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Abstract
This paper gives a formula for the solution of an analogical equation between Booleans using the Sheffer
stroke (NAND). Naturally, a counterpart using the Pierce arrow (NOR) is also given. Although not so
intuitive, these formulae are somewhat elegant. The formulae are obtained in the following way: a rapid
review on analogies between sets is given. The result on sets is transposed to Booleans. This result is
rewritten using solely the operators mentioned above and simplified.
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1. Introduction

An axiomatic approach (Section 2) that postulates reflexivity (A : B :: A : B) and symmetry
(C : D :: A : B) of conformity (::), in addition to the exchange of the means (A : C :: B : D), for
any analogy A : B :: C : D, allows to define analogy on commutative magmas and commutative
monoids (Section 3). The additional postulate of contiguity (the same analogy should hold on
the inverse of objects) allows to define analogies on commutative groups (Section 4). Adding
the postulate of similarity (all features in 𝐴 should appear in 𝐵 or 𝐶) is used to determine the
solution of analogical equations between sets in [1] (Section 5). With all the above, the analogy
induced by (a) the structure of the commutative groups (𝒫(𝐸),△) or (𝒫(𝐸),

△

)1 is the same
as the analogy induced by (b) the two monoids (𝒫(𝐸),∪) and 𝒫(𝐸),∩) holding at the same
time, under the condition

𝐴 ⊂ 𝐵 ∪ 𝐶 ∧ 𝐵 ∩ 𝐶 ⊂ 𝐴 (1.1)

(Section 5). This condition eliminates two cases of discrepancy between the analogies induced
by (a) and (b). The solution 𝐷 of an analogy between sets A : B :: C : D is then:

𝐷 = ((𝐵 ∪ 𝐶) ∖𝐴) ∪ (𝐵 ∩ 𝐶). (1.2)
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1△ for symmetrical difference on sets (corresponding to XOR on Booleans), and

△

for its counterpart corresponding
to logical equivalence on Booleans.
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General Magma Group

Definition 𝐴 ⋆ 𝐷 = 𝐶 ⋆ 𝐵 𝐴 ⋆ 𝐵−1 = 𝐶 ⋆ 𝐷−1

(o)
Reflexivity of
conformity

𝐴 : 𝐵 :: 𝐴 : 𝐵 𝐴 ⋆ 𝐵 = 𝐴 ⋆ 𝐵 𝐴 ⋆ 𝐵−1 = 𝐴 ⋆ 𝐵−1

For any 𝐴 : 𝐵 :: 𝐶 : 𝐷 𝐴 ⋆ 𝐷 = 𝐶 ⋆ 𝐵 𝐴 ⋆ 𝐵−1 = 𝐶 ⋆ 𝐷−1

(i)
Symmetry of con-
formity

𝐶 : 𝐷 :: 𝐴 : 𝐵 𝐶 ⋆ 𝐵 = 𝐴 ⋆ 𝐷 𝐶 ⋆ 𝐷−1 = 𝐴 ⋆ 𝐵−1

(ii)
Inversion of ra-
tios

𝐵 : 𝐴 :: 𝐷 : 𝐶 𝐵 ⋆ 𝐶 = 𝐷 ⋆ 𝐴 𝐵 ⋆ 𝐴−1 = 𝐷 ⋆ 𝐶−1

(iii)
Inversion of ob-
jects (contiguity)

𝐴−1 : 𝐵−1 :: 𝐶−1 : 𝐷−1 undefined 𝐴−1 ⋆ 𝐵 = 𝐶−1 ⋆ 𝐷

(iv)
Distribution in
objects (similar-
ity)

any feature in 𝐴 must ap-
pear in either 𝐵 or 𝐶 or
both.

undefined undefined

(v)
Exchange of the
extremes

𝐷 : 𝐵 :: 𝐶 : 𝐴 𝐷 ⋆ 𝐴 = 𝐶 ⋆ 𝐵 𝐷 ⋆ 𝐵−1 = 𝐶 ⋆ 𝐴−1

(vi)
Exchange of the
means

𝐴 : 𝐶 :: 𝐵 : 𝐷 𝐴 ⋆ 𝐷 = 𝐵 ⋆ 𝐶 𝐴 ⋆ 𝐶−1 = 𝐵 ⋆ 𝐷−1

Table 1
Postulates for analogy. The last two columns transcribe the definitions to the analogy naturally induced
by the structures of a magma and a group.

