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Abstract
Dialogue systems for healthcare have faced slower progress when compared to traditional conversational
domains. This delay can be blamed on healthcare constraints that require these systems to be interpretable
and avoid risks to their target users. In this work, we discuss our approach for automating the generation
of the dialogue manager, the component in charge of tracking the dialogue state and deciding the agent’s
next move. By integrating automated planning and a conversational ontology, we enable the generation
(and update) of dialogue policies that address healthcare needs. Here, we put our emphasis on the aspects
that demonstrate the benefit of dynamically planning such policies. While a study with experts shows
their appreciation for a resulting agent, a synthetic evaluation reveals the scalability of the approach for
real-sized healthcare dialogues and its suitability for real-time plan generation.
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1. Introduction

A dialogue manager is the component of a goal-oriented dialogue system that is in charge of
(i) tracking the current state of the dialogue and (ii) deciding the next action to be taken by
the agent [1]. Within the healthcare domain, this decision is not trivial since, among other
health-related needs, a wrong choice might lead the agent to waste interactions and delay the
detection of possible emergencies. In fact, dialogue systems that address healthcare are required
not only to be fast in their reasoning but also to be interpretable. Interpretability is vital not
only to avoid risks to the target users of the system, but also to gain their trust [2]. As such,
it is common for these systems to still rely on a hand-crafted dialogue manager, enabling the
dialogue author to maintain control of the policy. As a consequence, health-related dialogue
systems are limited and lag behind traditional conversational domains [3].

While techniques such as reinforcement learning can be highly efficient at learning policies
from training data, they lead to a loss of some of the control over the outcome of the dialogue [2].
Automated planning is therefore a good alternative for managing predictable dialogue policies.
Although planning is still overlooked when it comes to dialogue management, it has been
reported as a powerful technique, capable of handling efficient policies [1]. Given the domain-
knowledge specification, planning can automate the generation of huge policies that would
be prone to errors or even unfeasible for a human actor to generate. However, specifying the
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components of the dialogue as a planning problem is a challenging task. Knowledge of dialogue
modeling and automated planning is required. As the latter is uncommon among dialogue
authors, it limits the adoption of plan-based approaches. Hence, to build efficient policies, the
integration of AI planning with further mechanisms to formalize the knowledge of a specific
domain is expected to bridge this gap.

This work presents an approach that integrates AI planning and a conversational ontology
for the automated generation (and update) of dialogue managers for the health domain. The
focus of this paper is given mainly to the plan-based aspects of the approach since we aim
at demonstrating the feasibility of employing planning for real-world (and real-sized) health
dialogues that require fast responses. In this approach, ontology has as its main roles aiding (i)
the specification of the planning problem and (ii) the management of dialogue interactions. The
proposed approach covers information-seeking dialogues [4], a type of dialogue that focuses
on retrieving information with the purpose of revealing a position (classification). However, it
is important to note that the layers that interact with the end-user, i.e. the natural language
understanding (NLU) and generation (NLG) components are out of our scope and we refer the
reader to [5] and [6] for surveys on those topics, respectively. Therefore, when referring to the
information acquisition process, we refer to the dialogue management component, which is in
charge of tracking the dialogue state and selecting the system’s next action.

In this work, action selection is further aided by the agent-based framework introduced
in [7]. The framework identifies the most useful piece of (missing) information to be retrieved
at each step of the dialogue interaction. Here, the contribution of the framework is twofold:
(i) it supports the agent in the action selection task by combining components that allow the
complex reasoning on health-related factors (e.g. class’ priority, slot’s weight, co-occurrences)
and (ii) it provides a strategy for classification, i.e. it identifies when the information retrieved is
enough to output a conclusion, according to domain-specific guidelines. These two tasks deploy
some of the planning actions specified in this work and they are exploited by the dialogue agent
at execution time.

The remainder of this paper is organized as follows: the next section discusses related
work that addresses ontologies and planning for dialogue management. Next, we summarize
Convology, the ontology exploited in our dialogue manager. The following section details our
approach, by keeping the focus on its plan-based aspects. Additional details on the handling
of state tracking, mixed-initiative, and replanning are then provided. Next, we describe an
early-stage user study and a synthetic evaluation. Finally, the paper is concluded, highlighting
future contributions.

