
Large Language Models as Batteries-Included Zero-Shot
ESCO Skills Matchers
Benjamin Clavié

1,*
, Guillaume Soulié

1

1Bright Network Ltd., Edinburgh, UK

Abstract
Understanding labour market dynamics requires accurately identifying the skills required for and possessed by the workforce.

Automation techniques are increasingly being developed to support this effort. However, automatically extracting skills from

job postings is challenging due to the vast number of existing skills. The ESCO (European Skills, Competences, Qualifications

and Occupations) framework provides a useful reference, listing over 13,000 individual skills. However, skills extraction

remains difficult and accurately matching job posts to the ESCO taxonomy is an open problem. In this work, we propose an

end-to-end zero-shot system for skills extraction from job descriptions based on large language models (LLMs). We generate

synthetic training data for the entirety of ESCO skills and train a classifier to extract skill mentions from job posts. We also

employ a similarity retriever to generate skill candidates which are then re-ranked using a second LLM. Using synthetic data

achieves an RP@10 score 10 points higher than previous distant supervision approaches. Adding GPT-4 re-ranking improves

RP@10 by over 22 points over previous methods. We also show that Framing the task as mock programming when prompting

the LLM can lead to better performance than natural language prompts, especially with weaker LLMs. We demonstrate the

potential of integrating large language models at both ends of skills matching pipelines. Our approach requires no human

annotations and achieve extremely promising results on skills extraction against ESCO.
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1. Introduction
The Job Market is often described as constantly evolving,

as technological developments and societal changes re-

sult in large changes in its makeup, as has been frequently

studied and demonstrated [1, 2]. In recent years, the rapid

digitisation of society has led to entirely new categories

of skills becoming requirements for many jobs[3]. As

demands for skills evolve, there is an increasing need

to better understand the skills required by jobs. This

has supported the continuous development of skill tax-

onomies such as the European Union’s European Skills,

Competences, Qualifications and Occupations, or ESCO
[4], framework, developed to improve understanding and

efficiency of the wider EU job market.

While useful, such frameworks require skill extrac-
tion (SE) approaches to understand skills present in job

postings and enable automation at scale. Skills Extrac-

tion has recently been the subject of an increased amount

of interest[5], which has been further compounded by

research showing that a large proportion of required

skills are implicitly expressed rather than explicitly stated

within postings [6].
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However, automated skills extraction faces consider-

able roadblocks. Most notably, many efforts are limited

in scale by the lack of available data for both training

and evaluation. Recent efforts have begun to try and

alleviate this effort, by publicly releasing manually anno-

tated datasets. These approaches, while promising, suffer

from the complexity of the task, as the ESCO taxonomy

contains 13 890 individual skills. As a result, the task is

often re-framed or simplified, for example by convert-

ing the task into a span-extraction task [7, 8], leaving

direct matching to the taxonomy for future work. Some

recent work has explored this Extreme Multi-Label Clas-

sification (XLMC) task with an end-to-end approach to

matching and extraction with non-ESCO taxonomies,

with encouraging results [6, 9], although sometimes re-

lying on simplifying the taxonomy by using only higher-

level labels [10].

In fact, the task of Skills Extraction against a tax-
onomy could be framed as a two-tasks process: 1 an

extraction step, focused on recognising the potential

mentions of skills, or groups of skills, from the content

of job postings, on which strong progress has been made

[7, 11, 6], and 2 a matching step, akin to extreme multi-

label classification, focused on linking these mentions

with fine-grained taxonomies, which remains a difficult

problem.

The sheer number of existing skills makes it very diffi-

cult to obtain sufficient training data for comprehensive

coverage. As such, various techniques, such as using the

ESCO API as a form of distant supervision [12] and gen-
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erating training data through such distant supervision

techniques [13], have been explored.

Meanwhile, the rapid development and improvement

of generative large language models (LLMs) [14] and es-

pecially instruction-tuned LLMs [15, 16] , models further

trained to specifically follow natural language instruc-

tions, has resulted in the use of generative LLMs on a

large array of applications, often yielding competitive

or even state-of-the-art results across many tasks, as

highlighted by the release and strong performance of

OpenAI’s GPT-4 [17]. Notably, LLMs have shown their

ability to improve performance on text retrieval tasks

through the generation of synthetic training data based

on a handful of real examples [18]. They have also shown

considerable problem-solving ability, often anthropomor-

phised as reasoning, which appears to be even stronger

when the task is framed as a programming task [19].