The purpose of this paper is to transcribe (1.2) to analogy between Booleans (Section 6). As the
Sheffer stroke (Section 7) is known to be functionally complete, the formulation uses only this
operator (Section 10). The same is done with the Pierce arrow (Section 8).

2. Postulates for analogy

The classical way of writing down an analogy with A : B :: C : D involves two basic articulations
denoted by the signs : for ratio and :: that we choose to call conformity2. The four terms are
traditionally divided into the means 𝐵 and 𝐶 , and the extremes 𝐴 and 𝐷. Studies in the notion
of analogy in its technical sense (not in its vernacular sense of mere similarity or comparison,
as in analogical reasoning) extract two underlying notions, those of similarity and contiguity.

Conformity can be postulated to be reflexive and symmetric.3. The ratios can be thought to
be inversible4. From the Greek antiquity, it is considered that analogy (in its strict technical
meaning) cannot go without the exchange of the means5. All this leads to the postulates given
in Table 1.

2The character : (U+2236) is named ratio in the ISO 10646 standard (Unicode) and :: (U+2237) is named proportion.
3I.e., a dependency relation. An equivalence relation requires transitivity in addition.
4Invertendo in the Latin tradition.
5Permutando or alternando in the Latin tradition.
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Analogy Corners of the square

Transformation Equivalent form Transformation 𝐷8

identity 𝐴 : 𝐵 :: 𝐶 : 𝐷 identity
𝐴 𝐵
𝐶 𝐷 𝑒

counter-clockwise rota-
tion

𝐵 : 𝐷 :: 𝐴 : 𝐶 rotation by 𝜋/2
𝐵 𝐷
𝐴 𝐶 𝑎

inverse of reading 𝐷 : 𝐶 :: 𝐵 : 𝐴
rotation by 2𝜋/2
= 𝜋

𝐷 𝐶
𝐵 𝐴 𝑎2

clockwise rotation 𝐶 : 𝐴 :: 𝐷 : 𝐵
rotation by 3𝜋/2
= −𝜋/2

𝐶 𝐴
𝐷 𝐵 𝑎3

exchange of the means 𝐴 : 𝐶 :: 𝐵 : 𝐷
symmetry first di-
agonal

𝐴 𝐶
𝐵 𝐷 𝑥

inversion of ratios 𝐵 : 𝐴 :: 𝐷 : 𝐶
symmetry vertical
axis

𝐵 𝐴
𝐷 𝐶 𝑎𝑥

exchange of the ex-
tremes

𝐷 : 𝐵 :: 𝐶 : 𝐴
symmetry second
diagonal

𝐷 𝐵
𝐶 𝐴 𝑎2𝑥

symmetry of confor-
mity

𝐶 : 𝐷 :: 𝐴 : 𝐵
symmetry hori-
zontal axis

𝐶 𝐷
𝐴 𝐵 𝑎3𝑥

Table 2
Bijection between the eight equivalent forms of an analogy and the eight elements of the dihedral group
𝐷8, i.e., the transformations of the corners of the square.

Consecutive applications of (i), (ii), (v) or (vi) in any number and in any order lead to
only eight equivalent forms of the same analogy [2] which correspond to the eight possible
transformations of the corners of a square, known as the dihedral group 𝐷8 where the internal
operation is composition. This bijection is given in Table 3. In the dihedral group, the choice of
the two distinguished elements, 𝑎 and 𝑥 among the seven non-identity elements, is not totally
free. The possible choices, expressed for analogy, are visualized in Figure 1. (ii) Inversion of
ratios and (vi) Exchange of the means is a possible choice. (i) Symmetry of conformity and
(vi) Exchange of the means is another possible choice. For this last choice, it means that the
postulates (ii) and (v) are indeed dispensable.