2. Related Work

In [3], a review of conversational agents for healthcare is presented. The authors reveal the slow
progress of such systems. Recent literature on plan-based dialogue management was surveyed
in [1]. In this survey, the authors identify the main contributions as well as open challenges to
the use of planning as a dialogue manager. Next, we highlight a few works that approximate
our contribution.

By also exploiting fully observable non-deterministic (FOND) planning, the work of [8]



tackled the model acquisition problem concerning plan-based dialogues. By using an interface
for declarative dialogue design, dialogue authors are in control of the behavior of the agent, being
able to edit it as desired. However, this approach revealed significant confusion among non-
experienced dialogue authors. Therefore, it was later extended in [9] to integrate explainable
AI planning techniques with the aim of improving explainability during the model acquisition
process. We simplify the model acquisition process by mapping the knowledge within the
conversational ontology into the planning specification.

In [10], the authors rely on a domain ontology to provide information on the topic of the
dialogue. While a task manager specifies a list of domain-specific tasks, a planner determines
the execution ordering of these tasks. Lee et al. [11] also rely on a domain ontology for the
generation of a dialog support system. However, this ontology is used by the planner to learn
which is the goal state of a detected situation and how the components modeled in the ontology
affect the environment so an appropriate plan can be generated to change this situation.

The work of Behnke et al. [12] integrates the user through a dialogue on a plan generation
for a companion system. By relying on an ontology as a common knowledge source, separated
models are automatically generated (and also extended) for the plan and the dialogue. In this
process, ontology and planning aspects are translated through a mapping defined by the authors.
A similar strategy is adopted by [13], which also addresses companion systems. This work
exploits a conceptual model to provide domain-specific knowledge and a planning model to
address procedural knowledge. The planning model is automatically generated by exploiting
the most generic concepts within the ontology.

The ontologies used in these works represent the knowledge of the domain of the dialogue,
but they do not formalize or represent the dialogue interactions themselves. In these works,
dialogue interactions have been modeled and handled by additional components. An exception
is the work of Bickmore et al. [14], which automates the generation of dialogue systems that
focus on promoting health behavior change. In addition to domain knowledge on behavioral
medicine, the ontology includes the description of a few components of the dialogue (e.g.
DialogueAction), and a task model exploits the knowledge from the ontology to describe what
steps should be taken by the system to achieve a goal. Although the authors have addressed
reusability within their model, the focus of this approach is very restricted to the behavioral
change domain. Our work, instead, combines an ontology for representing the conversational
domain with planning techniques to support the automated generation of dialogue managers
for different healthcare-wise domains.

3. The Conversational Ontology

Our work relies on Convology1, a top-level ontology that models the goal-oriented conversa-
tional scenario (Figure 1). Its aim is twofold: (i) to semantically model and describe the concepts
of the dialogue and (ii) to aid the understanding and management of the entire dialogue work-
flow. Convology can aid both the development of conversational agents and real-time dialogue
interactions between a user and an agent. An application of Convology addressing an early
version of our approach was described in [15].

1http://w3id.org/convology



Figure 1: Overview of Convology.

The terminological part or TBox of the ontology addresses concepts that are common to any
goal-oriented dialogue. Next, we briefly list the concepts that are most interesting for this work.

The concept Dialog represents the multi-turn interaction and connects Subdialog instances.
These instances represent smaller interactions that are identified according to a DialogType.
This work focuses on InformationSeeking dialogues, as previously mentioned. Event describes a
single event that can be performed by an Actor (i.e. User or Agent) during a conversation, i.e.
every action performed by either the Agent or the User is instantiated as an Event.

Within the concept ConversationItem, that identifies relevant knowledge involved in each
interaction, we have: (i) Slot, representing pieces of information to be filled during the session
(e.g. symptom_x); (ii) RelevantInformation, representing the value given to a Slot (e.g. YesValue,
NoValue); (iii) DialogAction, representing actions performed by the Agent, i.e. the next mes-
sage sent to a User (e.g. request_symptom_x). This class subsumes the concepts: Feedback,
ClosedQuestion, and OpenQuestion, which represent the type of actions that can be addressed
by the Agent; (iv) Intent, representing a piece of relevant information that is recognized by the
NLU module from a natural language input provided by a User (e.g. inform_symptom_x).