Due to the nature of the training data used by Large

Language Models, which contains very large volumes

of content scraped from across the internet [20], we hy-

pothesise that the knowledge representation embedded

within the models makes them particularly suitable for

broader job understanding tasks, as many job postings,

as well as skills descriptions, were present in this data. As

such, we will explore the creation of a zero-shot skills
matching pipeline through the use of large language

models, focusing in this case on the use of GPT-3.5 and

GPT-4.

Contributions In this paper, we show that: 1 Large

Language Models can reliably generate zero-shot train-

ing data that improves performance in the skill matching

task. We then show that using this data to power both

similarity-based retrieval approaches and linear classifier

models trained on the data can generate good lists of

potential skills found within given text extracts, outper-

forming the previous approaches. 2 The Skill Match-
ing task can be framed as a two-step problem, with the

first stage consisting of generating a list of potential skill

matches and the second stage focusing on re-ranking

these potential matches. We show that LLMs can be used

as zero-shot rerankers for this second step of the extrac-

tion pipeline with very strong performance without the

need for annotated data. 3 Framing the skills matching

task as a mock programming problem provides a further

performance boost for both large language models tested.

More notably, it improves the performance of the less ca-

pable model by over 10 percentage points by enhancing

its ability to follow instructions.

2. LLM-Generated Data
As discussed, we follow a two-step process to form the

Skills Matching pipeline. While, as we will demon-

strate later, LLMs are strong zero-shot rerankers, it’s

impossible for them to work as standalone classifiers for

all ESCO skills, as the 13890 skills listed in ESCO do not

fit within the context window of most Language Models.

Even if this were possible, the increased compute and

processing time required by current Transformer-based

models (used by all LLMs) would make this approach

unsuitable in many cases, despite promising advance-

ments in more computationally efficient approaches to

Transformer models [21].

We thus choose to leverage large generative models

for the skills matching task through the generation of

synthetic training data. We believe that this synthetic

training could allow us to perform the skills matching

task without having to reframe the task or rely on useful

but limited distant supervision techniques[13].

For each of the 13890 skills contained in ESCO, we

prompt GPT-3.5
1

to generate forty example sentences

that could be used in a job posting in order to refer to

the skill. We specifically request that the sentences be

phrased in a variety of ways, and be of various lengths

(from just a few words directly referring to the skill to

a few sentences mentioning it implicitly). We provide

slightly different instructions based on the "skill type", for

instance requesting explicit mentions in more examples

when generating data for a skill contained in the tech
ESCO skill listing, as programming languages tend to

be clearly mentioned in job ads. We also use additional

information or skill descriptions present in the ESCO data

to enrich our prompt and help the model disambiguate

between potentially ambiguous terms.

Once the training data is generated, it is not thoroughly

manually reviewed. We performed programmatic checks,

showing that a full forty examples were generated for

more than 97% of skills, with a few of them having fewer

examples due to model context size limits or failure to

properly follow instructions, which were not addressed,

as the entirety of skills but one
2

had more than 30 gen-

erated examples. We sampled a random 100 skills for

manual review to ensure that the generated data met

our criteria and that the prompts contained no obvious

mistakes.

The prompts used for data generation are provided in

appendix A.

1
Our limited experiments showed that all recent LLMs, including

the open-source Flan-UL2 [22], could potentially perform this task

without a strong negative impact on performance. Thoroughly

evaluating different LLMs for this data generation step is beyond

the scope of this work, but would likely be a valuable future area

of research, as we noticed considerable style differences between

different models, leading us to believe a combination of different

ones could generate a more diverse training data set.

2
The skill "semen insertion", related to veterinary work, could not

have training data generated for it by the GPT model family, as its

name triggers OpenAI’s content filters.



3. Potential Skills Identification
Following data generation, our next step is the identifi-

cation of potential skills contained within a given text

span. We generate these potential skills through two

main approaches: a linear classifier-based approach,

using linear regression classifiers on frozen embeddings,

and textual similarity approaches, where we rely on

the cosine distance between embeddings to determine

whether a skill is potentially present or not.