3. Analogy induced on commutative magmas and monoids

Let (ℰ , ⋆) be a magma, i.e., a set equipped with an internal law, without any specific property.
To define analogy on such a structure, the only device offered is its internal operation. Drawing
a parallel with numbers, where, for arithmetic and geometric analogies, one has 𝑎+ 𝑑 = 𝑏+ 𝑐
and 𝑎 × 𝑑 = 𝑏 × 𝑐, it is natural to posit the following equivalence to induce analogy from a
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sym. ::

exch. means counter-clock. rot.

clock. rot. exch. extr.

inv. :

Figure 1: Any edge in the picture is a possible choice for a pair of transformations of analogy from
which to get the eight equivalent forms from any analogy 𝐴 : 𝐵 :: 𝐶 : 𝐷. This corresponds to selecting
the elements usually denoted by 𝑎 and 𝑥 in the dihedral group 𝐷8.

magma. However, observe that there are two possibilities, because the internal operation could
be non-commutative.

∀(𝐴,𝐵,𝐶,𝐷) ∈ ℰ4, 𝐴 : 𝐵 :: 𝐶 : 𝐷
def⇐⇒ 𝐴 ⋆ 𝐷 = 𝐵 ⋆ 𝐶 (3.1)

or ∀(𝐴,𝐵,𝐶,𝐷) ∈ ℰ4, 𝐴 : 𝐵 :: 𝐶 : 𝐷
def⇐⇒ 𝐴 ⋆ 𝐷 = 𝐶 ⋆ 𝐵 (3.2)

With (3.1), the axiom of reflexivity of conformity would impose immediately that ⋆ be commu-
tative because

∀(𝐴,𝐵) ∈ ℰ2, 𝐴 : 𝐵 :: 𝐴 : 𝐵 ⇔ ∀(𝐴,𝐵) ∈ ℰ2, 𝐴 ⋆ 𝐵 = 𝐵 ⋆ 𝐴.

For (3.2), the expression of each postulate is shown in Table 1. (o) and (i) hold because,
equality being an equivalence relation, it is a dependency relation. The inverse of objects and
the distribution in objects are left undefined. For all other axioms, a sufficient condition for
them to be met is that ⋆ be commutative.

To summarize, to naturally induce analogy from the structure of a magma, it suffices for the
internal operation to be commutative. The two definitions (3.1) and (3.2) are then the same. The
axioms of object inversion and distribution within objects can be left unspecified. Observe that
neither conformity nor ratio are directly defined. Finally, nothing can be said in the general
case for the problem of solving an analogical equation on a commutative magma: given a triplet
(𝐴,𝐵,𝐶) ∈ ℰ3, find 𝐷 such that 𝐴 : 𝐵 :: 𝐶 : 𝐷, i.e., find 𝐷 such that 𝐴 ⋆ 𝐷 = 𝐶 ⋆ 𝐵,

On a commutative monoid, i.e., a magma with associativity of the internal operation and
a neutral element, analogy can be naturally induced in the same way as for a commutative
magma.
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4. Analogy induced on commutative groups

Let (ℰ , ⋆) be a group. Let 𝑎−1 denote the inverse element of 𝑎.

• Ratios can be defined directly:

∀(𝐴,𝐵) ∈ ℰ2, 𝐴 : 𝐵
def
= 𝐴 ⋆ 𝐵−1. (4.1)

Note that this definition of the ratio is very specific: the ratio between two elements of
ℰ is an element of ℰ . This is very different from the situation with magmas in which,
generally speaking, we do not know what a ratio is.

