simply the averages of the positive user-level
measurements:

𝑢(𝑎,𝑈 ,𝐶) = 1
𝑚

𝑚∑︁
𝑖=1

𝑢(𝑎𝑖,𝑈 ,𝐶), (1)

𝑒(𝑎,𝑈 ,𝐶) = 1
𝑚

∑︁
1≤𝑖 ̸=𝑖*≤𝑚

max (0, 𝑒 (𝑎𝑖, 𝑎𝑖* ,𝑈 ,𝐶)) ,

(2)

𝑓(𝑎,𝑆,𝐶) = 1
𝑚

∑︁
1≤𝑖 ̸=𝑖*≤𝑚

𝑓(𝑎𝑖, 𝑎𝑖* ,𝑆,𝐶). (3)

The max(0, ·) in the definition of the envy ensures
that only positive contributions are counted, to avoid a
negative envy in one user to compensate a positive envy
in another. (Individual user utilities and inferiorities are
always positive.)

2.1.2. Probabilistic setting

The discontinous nature of recommender systems as rec-
ommending multisets of items makes it practically im-
possible to utilize the utility, envy, and inferiority from
Def. 2.4 in an optimization-based approach. We will thus
develop probabilistic alternatives that are differentiable.

We consider a probabilistic recommendation setting
in which the recommendation strategy is represented
by a user-item mapping function, 𝜋 : 𝑎 × 𝑏 → [0, 1],
that assigns a probability to each user-item pair of the
recommendation of the item to the user. To model the rec-
ommendations, we assume an independent multinomial
process for each user, where each user has a different
𝑛-sided uneven dice, and to recommend 𝑘 (𝑘 ≪ 𝑛) items,
we throw the dice 𝑘 times and take the outcome as the
recommendation.

Then a recommender strategy can be represented as
an 𝑚× 𝑛 matrix 𝑃 ∈ [0, 1]𝑚×𝑛 where each entry 𝑃𝑖,𝑗

is the probability of recommending 𝑏𝑗 to 𝑎𝑖. All users’ 𝑘-
sized recommendation can be written as a random matrix
X where each row X𝑖,: is a random vector for 𝑎𝑖 where

the random variables X𝑖,𝑗 indicate the number of times
item 𝑏𝑗 is included in 𝑎𝑖’s list. By our setting X𝑖,: follows
a multinomial distribution with parameters 𝑘 and 𝑃 𝑖,:.

In this context of probabilistic recommendation, the
expected values of a user’s utility, envy, and inferiority
are given by the following Proposition:

Proposition 2.5 (Expected user utility, envy, and inferi-
ority).

EX∼𝑃 [𝑢(𝑎𝑖,𝑈 ,X𝑖,:)] = 𝑘

𝑛∑︁
𝑗=1

𝑃𝑖,𝑗𝑈𝑖,𝑗 , (4)

EX∼𝑃 [𝑒(𝑎𝑖, 𝑎𝑖* ,𝑈 ,X)] = 𝑘

𝑛∑︁
𝑗=1

(𝑃𝑖*,𝑗 − 𝑃𝑖,𝑗)𝑈𝑖,𝑗 ,

(5)

EX∼𝑃 [𝑓(𝑎𝑖, 𝑎𝑖* ,𝑆,X)]

=

𝑛∑︁
𝑗=1

max(0, 𝑆𝑖*,𝑗 − 𝑆𝑖,𝑗)

· (1− (1− 𝑃𝑖,𝑗)
𝑘)(1− (1− 𝑃𝑖*,𝑗)

𝑘). (6)

Proof outline. For utility and envy, this follows from the
fact that EX∼𝑃 [𝑋𝑖.𝑗 ] = 𝑘𝑃𝑖,𝑗 (the factor 𝑘 stemming
from

∑︀𝑛
𝑖=1 𝑥𝑖 = 𝑘), and from linearity of the expectation

operator. For inferiority, this follows from linearity of
the expectation operator, and from the fact that (1−(1−
𝑃𝑖,𝑗)

𝑘)(1−(1−𝑃𝑖*,𝑗)
𝑘) is the probability that both𝐶𝑖,𝑗

and 𝐶𝑖*,𝑗 are non-zero integers, and thus the probability
that min(1, 𝐶𝑖,𝑗𝐶𝑖*,𝑗) is equal to 1.