For both of these approaches, we use the e5-large-

v2 text embedding model [23], the current state-of-the-

art embedder for similarity-based information retrieval

whose generated embeddings have also been shown to

reach strong performance for few-shot text classifica-

tions, making it particularly suitable for both of our ap-

proaches.

3.1. Classifier Candidates
Our first set of candidates is generated by the use of sim-

ple logistic regression classifiers. We train one binary

classifier per label, in a one-versus-all classification ap-

proach. We use no real-world data for these classifiers,

instead training only on the synthetic data generated as

described in section 3.For any given class, we treat all

example sentences generated for the label as positive ex-

amples and sample twice as many examples from other

labels to use as negative examples.

Following previous work on skill classification [13],

we use partial hard negative sampling [24] to ensure our

models are better at distinguishing between very similar

labels. To do so, we make it so 10% of the negative exam-

ples are hard negatives, sampled from labels associated

with the example sentences having the highest cosine

similarity with the positive examples.

At inference time, we consider every positive classifi-

cation from the classifiers as a candidate label to be used

for re-ranking.

3.2. Similarity-based Candidates
Our second approach to generating candidate is based

on cosine similarity between embeddings. We gener-

ate candidate through two distinct approaches: label
similarity and sentence similarity.

Label Similarity This is a simple similarity look-up

between a target extract and the full list of existing labels.

We do not set a threshold for this step, rather, we treat

the 40 most similar labels as candidates to be provided

to the re-ranker.

Sentence Similarity For this candidate generator, we

use the cosine distance between the current extract and

the synthetic example sentences. If two sentences with

the same label are part of the 40 most similar sentences,

we add the label to the list of candidates. This is in ef-

fect similar to a simplified form of k-nearest neighbour

classification [25].

4. Zero-Shot Potential Skills
Ranking

Once the list of potential skills found in a given span

is generated, we prompt an LLM to extract and rank

the ten most likely skills in order of suitability. This is

the reranking step, a key component of information

retrieval pipelines, which is increasingly performed by

fine-tuned language models [26]. In this work, we explore

how a zero-shot approach leveraging LLMs’ "learned

knowledge" performs on our task.

4.1. A Note About the Evaluated LLMs
We report results for both GPT 3.5, an instruction-tuned

[16], more powerful version of GPT-3 [27], more specif-

icallygpt-3.5-turbo-0301 and GPT 4 [17] (gpt-4-0314),

which produced the most promising results in our ex-

ploratory work. Most of our prompt engineering work

was performed for GPT 4, and re-used as-is for GPT 3.5.

While we have not conducted extensive experiments

using them, our exploratory work has shown that open-

source LLMs, of which Flan-UL2 [22] was the best per-

forming at the time of this work, failed to produce reliable

outputs, frequently "hallucinating" skills, in a way similar

to GPT 3.5. However, in the case of GPT3 3.5, this was

entirely mitigated by the Python approached described

below.

At the time of conducting our experiments, Falcon

[28] had not yet been released and the authors did not

have access to LLaMa [29].

4.2. LLMs as Reranker
We use prompting and prompt engineering [30]and de-

scribe the task or reranking in the prompt. We use a

chat-formatted prompt, through OpenAI’s ChatML [31].

We give the model a broad description of its role as its

initial prompt, followed by the detailed instructions for

the task, and a mocked message from the model acknowl-

edging and summarising the instructions.

We then provide the model with a list of potential

skills, generated by the previously described methods.

We experiment with both providing the model with in-

formation about the score it received as a potential skill,

through either classification class probability or textual

similarity, depending on the potential skill’s source. We

found this had no impact on performance, and therefore



Figure 1: High-level overview of the full process.

do not provide this information to the model in our fi-

nal evaluation to reduce the number of token used in

our prompts, thus reducing the required compute. We

pass all skills identified by the classifier approach as

well as up to 60 skills identified by the similarity-based

approach.

We request an ordered list of the ten most likely skill

matches in our prompt. In all cases, we provide the model

with the ability to use the NO_LABEL skill to reach 10

skills it identifies fewer or no matches.

All the prompts used for the reranking task are pro-

vided in Appendix A.