• Conformity can be defined as equality.
• The definition of analogy can then be as follows:

∀(𝐴,𝐵,𝐶,𝐷) ∈ ℰ4, 𝐴 : 𝐵 :: 𝐶 : 𝐷
def⇐⇒ 𝐴 ⋆ 𝐵−1 = 𝐶 ⋆ 𝐷−1. (4.2)

The column marked Group in Table 1 gives the expression of each of the postulates using (4.2).
Similarly as for magmas, conformity being equality, reflexivity and symmetry hold. Postulating
the axiom of inversion of objects, i.e.,

∀(𝐴,𝐵,𝐶,𝐷) ∈ ℰ4, 𝐴 : 𝐵 :: 𝐶 : 𝐷 ⇔ 𝐴−1 : 𝐵−1 :: 𝐶−1 : 𝐷−1, (4.3)

has the consequence that 𝐴 can be expressed in two ways in function of the other terms.

𝐴 : 𝐵 :: 𝐶 : 𝐷

⇔ 𝐴 ⋆ 𝐵−1 = 𝐶 ⋆ 𝐷−1

⇔ 𝐴 = 𝐶 ⋆ 𝐷−1 ⋆ 𝐵

𝐴−1 : 𝐵−1 :: 𝐶−1 : 𝐷−1

⇔ 𝐴−1 ⋆ (𝐵−1)
−1

= 𝐶−1 ⋆ (𝐷−1)
−1

⇔ 𝐴−1 ⋆ 𝐵 = 𝐶−1 ⋆ 𝐷

⇔ 𝐵−1 ⋆ 𝐴 = 𝐷−1 ⋆ 𝐶

⇔ 𝐴 = 𝐵 ⋆ 𝐷−1 ⋆ 𝐶

Commutativity on the entire group is sufficient to ensure the equality

𝐴 = 𝐵 ⋆ 𝐷−1 ⋆ 𝐶 = 𝐶 ⋆ 𝐷−1 ⋆ 𝐵. (4.4)

Hence, provided the group is commutative, the group structure entails all the axioms listed in
Table 1 with the exception of the axiom of distribution in objects.

5. Analogy between sets

Let ℰ be a set. The set of all subsets of ℰ is noted 𝒫(ℰ). Equipped with union, (𝒫(ℰ),∪)
is a commutative monoid. Union is an internal operation in 𝒫(ℰ) that is associative and
commutative. The neutral element is ∅ (∅ ∪ 𝐴 = 𝐴 ∪ ∅ = 𝐴). However there is no inverse
element in general, i.e., for any set 𝐴 in 𝒫(ℰ), there is no set 𝐵 such that 𝐴 ∪𝐵 = ∅. Similarly,
(𝒫(ℰ),∩) is a commutative monoid. The neutral element is ℰ .
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The symmetrical difference on sets (noted △ and corresponding to XOR on Booleans), and
another operation noted

△

(the counterpart of logical equivalence on Booleans) are defined as
follows.

∀(𝐴,𝐵) ∈ 𝒫(ℰ)2, 𝐴△𝐵 = (𝐴 ∪𝐵) ∖ (𝐴 ∩𝐵) (5.1)

𝐴

△

𝐵 = ℰ ∖ (𝐴△𝐵) (5.2)

(𝒫(ℰ),△) is a commutative group. Symmetrical difference is an internal operation in 𝒫(ℰ)
that is associative and commutative. The neutral element is ∅ (∅△𝐴 = 𝐴△∅ = 𝐴). The inverse
element of any set 𝐴 in 𝒫(ℰ) is itself: 𝐴△𝐴 = ∅. Similarly, (𝒫(ℰ), △

) is a commutative group,
with ℰ as the neutral element, and each element is its one inverse.

For any quadruple of sets in a power set 𝒫(ℰ), if the two analogies induced by the two
structures of commutative monoids (𝒫(ℰ),∪) and (𝒫(ℰ),∩) hold at the same time, then, the
analogy induced by the structure of commutative group (𝒫(ℰ),△) holds too (and similarly for
(𝒫(ℰ), △

)).