For a recommendation system for users 𝑎 over items 𝑏,
represented by the 𝑚× 𝑛 matrix 𝑃 , the expected utility,
envy and inferiority of the 𝑘-sized recommendation X
on the system level is the average of the expected values
of all users:

EX∼𝑃 [𝑢(𝑎,𝑈 ,X)] = 1
𝑚

∑︀𝑚
𝑖=1 EX∼𝑃 [𝑢(𝑎𝑖,𝑈 ,X𝑖,:)],

(7)

EX∼𝑃 [𝑒(𝑎,𝑈 ,X)] = 1
𝑚

∑︀
1≤�̸�=𝑖*≤𝑚 max(0,

EX∼𝑃 [𝑒(𝑎𝑖, 𝑎𝑖* ,𝑈 ,X)]),
(8)

EX∼𝑃 [𝑓(𝑎,𝑆,X)] = 1
𝑚

∑︀
1≤𝑖 ̸=𝑖*≤𝑚

EX∼𝑃 [𝑓(𝑎𝑖, 𝑎𝑖* ,𝑆,X)]. (9)

2.2. Optimization by minimizing
combined losses

The FEIR algorithm minimizes a combined loss function
defined from the expected utility, inferiority, and envy of
the recommendation system. It uses a gradient descent
based method to optimize the scores of the resulting



recommendation strategy, represented by the matrix 𝑃 ′,
by solving:

ℓ𝑡𝑜𝑡𝑎𝑙(𝑃
′,𝑆,𝑈) = 𝑤1ℓ𝑒(𝑃

′,𝑈)

+ 𝑤2ℓ𝑓 (𝑃
′,𝑆)

+ 𝑤3ℓ𝑢(𝑃
′,𝑈)

+ 𝑤4ℓ𝑝(𝑃
′),

(10)

where ℓ𝑒(𝑃 ′,𝑈), ℓ𝑓 (𝑃 ′,𝑆), ℓ𝑢(𝑃 ′,𝑈), and ℓ𝑝(𝑃 ′) =∑︀𝑚
𝑖=1(

∑︀𝑛
𝑗=1 𝑃

′
𝑖,𝑗−1)2 are the expected envy (Eq. 8), ex-

pected inferiority (Eq. 9), negative expected utility (Eq. 7),
and a penalty term for making each row of 𝑃 ′ a proba-
bility distribution, respectively. Parameters 𝑤1, 𝑤2, 𝑤3,
𝑤4 are weights for each term. The penalty term ℓ𝑝(𝑃

′)
can be omitted if the matrix 𝑃 ′ is renormalized after
each update (e.g., using row-wise softmax as the acti-
vation function). An important benefit of FEIR is its
being model-agnostic: any model capable of scoring all
user-item pairs can be post-processed by FEIR.

Notes on probabilistic and deterministic settings. The
probabilistic setting is more general and mathematically
convenient, but real recommendation systems typically
recommend (deterministically) each user the 𝑘 items with
the highest probabilities. Thus, our experiments train
with the probabilistic but evaluate with the deterministic
measures.

Notes on available affinity types in current systems. In
our definitions, 𝑆 represents the suitability of users to
items, and 𝑈 quantifies the utility of items to users. The
difference between them can create tension between envy
and inferiority, as seen when a job seeker prefers unsuit-
able jobs. However, real-world applications typically use
a single affinity score provided by an existing recom-
mender system, combining both suitability and utility.
Thus, for practical reasons, in our experiments only one
set of affinities is used to calculate both envy and infe-
riority, except for one synthetic dataset. In these cases,
utilities and suitabilities align, but tension between envy
and inferiority still arises due to individual differences
in scores. This is illustrated by a toy example where
the scores for users 1 and 2 with respect to items are[︂
○0.1 □0.9 △0.8
○0.4 □0.6 △0.5

]︂
, and recommending □ to both

of them results in no envy and high utility, but high
inferiority from 2 to 1.