4.2.1. Mock Python Programming Variant

Recent work has shown that Large Language Models can

often perform better on "reasoning" tasks when they are

approached as programming exercises [19]. Addition-

ally, anecdotal evidence often states that it is easier to

control the output of large language models when re-

quiring programming-like outputs, supposedly due to

programming languages’ more structured nature. While

investing the full extent of these claims is beyond the

scope of this work, we experiment with modifying our

re-ranking prompt to include explicit instructions to an-

swer exclusively in Python, in the form of a function

returning an ordered list of ranked skills, and outputting

the justification for inclusion as a comment. No other

modifications to the instructions are made.

We choose Python over other programming languages

as it is often a good proportion of the programming data

commonly used to train and evaluate LLMs [32, 33] and

requires very little adjustments to the existing re-ranking

step presented in the previous section, which is itself

implemented in Python.

5. Experimental Setup
As ESCO-based skills matching is an Extreme Multi-Label

Classification (XMLC) task, we choose to frame it simi-

larly to an information retrieval task and use IR-inspired

methods, for which we provide a high-level overview

of our architecture in Figure 1. Skills matching against

the ESCO taxonomy, due to the very large number and

granularity of skill labels, justifies this framing: while we

want to assign as many labels present in our test set as

possible, it is also highly likely that many potentially rel-

evant labels are not attached to our test examples, either

because of oversight or because of subjective judgement

in situations where multiple similar labels applied. As

such, our aim is to maximise our retrieval of test labels,

without harsh penalties for additional labels assigned by

the model.

5.1. Evaluation
5.1.1. Data

We evaluate our approach on the dataset provided by

Decorte et al. [13]. Their work built upon the SkillSpan

dataset[7], a publicly available dataset focused on the

detection of text spans containing the mention of either

skills or knowledge, which are two sub-categories of skills
as broadly defined within the ESCO framework. Using

the extracted spans, Decorte et al. manually assigned

ESCO skills to the extracted spans in order to create

a dataset of spans annotated with the matching ESCO

skill(s). To the best of our knowledge, this represents

the best effort at creating an evaluation dataset using the

full extent of ESCO’s fine-grained approach rather than

approximations or groupings. We use the validation set

provided to tweak our prompts and evaluate our models

on the test set.

The data contains two distinct subsets, TECH, which

focuses on data extracted from jobs within the tech sector,

and HOUSE, containing more generalist jobs. We report



House Tech
MRR RP@1 RP@5 RP@10 MRR RP@1 RP@5 RP@10

Decorte et al. [13] (best approach) 0.299 N/A 30.82 38.69 0.339 N/A 31.71 39.19

Classifiers (no rerank) 0.326 27.20 37.60 46.47 0.299 27.16 33.41 39.86

Similarity (no rerank) 0.355 26.44 35.22 43.73 0.405 32.84 49.67 58.66
GPT3.5 Re-ranking

+Classifier 0.232 18.32 24.10 27.94 0.279 21.95 29.30 32.48

+Similarity 0.369 29.39 34.40 38.93 0.413 35.01 43.26 47.15

+Both 0.372 27.02 32.93 38.68 0.369 29.67 37.55 43.24

+Both + Python 0.427 36.92 43.57 51.44 0.488 40.53 52.50 59.75
GPT4 Re-ranking

+Classifier 0.446 37.16 48.40 53.44 0.442 39.10 46.77 51.70

+Similarity 0.467 36.40 48.35 54.52 0.481 40.82 54.15 62.71

+Both 0.507 42.91 56.67 60.09 0.512 45.67 59.47 64.03

+Both + Python 0.495 40.70 53.34 61.02 0.537 46.52 61.50 68.94

Table 1.: Results for the various skills matching approaches. Best results within a category in italicised bold, best

overall results in bold

results for each set separately, following the literature.

Both subsets contain a list of skills that were identified

within a given span by human annotators.

5.1.2. Metrics

As the authors introducing the dataset note [13], it is

highly unlikely for human annotation to be fully exhaus-

tive given the wealth of label, as such, the aim of this

task is to extract as many labels as possible, without pe-

nalising the model for "near misses", which could still be

appropriate labels. We thus follow their lead and report

the macro-averaged R-Precision@k (RP@k), which is

particularly well-suited to evaluated extreme multilabel

classification tasks such as this one [34, 13] as well as the

Mean Reciprocal Rank (MRR) of the highest ranked

correct label as a further indication of ranking quality.