𝐴 : 𝐵
∩
:: 𝐶 : 𝐷 ∧ 𝐴 : 𝐵

∪
:: 𝐶 : 𝐷 ⇔ (𝐴 ∩𝐷) = (𝐶 ∩𝐵) ∧ (𝐴 ∪𝐷) = (𝐶 ∪𝐵)

⇒ (𝐴 ∖𝐵) ∪ (𝐵 ∖𝐴) = (𝐶 ∖𝐷) ∪ (𝐷 ∖ 𝐶)

⇔ 𝐴△𝐵 = 𝐶△𝐷 ⇔ 𝐴 : 𝐵
△
:: 𝐶 : 𝐷

⇔ 𝐴

△

𝐵 = 𝐶

△

𝐷 ⇔ 𝐴 : 𝐵

△

:: 𝐶 : 𝐷

The second line above is only an implication. Now, the analogy induced by the structure of
a commutative group of (𝒫(ℰ),△) (or, similarly, (𝒫(ℰ), △

)) is the same as when the two
analogies induced by the two commutative monoids (𝒫(ℰ),∪) and (𝒫(ℰ),∩) hold at the same
time, under the condition 𝐴 ⊂ 𝐵 ∪ 𝐶 ∧ 𝐵 ∩ 𝐶 ⊂ 𝐴. This is (1.1) given in the introduction.
𝐴 ⊂ 𝐵 ∪ 𝐶 transcribes the postulate of distribution in objects (iv) for sets with the features
being the elements. 𝐵 ∩ 𝐶 ⊂ 𝐴 is obtained by taking the set complements, i.e., using the
postulate of inversion of objects (iii).

𝐴 : 𝐵
△
:: 𝐶 : 𝐷 ⇔

𝐴 : 𝐵

△

:: 𝐶 : 𝐷 ⇔ 𝐴△𝐵 = 𝐶△𝐷

⇔ (𝐴 ∖𝐵) ∪ (𝐵 ∖𝐴) = (𝐶 ∖𝐷) ∪ (𝐶 ∖𝐷)

⇔ (𝐴 ∩𝐷) = (𝐶 ∩𝐵) ∧ (𝐴 ∪𝐷) = (𝐶 ∪𝐵)

⇔ 𝐴 : 𝐵
∩
:: 𝐶 : 𝐷 ∧ 𝐴 : 𝐵

∪
:: 𝐶 : 𝐷

Table 3 gives the explicit development of this correspondence.
In [1], it was shown that, under the condition (1.1), the solution of an analogical equation

𝐴 : 𝐵 :: 𝐶 : 𝐷 of unknown 𝐷 between sets is given by (1.2).
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𝐴 𝐵 𝐶 𝐷 (a
) 𝐴

∩
𝐷

=
𝐶
∩
𝐵

(b
) 𝐴

∪
𝐷

=
𝐶
∪
𝐵

an
al

og
y

in
du

ce
d

by
bo

th
m

on
oi

ds
:

(a
) ∧

(b
)

(c
) 𝐴

△
𝐵

=
ℰ
∖ (

𝐴

△ 𝐵
)

(d
) 𝐶

△
𝐷

=
ℰ
∖ (

𝐶

△ 𝐷
)

an
al

og
y

in
du

ce
d

by
gr

ou
p:

(c
) =

(d
)

F F F F T T T F F T
F F F T T F F F T F
F F T F T F F F T F
F F T T T T T F F T
F T F F T F F T F F
F T F T T T T T T T
F T T F F F F T T T
F T T T F T F T F F
T F F F T F F T F F
T F F T F F F T T T
T F T F T T T T T T
T F T T F T F T F F
T T F F T T T F F T
T T F T F T F F T F
T T T F F T F F T F
T T T T T T T F F T

Table 3
Correspondence, on sets, between the two analogies induced by the commutative monoids (𝒫(ℰ),∪)
and (𝒫(ℰ),∩) holding at the same time and each of the analogies induced by the commutative groups
(𝒫(ℰ), △

) or (𝒫(ℰ), △

).