2.3. Scaling-up methods
With large scale data, we propose the following approxi-
mation methods: inferiority loss mini-batching, user sam-
pling, item sampling, user-item sampling. Mini-batching
randomly splits the 𝑚 users into ⌊𝑚/𝑏⌋ batches and at
each step calculates the inferiority from 𝑏 users within
the current mini-batch to all the users with respect to all

the items, leaving other losses calculated globally. User
sampling takes a random subset of𝑚𝑠 users at each train-
ing step and calculates the losses within this subset. Item
sampling takes a random subset of 𝑛𝑠 items at each train-
ing step and calculates the losses between all user pairs
with respect to only those items. User-item sampling
samples from both the users and items at each training
step.

2.4. Metrics
We evaluate recommendation strategies based on the
one-time deterministic recommendation obtained from
the probabilistic strategy. For different 𝑘s, let 𝐶𝑘 be
the binary matrix obtained from the recommendation
strategy 𝑃 by setting the item indices with the highest
𝑘 values in each row to be 1 and the rest to be 0.

Normalized system-level utility and fairness. The
system-level utility, envy and inferiority for top-𝑘 recom-
mendation are defined by Eq. 1, 2 and 3, albeit 𝑈 = 𝑆
in the experimental data. We also calculate the overall

fairness as

𝑔(𝑎,𝑈 ,𝑆,𝐶𝑘) = 𝑒(𝑎,𝑈 ,𝐶𝑘) + 𝑓(𝑎,𝑆,𝐶𝑘).

Let 𝐶𝐾
𝑛𝑎𝑖𝑣𝑒 denote the naive recommendation, then we

have the normalized system-level top-𝑘 recommen-

dation metrics defined as

𝜓(𝑎,𝑈 ,𝐶𝑘)

𝜓(𝑎,𝑈 ,𝐶𝑘
𝑛𝑎𝑖𝑣𝑒)

,

where 𝜓 ∈ {𝑢, 𝑓, 𝑔} (no normalized envy since
𝑒(𝑎,𝑈 ,𝐶𝑘

𝑛𝑎𝑖𝑣𝑒) = 0).
Competition faced by each user. To address RQ2, we use

the following competition indicators. The mean rank

of job seeker 𝑎𝑖 is calculated as:

rank(𝑖) :=
1

𝑘

𝑛∑︁
𝑗=1

|𝐷𝑖,𝑗 |,

where

𝐷𝑖,𝑗 = {𝑎𝑖* |𝐶𝑖,𝑗 = 𝐶𝑖*,𝑗 = 1, 𝑆𝑖*,𝑗 > 𝑆𝑖,𝑗},

which measures the average rank of user 𝑎𝑖 among her
competitors for the same recommended items. The mean

suitability gap of user 𝑎𝑖 is calculated as:

gap(𝑖) =
1

𝑘

𝑛∑︁
𝑗=1

𝐶𝑖,𝑗
1

max(1, |𝐷𝑖,𝑗 |)
∑︁

𝑖*∈𝐷𝑖,𝑗

(𝑆𝑖*,𝑗−𝑆𝑖,𝑗),

which measures the average difference in suitability
scores between user 𝑎𝑖 and her likelier competitors for
the same recommended items. By averaging these met-
rics over all users, we can obtain an overall evaluation of
the competition.



Multiple solutions comparison. For methods that can
generate multiple solutions representing different levels
of trade-offs, we plot the Pareto frontiers to visually com-
pare sets of solutions. Additionally, we use the following
numerical metrics:

1. HV (hypervolume) measures the amount of the
objective space (relative to a reference point) that
is dominated by the points on the frontier.

2. Fairness above utility threshold min(𝜑|𝑡): the
minimum value of a fairness metric 𝜑 among all
solutions with utility higher than 𝑡, where𝜑 could
be inferiority, overall fairness, mean rank or mean
suitability gap. This allows us to assess how well a
solution performs in terms of fairness for a given
level of utility.

Item-side fairness. Although our focus is user-side fair-
ness, we also investigated the item-side fairness by com-
paring the Gini index of item exposure ([1, 2, 3, 4]) before
and after FEIR post-processing.

3. Experiments
To evaluate the effectiveness of FEIR, we conduct exper-
iments to answer the following research questions:

RQ1. How does FEIR compare to the baseline methods
in improving the trade-offs between envy, inferior-
ity and utility?