6. Results and Discussions
The results of our experiments are presented in in Table 1.

We report the performance of the full pipeline, with both

GPT 3.5 and GPT 4 re-ranking, as well as the previous

state-of-the-art performance obtained by Decorte et al.

in the paper introducing the dataset [13]. We also report

the results of both our Classifier and Similarity ap-

proaches without the re-ranking step, both to showcase

the performance obtained via the use of LLM-generated

training data and to serve as a baseline for the re-ranking

approaches.

We notice that, on their own, both of these no-

reranking approaches achieve competitive performance

against previous methods, with the similarity approach

marginally outperforming the classifier one on the

House dataset but performing noticeably worse on the

Tech one. These results are encouraging, as they re-

quire no real-world training data and are extremely fast

at inference-time, requiring only simple computations.

Their RP@k scales particularly well with higher k val-

ues, highlighting their ability to propose a number of

correct labels but not ranking them optimally.

GPT-4 reranking results in considerable improvements

over all non-reranked methods, strongly outperform-

ing all other methods in all approaches and the best-

performing variant reaching an RP@10 of 61.02 on the

House dataset and 68.94 on the 68.94, a respective im-

provement of 22.33 and 29.75 percentage points over

the previous best approach and 14.55 and 10.28 over

our best non-reranked methods. We notice that in all

cases, the performance obtained by combining potential

skills generated by both the classifier and the similarity

approaches is noticeably stronger than when using only

one method of generating candidates. However, when

using a single method of generating potential candidates,

we notice that the similarity-based approach tends to out-

performs the classifier-based approach on both datasets,

especially on the House dataset.

The performance of GPT-3.5 re-ranking is more mixed.

With natural language prompting, its performance is an

overall downgrade over the non-reranked approaches.

Unlike GPT-4, we also notice that combining both meth-

ods of potential skill generation does not systematically

improve performance, especially on the Tech dataset

where using only similarity-based entries resulted in

overall stronger results. When using only the classifiers-

based candidates, we notice that the GPT-3.5 ranking

actually decreases performance. One of the noticeable

reasons for this weaker performance is GPT-3.5’s seem-

ingly weaker ability to follow guidelines: despite our

experiments in modifying the model prompt, it would



frequently "hallucinate" skills whose wording was di-

rectly inspired from the target span, and ranking them

higher than the skills provided.

For both GPT variants, we notice strong performance

with the Python prompt variation, where we explic-

itly request that the model output is a Python function

returning the ranked list of skills. In the case of GPT-

4, the Python variant significantly outperforms natural

language prompting on the Tech dataset, but performs

slightly worse on House for all metrics but RP@10. For

GPT-3.5, however, Python prompting nearly entirely

eliminates the problem of hallucinating skills, and greatly

improves the performance across all metrics on both

datasets. This appears to suggest that framing the prob-

lem as a programming problem, which are frequently

used to train LLMs, helps ground reasoning and improve

performance in re-ranking tasks in a way natural lan-

guage prompt engineering cannot, although more exper-

iments are needed to confirm this.

Overall, the use of LLM-generated training data out-

performs the state-of-the-art distant supervision ap-

proaches, and that zero-shot LLM re-ranking further

increases performance, considerably outperforming all

previous approaches.

7. Limitations and Future Work
While our work shows very strong potential for LLMs in

both generating training data and improving inference-

time predictions for skills matching, we believe that there

are three key limitations to our work that should be ex-

plored in future work.

Broader Scope We focus on a small, focused dataset

which has previously been explored in the literature. We

believe that our approach is likely to generalise well to

both other taxonomies and different datasets relying on

ESCO. We believe future work should explore building

upon this method to explore more data sources and eval-

uation approaches.

Representation Types Our study explores only the

use of e5 [23] embeddings, due to their very strong out-

of-the-box performance. However, these embeddings

are general domain representations and are only one

approach among many. We believe future work explor-

ing different approaches to representation could yield

better results and valuable insight. Notably, further ex-

ploring techniques common within the field of informa-

tion retrieval, utilising powerful cross-encoders such as

ColBERT, and combining deep-learning based forms of

representations with simpler but powerful approaches

such as tf-idf capturing different kinds of information

could prove very valuable.

LLMs Used This work uses the GPT family of model,

and more specifically, GPT-4. These models are gated

behind APIs and their weights are not publicly available.