6. Analogies between Booleans

There exists a correspondence between operations on sets and operations on Booleans. Here
we use the correspondence between union and or, intersection and and, and the fact that the
complement of a set in another one corresponds to taking the conjunction with the negation:
𝐴∖𝐵 corresponds to 𝑎∧¬𝑏. With this, the solution of an analogy between Booleans, a : b :: c : d,
transcribed from the solution of an analogy between sets, under the condition (transcribed from
the condition on sets) that

𝑎 ⇒ 𝑏 ∨ 𝑐 ∧ 𝑏 ∧ 𝑐 ⇒ 𝑎, (6.1)

is:
𝑑 = ((𝑏 ∨ 𝑐) ∧ ¬𝑎) ∨ (𝑏 ∧ 𝑐). (6.2)

The condition corresponds to the cases in conflict in [3] and [4], and identified in [1], i.e., the
problem of accepting or not T : F :: F : T and F : T :: T : F as valid analogies. Transposed on
sets, this is tantamount to ask whether {𝑒1, 𝑒2} : {𝑒2} :: {𝑒3} : {𝑒1, 𝑒3} is a valid analogy. The
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condition given above for sets rejects this analogy by keeping the natural interpretation of sets
as containers.

7. The Sheffer stroke

The Sheffer stroke (usually noted |, but noted ↑ here6) denotes the NAND operator. For two
Boolean variables 𝑝 and 𝑞,

𝑝↑𝑞 = ¬(𝑝 ∧ 𝑞). (7.1)

It is known that the singleton containing the Sheffer stroke as sole Boolean operator is func-
tionally complete. This means that any Boolean expression can be rewritten using solely the
Sheffer stroke. For instance,

𝑝 ∧ 𝑞 = (𝑝↑𝑞)↑(𝑝↑𝑞), (7.2)

𝑝 ∨ 𝑞 = (𝑝↑𝑝)↑(𝑞↑𝑞), (7.3)

¬𝑝 = 𝑝↑𝑝. (7.4)

Intuitive operators are associative and commutative as is the case for + or × on numbers.
However, remarkably, the Sheffer stroke is commutative

𝑝↑𝑞 = 𝑞↑𝑝, (7.5)

but not associative, i.e., in general

(𝑝↑𝑞)↑𝑟 ̸= 𝑝↑(𝑞↑𝑟). (7.6)

By virtue of 𝑝↑𝑝 = ¬𝑝, trivially,

(𝑝↑𝑝)↑(𝑝↑𝑝) = ¬(¬𝑝) = 𝑝. (7.7)

The notation 𝑝2 for 𝑝↑𝑝 can be introduced, and applying it twice, reduces (7.7) to:

(𝑝2)2 = 𝑝. (7.8)

8. The Pierce arrow

The Pierce arrow is the NOR operator, i.e.,

𝑝↓𝑞 = ¬(𝑝 ∨ 𝑞). (8.1)

It has similar properties as the Sheffer stroke: it is commutative, but not associative, negation
is obtained by self-application

¬𝑝 = 𝑝↓𝑝, (8.2)

6As in [5] and other works, we prefer ↑ over | for symmetry reasons due to the use of the Pierce arrow ↓.
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and any Boolean formula can be rewritten using it solely, i.e., alone, it is functionally complete.
There is a kind of symmetry with the Sheffer stroke for the expression of conjunction and
disjunction, due to the fact that they are dual7:

𝑝 ∧ 𝑞 = (𝑝↓𝑝)↓(𝑞↓𝑞) (8.3)

𝑝 ∨ 𝑞 = (𝑝↓𝑞)↓(𝑝↓𝑞). (8.4)

The notation 𝑝2 can be used with the Pierce arrow with the same meaning and same value as
with the Sheffer stroke:

𝑝2 = ¬𝑝 = 𝑝↑𝑝 = 𝑝↓𝑝. (8.5)

Consequently, (7.8) also holds for the Pierce arrow.