RQ2. Does FEIR decrease the competition measure-
ments defined from rivals compared to the baseline
methods?

3.1. Datasets
In our experiments, we use a variety of synthetic and
real-world datasets to evaluate the performance of our
proposed method. There are three types of synthetic
datasets. Random synthetic data with distinct suit-

ability and utility (SU50): Two 50× 50 real-numbered
matrices generated from a truncated normal distribution
(0, 1) representing suitability scores and utility scores
for 50 users and 50 items. Random synthetic data

with one set of scores: Matrices generated from a trun-
cated normal distribution (0, 1) with varying ratios of
number of users and items to investigate the effect of
varying these ratios. Structured synthetic data with

one set of scores: Two 20× 100 real-numbered matri-
ces that simulate specific scenarios: Item groups (IG) and
User groups (UG). The IG dataset represents the scenario
where certain items have generally higher scores across
all users, while the UG dataset represents the scenario
where certain users have generally higher scores across
all items.

We also use four real-world datasets, all obtained from
the same upstream job recommendation model based
on [5]. Zhilian: Scores for 2,781 users and 6,568 items,
sampled from a public dataset provided by a Chinese
online recruitment platform. CareerBuilder: Scores
for 7,459 users and 11,020 items, obtained from a public
dataset provided by CareerBuilder. VDAB small: Scores
for 1,186 users and 8,921 items, a random sample from a
private dataset provided by a labor agency in Belgium.
VDAB large: Scores for 10,369 users and 66,898 items, a
random sample from the same source as VDAB small, but
including more data. Results of this dataset are omitted
due to space limitation.2

3.2. Baselines
We use the following four baseline methods.

Standard recommendation (Naive). Given the scores
between all users and items, the common practice is to
recommend the items with the highest 𝑘 scores to each
user.

Randomization of top scored items (Shuffle). Randomly
Sample 𝑘 items from items with the top-𝑑 (≥ 𝑘) scores.

Congestion alleviation method (CA). Naya et al. [6] pro-
poses a congestion alleviation method based on linear
optimization that aims to decreases the competition in
the job market by using optimal transport. CA casts the
problem of minimizing congestion into a linear program
where the objective is to maximize the element-wise prod-
uct of the original probability matrix and the solution
matrix under the constraint of evenly distributing the
probability of recommending each item.

Modified Round-Robin procedure (RR). Modified based
on [7], RR sets a threshold 𝜏 for suitability, randomly
orders the users and then in each round, allocates one
item for each user at each round such that this item is the
most preferred one for this user with suitability greater
than 𝜏 . 𝑘 rounds would be run for top-𝑘 recommendation.
Unlike the other methods, RR is applicable only when 𝑈
and 𝑆 are both available.

3.3. Experiment setting
For our method FEIR, we initialize the parameters by
applying a row-wise softmax to the given scores and
use gradient descent based methods to minimize the loss
function defined in Eq. 10. We perform a coarse search
to find an appropriate learning rate, and then use this
value to train the model with different combinations of
loss weights to achieve different trade-offs between envy,
inferiority and utility. For the CA baseline, different en-
tropic relaxation terms are used to roughly controls the

2Due to the size of VDAB large, we experimented several methods
for scaling up, including sampling and mini-batching. The results
are included in our online supplementary materials.



(a) Synthetic 𝑆 ̸= 𝑈 . (b) Synthetic 100 × 20. (c) IG. (d) UG

(e) VDAB small 𝑘 = 5. (f) VDAB small 𝑘 = 50. (g) VDAB small: Inferiority vs utility 𝑘 =
50.

(h) VDAB large 𝑘 = 20.

Figure 1: Selected Pareto frontiers trading-off envy, inferiority and utility (upper-left better). (b): upper right region zoomed
in. (d): The circled FEIR solution decreases inferiority of both user groups from Naive: the advantageous group 0.094 →
0.082 and the other 4.251 → 1.152. (h): user-item sampling with a sample size about 1

30
of the total users and 1

70
items.

trade-offs. For the synthetic datasets, we train and eval-
uate strategies for the top 10 recommendation. For the
real-world datasets, we train and evaluate strategies for
different 𝑘s, ranging from 1 to 100. For the VDAB large
dataset only a medium size 𝑘 = 20 is trained and evalu-
ated due to time limitations.