While they perform well, future work should explore

the applicability of open-source LLMs, such as Falcon

[28], as well as look for more efficient approaches. Ad-

ditionally, we intend to explore if using a more diverse

set of generative models, trained on different datasets,

could improve our synthetic training data generation by

generating more semantically varied examples.

Domain-Specific Models Our approach focuses on

the use of general domain model, with no further training

to adapt them to the language used within job postings

specifically. While we believe that this kind of informa-

tion is present within the training corpora of the large

language models we use, we believe that better targeted

models could facilitate the development of more efficient

approaches as mentioned above. Notably, models such

as JobBERT [35] and ESCOXLM-R [5] have shown the

potential of domain-specific fine-tuning on existing tasks.

Meanwhile, the LLM literature highlights how consider-

ably smaller language models, with an order of magni-

tude fewer parameters than GPT-3, can reach competitive

performance through fine-tuning on small but very high

quality datasets [36, 37].

Potential Skills Generation Our experiments indi-

cate that varying the number of potential skills given

to GPT-4 does not have a major impact, if any, on its

ranking performance. However, we did not extensively

experiment with different ways of generating the poten-

tial skills list, and the impact that prompt modifications,

such as different ordering or indicating the source or

probability given to a label by the initial classifier would

have. Additionally, we conducted only very moderate

experimentation in optimising the hyper-parameters of

our classifier-based candidate generation (as described

in Appendix B) or with alternate ways of computing sim-

ilarity, such as using SVM-based retrievers [38]. We plan

to explore these optimisations in future work.

Impact on Recommender Systems While out of the

scope of this study, one of the key goals of better job/skill

matching is facilitating the use of recommender systems

to highlight good matches between jobseekers and job

postings, thus contributing to alleviating the job/skill

mismatch [39]. Our early results in using the output of

the pipeline introduced in this paper have shown promis-

ing results, and we intend to further explore the best use

of this skills extraction pipeline within end-to-end job

recommender systems in future work.

8. Conclusion
In this work, we have proposed a novel end-to-end zero-

shot pipeline for skills matching against the ESCO tax-

onomy using Large Language Models (LLMs). We have

shown that LLMs can generate high-quality synthetic



training data to improve candidate generation, outper-

forming existing approaches without needing any non-

synthetic training data. We have also demonstrated

that state-of-the-art LLMs can act as strong zero-shot

re-rankers as the final step of the skill matching pipeline,

resulting in another large performance improvement.

Our experiments also show that framing the re-

ranking task as a mock Python programming problem re-

sults in significant performance gains, especially for less

capable models. We believe that this framing helps the

models better follow the task instructions in re-ranking

contexts, especially when working with less powerful

models.

Overall, our work highlights the strong potential for

Large Language Models for the low-resource context

of working with the ESCO taxonomy, through leverag-

ing the limited information present in the taxonomy to

guide the generation of targeted synthetic data, as well as

through zero-shot application of their capabilities. While

our experiments have focused on a single dataset and

taxonomy, namely ESCO, we believe that our approach

holds potential to support further work in automated un-

derstanding of the job market at scale, and we release the

prompts we have used in order to support these efforts.
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A. Prompts

A.1. Training Data Generation
You are the leading AI Writer at a large, multinational

HR agency. You are considered as the world’s best expert

at expressing required skills and knowledge in a variety

of clear ways. You are particularly proficient with the

ESCO Occupation and Skills framework. As you are

widely lauded for your job posting writing ability, you

will assist the user in all job-posting, job requirements

and occupational skills related tasks.

You work in collaboration with ESCO to gather rigid

standards for job postings. Given a list of ESCO skills

and knowledges, you’re asked to provide forty examples

that could be found in a job ad and refer to the skill or

knowledge component. You may be given a skill family

to help you disambiguate if the skill name could refer

to multiple things. Ensure that your examples are well

written and could be found in real job advertisement.

Write a variety of different sentences and ensure your

examples are well diversified. Use a variety of styles.