9. Relations between the Sheffer stroke and the Pierce arrow

The following properties can easily be established by using the expression of disjunction for
the two operators:

𝑏2↑𝑐2 = (𝑏↓𝑐)2, (9.1)

𝑎2↑(𝑏2↑𝑐2) = (𝑎↓(𝑏↓𝑐))2. (9.2)

Rather than using 𝑝, 𝑞 and 𝑟 for variable names, we used 𝑎, 𝑏 and 𝑐 on purpose, to ease the
reading of Section 10. The same can be done for conjunction:

𝑏2↓𝑐2 = (𝑏↑𝑐)2, (9.3)

𝑎2↓(𝑏2↓𝑐2) = (𝑎↑(𝑏↑𝑐))2. (9.4)

10. Formulae for the solution of a Boolean analogy

The rewriting of the solution of an analogy between Booleans into an expression that involves
only the Sheffer stroke can be worked out by hand from (6.2). It is safer to rely on a program to
automatically perform this rewriting. We give such a program in Figure 2. It starts from a tree
representation of (6.2), i.e., (6.2) in Polish notation.

The result is as follows, with spaces for clarity.

𝑑 = ( ( ( (((𝑏↑𝑏)↑(𝑐↑𝑐))↑(𝑎↑𝑎)) ↑ (((𝑏↑𝑏)↑(𝑐↑𝑐))↑(𝑎↑𝑎)) ) ↑
( (((𝑏↑𝑏)↑(𝑐↑𝑐))↑(𝑎↑𝑎)) ↑ (((𝑏↑𝑏)↑(𝑐↑𝑐))↑(𝑎↑𝑎)) ) ) ↑

(((𝑏↑𝑐)↑(𝑏↑𝑐))↑((𝑏↑𝑐)↑(𝑏↑𝑐))) )

This lengthy formula can be simplified by

• locating occurrences of (7.8), i.e., (𝑝↑𝑝)↑(𝑝↑𝑝) = 𝑝,
• introducing the 𝑝2 notation, and

7The dual 𝑓𝑑 of an operator 𝑓 is defined as follows [5]: 𝑓𝑑(𝑎1, 𝑎2, . . . 𝑎𝑛) = (𝑓(𝑎2
1, 𝑎

2
2, . . . 𝑎

2
𝑛))

2.
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def and_(p, q):
return f'(({p}↑{q})↑({p}↑{q}))'

def or_(p, q):
return f'(({p}↑{p})↑({q}↑{q}))'

def not_(p):
return f'({p}↑{p})'

def a():
return 'a'

def b():
return 'b'

def c():
return 'c'

# d = '((b or c) and non(a)) or (b and c)'

d = or_( and_(or_(b(), c()), not_(a())), and_(b(),
c()) )→˓

print(d)

Figure 2: Program for automatic generation of the solution of an analogy between Booleans using the
Sheffer stroke only.

• reestablishing the order of appearance of 𝑎, 𝑏 and 𝑐 by commutativity of the Sheffer
stroke.

𝑑 = (((𝑏↑𝑏)↑(𝑐↑𝑐))↑(𝑎↑𝑎))↑(𝑏↑𝑐)
= ( (𝑏2↑𝑐2) ↑ 𝑎2 ) ↑ (𝑏↑𝑐)
= ( 𝑎2 ↑ (𝑏2↑𝑐2) ) ↑ (𝑏↑𝑐) (10.1)

For the Pierce arrow, the formula output by a similar program is as follows. Similarly, it can
be simplified.

𝑑 = ((((((𝑏↓𝑐)↓(𝑏↓𝑐))↓((𝑏↓𝑐)↓(𝑏↓𝑐))) ↓ ((𝑎↓𝑎)↓(𝑎↓𝑎)))↓((𝑏↓𝑏)↓(𝑐↓𝑐))) ↓
(((((𝑏↓𝑐)↓(𝑏↓𝑐))↓((𝑏↓𝑐)↓(𝑏↓𝑐))) ↓ ((𝑎↓𝑎)↓(𝑎↓𝑎)))↓((𝑏↓𝑏)↓(𝑐↓𝑐))))

=
(︀
(((((𝑏↓𝑐)↓(𝑏↓𝑐))↓((𝑏↓𝑐)↓(𝑏↓𝑐))) ↓ ((𝑎↓𝑎)↓(𝑎↓𝑎)))↓((𝑏↓𝑏)↓(𝑐↓𝑐))

)︀2

=
(︀
((((𝑏↓𝑐)↓𝑎)↓((𝑏↓𝑏)↓(𝑐↓𝑐)))