We explore all scaling-up methods with the VDAB
small dataset with 𝑘 = 100, find all methods perform
similarly besides item sampling. Therefore, we apply
one method to each real-world dataset for a full range
of 𝑘s: mini-batching to the VDAB small dataset, user
sampling to the Zhilian and Careerbuilder datasets, user-
item sampling to VDAB large.

3.4. Results
3.4.1. Fairness versus utility trade-offs (RQ1)

Our proposed method, FEIR, and the baseline methods
were evaluated on synthetic and real-world datasets. The
results indicate that both FEIR and CA can consistently
improve fairness over the naive recommendation ap-
proach, while sacrificing some utility. By varying the
hyperparameters for the methods, different trade-offs
between fairness and utility were achieved. To compare
the results, we plotted each solution as a point on a graph
with (un)fairness as the 𝑥-coordinate and utility as the
𝑦-coordinate, and drew the Pareto frontiers.
Synthetic datasets. FEIR is clearly the best

(Fig. 1c, 1d), followed by CA, although the latter tends to
cover a smaller solution region. RR scarifies too much
utility for fairness (Fig. 1a). Shuffle performs unstably.

Interestingly, a closer look at one of our solutions for

UG shows that FEIR can simultaneously decrease the
inferiority for both user groups (Fig. 1d), which is desir-
able as it does not require sacrifices from one group to
benefit the other.

When recommending items using the naive recom-
mendation strategy with the random synthetic datasets
with varying user-item ratios, the inferiority increases
with an increased ratio of users to items, indicating that
the naive approach causes competitive disadvantages for
users, and the more limitation the tenser the competi-
tion. CA does not decrease inferiority well when the
number of items is not greater than the number of users;
on the other hand, FEIR is able to find solutions with
low inferiority as seen in Fig. 1b. When the number of
items surpasses users, CA can also find solutions with
low inferiority and high utility, but is still outperformed
by FEIR (corresponding figures included in our online
supplementary.).

Real world datasets. Data exploration confirms
the existence of inferiority and competition caused by the
naive recommendation. With increasing 𝑘s, the utility
per recommendation decreases, and the inferiority and
competition increase with a decelerating growth rate (see
figures in our online supplementary). The reason is that
with a larger 𝑘, there are more overlapping recommen-
dation and more competition, but also the average scores
decrease with increasing 𝑘.

The VDAB small and CareerBuilder datasets show sim-
ilar patterns in the relative performance of FEIR and CA.
FEIR can decrease inferiority without reducing much
utility or increasing envy, while CA decreases inferiority
but also increases envy and reduces utility, especially



(a) Zhilian all users 𝑘 = 50. (b) Zhilian one user cluser. (c) IG: rank. (d) IG: gap.

(e) UG. (f) VDAB small 𝑘 = 5. (g) VDAB small 𝑘 = 50. (h) Zhilian 𝑘 = 50.

Figure 2: Compare (a) with (b): FEIR’s performance on Zhilian dataset is not ideal when trained with user sampling, but
FEIR outperforms CA when trained without sampling. (c)-(h): Selected Pareto frontiers trading off competition and utility
(upper-left better). (c): Two solutions with close mean ranks are circled. The mean suitability gap of FEIR is 0.003 while CA’s
is 0.012.

Table 1
Comparison of the Pareto frontiers trading off fairness metrics
with utility for the CareerBuilder dataset with varying 𝑘s.
The reference point for calculating the HVs is [1, 0.95]. The
better results are marked bold.

𝑘
HV(𝑔 vs 𝑢) HV(𝑖 vs 𝑢) min(𝑔|0.95) min(𝑖|0.95)

FEIR CA FEIR CA FEIR CA FEIR CA
1 0.043 0.013 0.048 0.031 0.140 0.642 0.006 0.006
5 0.042 0.024 0.045 0.031 0.138 0.365 0.049 0.127
10 0.041 0.026 0.044 0.032 0.143 0.321 0.081 0.142
20 0.039 0.027 0.042 0.031 0.185 0.321 0.104 0.175
50 0.034 0.026 0.035 0.029 0.278 0.357 0.248 0.248
100 0.029 0.025 0.030 0.027 0.367 0.392 0.333 0.324

when the number of recommendations is small. Shuf-
fle prioritize utility, but cannot reduce much unfairness
(Fig. 1e and 1f).