Write examples using both shorter and longer sentences,

as well as examples using short paragraphs of a few sen-

tences, where sometimes only one is directly relevant to

the skill. You’re trying to provide a representative sample

of the many, many ways real job postings would evoke a

skill.
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At least {FIVE for tech skills, ZERO for language skills,

80% (THIRTY-TWO)} of your examples must not contain

an explicit reference to the skill and must thus not con-

tain the given skill string. Extra Information/Alternative

Names (you may discard this information if irrelevant):

{ALTERNATE NAMES IN THE ESCO DATABASE} Avoid

explicitly using the wording of this extra information in

your examples. Skill: {target}"""

A.2. Reranking
Instructions: You are given an extract from a job post-

ing. As an AI job and skills expert, you need to assist

in whatever task is requested of you. I will give you a

sentence referring to a skill extracted from a job posting,

as well as a list of potential skill labels. You are asked to

extract and rank the likely skills from the candidates list

into a ranked list of 10.

It is possible that none match, in which case you will

say NO_LABEL. You must either use one from the list or

NO_LABEL.

You may not use any label not provided in the example

list. If you use NO_LABEL, do not assign any other label.

You will rank the top 10 most likely labels from the

candidates, and provide an explanation as to why they

are picked and ranked where they are.

That means that if two labels are applicable, but one is

much broader, you should pick the less broad one slightly

above the broader one. For example, a skill related to

specific kind of algorithm (e.g. forecasting) should always

rank higher than the "algorithms" skill.

Again, you may never use a skill not provided in the

potential skills list.

First, acknowledge and quickly summarise the instruc-

tions.

Mocked LLM Message: I understand the instructions.

I will be given a sentence referring to a skill from a job

posting and a list of potential skill labels. My task is to

extract and rank the top 10 most likely skills from the

candidates list, provide an explanation for my choices,

and prioritize specific skills over broader ones. If no label

matches, I will use NO_LABEL and not assign any other

label. I will only use the provided labels in the list.

Query Message: Great, let’s go :)!

Potential skills: {{potential_skills}}

Extract: {{text_extract}}

Provide your 10 most likely labels.Please provide a

quick explanation for your ranking.

A.3. Python Reranking
Instructions: You are given an extract from a job post-

ing. As an AI job and skills expert, you need to assist

in whatever task is requested of you. I will give you a

sentence referring to a skill extracted from a job posting,

as well as a list of potential skill labels. You are asked to

extract and rank the likely skills from the candidates list

into a ranked list of 10.

It is possible that none match, in which case you will

say NO_LABEL. You must either use one from the list or

NO_LABEL.

You may not use any label not provided in the example

list. If you use NO_LABEL, do not assign any other label.

You will rank the top 10 most likely labels from the

candidates, and provide an explanation as to why they

are picked and ranked where they are.

That means that if two labels are applicable, but one is

much broader, you should pick the less broad one slightly

above the broader one. For example, a skill related to

specific kind of algorithm (e.g. forecasting) should always

rank higher than the "algorithms" skill.

Again, you may never use a skill not provided in the

potential skills list.

You will answer not by directly answering, but by
writing a python function that will output your or-
dered list. Your python function can use any heuris-
tic you wish to reach your desired result and accom-
modate your reasoning.

First, acknowledge and quickly summarise the instruc-

tions.

Mocked LLM Message: The task is to create a
Python function that will rank the top 10 most
likely skills from a list of potential skills based on
a given sentence from a job posting. The function
should only use the provided list of potential skills
and may use the NO_LABEL option if none of the
skills match. The ranking should be based on the
specificity of the skill and the explanation for the
ranking should be provided.

Query Message: Great, let’s go :)!

Potential skills: {{potential_skills}}

Extract: {{text_extract}}

Provide your 10 most likely labels.Please provide a

quick explanation for your ranking. You must pro-
vide a Python function. The python function must
be in a python codeblock. The function must be
named ‘rank_skills‘. The Python Function you cre-
ate should never explicitely use the extract text it-
self, it should just return the ranking. The extract
text is only provided for your reasoning so you can
build the appropriate function. You don’t need to
include the full list of potential skills in your an-
swer

B. Classifier Parameters
The individual logistic regression classifiers are imple-

mented using the scikit-learn library [40]. We set the

inverse regularisation parameter, C to 0.1, as we have



low confidence in our data being representative of real-

world data, set a maximum iteration limit of 10 000 with

a tolerance of 0.00001. We also set the class weight to

be used by the classifier to the balanced setting, meaning

that positive examples will be weighed twice as heavily

as negative examples by the loss function, as our negative

sampling strategy involves two negative examples per

positive one.
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