)︀2

=
(︀
((𝑏↓𝑐)↓𝑎) ↓ (𝑏2↓𝑐2)

)︀2

=
(︀
(𝑎↓(𝑏↓𝑐)) ↓ (𝑏2↓𝑐2)

)︀2 (10.2)

This second formula could have been obtained directly from (10.1) by exploiting the relations
seen in Section 9, i.e., the duality between the two operators.
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𝑎 𝑏 𝑐 𝑏↑𝑐 𝑏2↑𝑐2 𝑎↑(𝑏↑𝑐) 𝑎2↑(𝑏2↑𝑐2) 𝑑 in (10.1) 𝑑 in (10.3)
F F F T F T T F F
F F T T T T F T T
F T F T T T F T T
F T T F T T F T T
T F F T F F T F F
T F T T T F T F F
T T F T T F T F F
T T T F T T T T T

Table 4
True value tables of (10.1) and (10.3).

(𝑎2↑(𝑏2↑𝑐2))↑(𝑏↑𝑐) (10.1)

= (𝑎↓(𝑏↓𝑐))2↑(𝑏↑𝑐) by (9.2)

= (𝑎↓(𝑏↓𝑐))2↑(𝑏2↓𝑐2)2) by (9.3)

=
(︀
(𝑎↓(𝑏↓𝑐))↓(𝑏2↓𝑐2)

)︀2 by (9.1) (10.2)

Remarkably, (10.1) is equivalent to the following formula, where the whole is squared and
variables are squared.8

𝑑 =
(︀
(𝑎↑(𝑏↑𝑐)) ↑ (𝑏2↑𝑐2)

)︀2 (10.3)

The equivalence between (10.1) and (10.3) is shown by the table of truth values for the two
formulae in Table 4. The grayed-out lines are the two lines corresponding to the cases where
condition (6.1) is not verified. In this table, the symmetry around the central line says that the
value of 𝑑 is negated by taking the negation of each of the variables 𝑎, 𝑏 and 𝑐. This just states
that, considered as an operator on three variables, the solution of an analogy is self-dual:

𝑑(𝑎2, 𝑏2, 𝑐2) = 𝑑(𝑎, 𝑏, 𝑐)2.

This follows intuition as, 𝑑 being the solution of an analogy, the postulate of inversion of objects
(iii) should hold. For the same reason, an equivalent form to (10.2) is:

𝑑 = ( 𝑎2 ↓ (𝑏2↓𝑐2) ) ↓ (𝑏↓𝑐) (10.4)

Thus, remarkably, the formulae using the Pierce arrow (NOR) are the same as the ones using
the Sheffer stroke (NAND). That is, (10.4) is the same as (10.1) and (10.2) is the same as (10.3),
except for the operator.

8The submitted version of this paper contained a regrettable error in the justification of this equivalence. We
fortunately became aware of it before the feedback of the reviewers, who, of course, spotted it. We thank one of
them for suggesting a proof of this equivalence.
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11. Conclusion

This paper gave formulae for the solution of an analogical equation between Booleans using
solely the Sheffer stroke (NAND) or the Pierce arrow (NOR).

These formulae were obtained by transposing a formula on sets to Booleans. To justify this
first formula, we reminded postulates for analogy and briefly showed how analogy can be
induced from some algebraic structures (see also [6]). We then gave a rapid review on analogies
between sets and stressed the fact that there is a discrepancy between analogy induced by union
or intersection and analogy induced by symmetrical difference. Transposed to Booleans, this
discrepancy tantamounts to ask whether T : F :: F : T and F : T :: T : F (by inversion of ratios
(ii)) should be considered valid analogies.

Although not so intuitive, the formulae for Booleans using the Sheffer stroke or the Pierce
arrow are somewhat elegant. They reflect the self-duality of the solution of a Boolean analogical
equation. Any of the two operators, Sheffer stroke or Pierce arrow, can indifferently be used for
them. It is an open question whether these formulae are the most economical ones in terms
of number of occurrences of operators or variables, i.e., whether their efficiency is the best
possible [5].
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