With large 𝑘 = 50, FEIR’s performance in reducing
unfairness is not as good as CA for the Zhilian dataset
when user sampling is used (Fig. 2a). Nonetheless, FEIR
performs better than CA when trained on smaller subsets
of users that can be processed in a single batch as seen in
Fig. 2b. This suggests that the loss functions are effective,
but the decreased performance is most likely due to the
optimization process or some unique characteristics of
the Zhilian dataset, which is left for future work.
FEIR performed well on the VDAB large dataset, even

with a sample size relatively small to the total numbers
as show in Fig. 1h.

Quantitative comparisons of the Pareto frontiers gen-
erated by FEIR and CA for the VDAB small, Zhilian and

CareerBuilder datasets with various 𝑘 values support
these observations. We only present the results for Ca-
reerBuilder dataset here in Table 1 due to space limitation.

3.4.2. Competition faced by users (RQ2)

In general, CA is capable of achieving a low mean rank
(Fig. 2c), but always a much higher mean gap compared
to FEIR (Fig. 2d, 2e). We argue that FEIR is more de-
sirable. A recommendation with a low mean rank but a
large mean suitability gap suggests that, although a user
does not have many competitors, the competitors she
does have are much better hence much more likely to
defeat this user. For example, consider a job seeker 𝑎𝑖
with a suitability score of 0.7 for a certain job. CA tends
to recommend this jobs to only one other job seeker with
a score of 0.99, and on the other hand FEIR may rec-
ommend this job to three other job seekers with scoring
0.69, 0.74, 0.8 respectively. It is reasonable to believe
that FEIR gives user 𝑎𝑖 a better chance of getting hired,
especially when considering that in reality, one would
not apply for all recommended jobs. Shuffle performs
almost always the worst.

When recommending a small number of jobs from a
large pool, CA sometimes recommends non-overlapping
jobs to each user, resulting in trivial solutions with no
competition but decreased utility, as seen in the left most
region of Fig. 2f. However, FEIR can provide solutions
with higher utility. As 𝑘 increases, it becomes harder to
give non-overlapping recommendations for CA such that
FEIR always gives a lower suitability gap (Fig. 2g, 2h).

A quantitative comparison of the Pareto frontiers gen-



Table 2
Comparison of the Pareto frontiers trading off competition
metrics with utility for the VDAB small data with varying 𝑘s.
The reference point for calculating the HV(rank vs u) being
[50, 0.9] means the reference value of the mean rank is 50
and the normalized utility 0.9, and for HV(gap vs u) [0.03, 0.9]
means the reference value of the mean suitability gap is 0.03.

k
HV(rank vs u) HV(gap vs u) min(rank|0.9) min(gap|0.9)

FEIR CA FEIR CA FEIR CA FEIR CA

1 4.747 1.496 0.003 0.0 1.286 3.66 0.002 0.017
5 4.415 1.54 0.002 0.0 2.731 5.318 0.006 0.02
10 4.103 1.535 0.002 0.0 4.599 6.761 0.007 0.021
20 3.592 1.523 0.002 0.0 8.317 8.805 0.007 0.022
50 2.463 1.438 0.001 0.0 15.462 11.28 0.012 0.021
100 1.482 1.291 0.001 0.0 29.442 16.099 0.018 0.022

erated by FEIR and CA for the VDAB small dataset with
various 𝑘 values shows that FEIR is better than CA al-
most across the board, except for min(rank|0.9) with
𝑘 = 50 and 100 (Table 2). The CareerBuilder dataset has
similar results with VDAB small where FEIR is better
than CA in general, while FEIR shows less advantage
over CA for Zhilian (plots and tables in our online sup-
plementary), as discussed in Section 3.4.1.

3.4.3. Item-side fairness

FEIR improves the fairness to the items as the Gini in-
dex decreased greatly for all datasets after FEIR post-
processing (Table 3).

Our code and supplementary materials for more details
and extra plots are publicly available at https://github.
com/aida-ugent/FEIR.

4. Related work
This paper extends the growing literature on fairness in
machine learning (e.g. [8, 9, 10, 11, 12, 13, 14, 15, 16, 7]).
Here we summarize the most directly related research.

Fairness when recommending items with limited avail-
ability. Particularly in the context of job recommenda-
tions, this is an increasingly active research area. Yet, the
current literature mainly focuses on group level disparity
notions. For example, Geyik et al. [17] proposed four
deterministic reranking algorithms to mitigate biased
prediction towards any sensitive job seeker group, and
Islam et al. [18] addressed gender bias in job recommen-
dations by proposing a neural fair collaborative filtering
model. In contrast to this existing work, we focus on fair-
ness from the perspective of individual users, rather than
group level fairness. Other orthogonal research includes
fairness for jobs and interdisciplinary studies (see recent
survey by Mashayekhi et al. [19]).

Table 3
FEIR also improves the item-side fairness as the Gini indices
of item exposure for all datasets are decreased after FEIR
post-processing.

Dataset IG UG V(S) V(L) ZL CB

Gini index ↓ % 73 60 34 53 60 37

Competition and congestion in recommendation. To the
best of our knowledge, there has been no research at all
on the concept of inferiority. Yet, Naya et al. [6] did study
the related notion of congestion, in the context of labor
market. They proposed a congestion alleviation method,
which reduces the intersection between the sets of jobs
recommended to different job seekers. Congestion does
not consider suitability (i.e. competitiveness) of users for
their recommended jobs like inferiority does.

Envy-freeness in recommendation. Inspired by the lit-
erature on social choice theory and fair resource alloca-
tion (e.g., [20, 21, 22]), a few researchers recently intro-
duced the notion of envy-freeness into the context of
recommendation systems. Do et al. [23] gave a generic
individual-level definition of envy-freeness and cast the
problem of auditing for such envy-freeness as an explo-
ration problem in multi-armed bandits. Their focus is
online evaluation (auditing) of existing systems, while
we aim to also minimize envy as well as inferiority, using
a post-processing method. Patro et al. [7] designed a
modified Round-Robin algorithm to ensure fairness on
the item side while guaranteeing envy-freeness up to
one good (EF1) fairness for every user, and Wu et al. [24]
extended this approach to producer fairness. Besides the
fact that we do not share their focus on item-side fairness,
their problem settings do not apply to limited resource
recommendation because the users in their setting do
not compete with each other.

5. Discussion and Conclusion
Recommending items with limited availability to users
has its own challenges and brings new fairness require-
ments not addressed in the existing literature. In this
paper we proposed envy and inferiority as important
fairness notions to fill the gap and presented a post-
processing approach FEIR to improve the fairness of
such recommendation settings.

Our experiments on synthetic and real job recommen-
dation datasets demonstrated that FEIR improves fair-
ness by reducing the potential competitive disadvantage
of users without significantly sacrificing utility. Impor-
tantly, our method FEIR is not limited to the labor market,
but also promising in reducing user inferiority and com-

https://github.com/aida-ugent/FEIR
https://github.com/aida-ugent/FEIR


petitive disadvantages in other real-world scenarios such
as online dating, paper bidding systems, and education
resources recommendation.

Our work has limitations but also opens up new
research opportunities. The actual competition and
chances of getting any item depend on many factors be-
yond any recommendation system and hence beyond our
scope. Also, emphasizing envy and inferiority does not
make other existing fairness concerns any less important,
nor the case that they can cover all new fairness require-
ments from the unique features of recommending limited
resources. Rather, our findings create new opportunities
for research to explore the relations among different fair-
ness notions and identify other ignored dimensions of
fairness in these settings.

Some alternative formulations of utility, envy and in-
feriority are possible. For example, disallowing repeated
recommendation for a user, which involves further com-
plexity in the probabilistic setting. It is also possible to
modify the quantification of inferiority by taking the util-
ity into account. The analysis and comparison of the
current formulation and the alternatives would be inter-
esting for future work. Besides, the interests of recruiters
could be further considered by adapting the optimization
objective to include some metrics representing the suit-
ability of candidates. The dynamics between job seeker
side and recruiter side fairness is another future direction
worth exploring.
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