The Status concept subsumes (i) the UserStatus concept, whose instances represent the
possible states of a User that can be discovered by means of a conversation (i.e. the classification
achieved) and (ii) the DialogStatus concept, whose instances provide a snapshot of a specific
Subdialog at a certain time. The Status concept can be associated with the Dialog instance to
indicate the possible dialogue goals.

The assertional part of the ontology (ABox) is reserved for the domain-specific knowledge
that must be provided when the ontology is integrated into a conversational application. While
some instances must be provided by the dialogue author (e.g. Slot, UserStatus), others can be
generated as a result of the dialogue interactions, depending on the domain requirements (e.g.
DialogStatus).

4. An Ontology and Plan-Based Dialogue Manager

Our approach (Figure 2) for the automated generation (and update) of dialogue managers is
composed of (i) a model acquisition component, (ii) a planning module, and (iii) an execution
module. As the focus of this paper is on the plan-related aspects of the approach (i.e. the
planning module), we only briefly summarize the role of the other two modules. The integration
with the ontology is discussed accordingly.



Figure 2: Overall picture of the modules composing the plan and ontology-based dialogue manager.

4.1. Model Acquisition Module

The first unit is dedicated to the acquisition of knowledge on the topic of the dialogue system.
At this stage, all domain-specific knowledge that is relevant to the dialogue session must be
populated in the ontology ABox. Instances for concepts such as Subdialog, UserStatus, and
Slot must be provided by a dialogue author. For example, for subdialog_1 the slots slot1, slot2,
and slot3 must be acquired to understand whether class1 can be classified. From Slot instances,
additional instances are inferred such as Intent instances, that represent information that can
be interpreted from user actions (e.g. inform_slot1) and DialogAction instances, representing
system actions (e.g. request_slot1).

4.2. Planning Module

The role of the planning module is to specify the components of the dialogue in a way that
it can be compiled by a state-of-the-art planner, with the aim of automatically generating
the dialogue policy (i.e. plan) to be integrated into the dialogue system. In this work, the
planning specification, which is given in the Planning Domain Definition Language (PDDL), is
derived from the knowledge within the conversational ontology. This specification relies on
correspondences that can be observed among both techniques, for example, DialogAction in the
ontology can be represented as planning actions. This way, to keep an interface between both, the
specification of the planning problem replicates the vocabulary used in the ontology. However,
while some aspects within the planning specification are mapped directly from concepts or
instances in the ontology, others correspond to modeling decisions that are necessary to obtain
the expected plan (e.g. handling deadends). Besides obtaining a structured policy that selects
the most appropriate actions towards the dialogue goal, the mapping to PDDL will easily reflect



in the plan any possible update made in the domain-specific knowledge represented in the
ontology ABox (e.g. add or delete slots).

FOND planning is the type adopted in this work. In FOND problems, operators may have a
set of different possible effects, indicating that one of these effects will be true at execution time.
Non-determinism is suitable to the kind of problem addressed in this work since, although a set
of possibilities exists, it is not possible to know the exact outcome (effects) of most dialogue
actions before their execution. By representing dialogue actions as non-deterministic, the plan
can reflect the various paths that the dialogue might take. Meanwhile, as state tracking in
this work does not require high complexity (if compared to a spoken dialogue system), full
observability is obtained by adopting a threshold to the confidence score that is attached to the
Intents received from the NLU output. Finally, within FOND planning, we address strong-cyclic
planning (SCP) [16]. Through this kind of solution, it is possible to guarantee that a path to reach
the dialogue goal (task completion) exists, repeating an action when necessary information is
still missing (e.g. clarification questions can be made).

4.2.1. Planning Domain Specification

In this work, planning actions represent dialogue actions and they are classified into two
types: DIALOGUE and SERVICE, which were borrowed from [17]. Actions of type DIALOGUE
originated from DialogAction instances in the ontology. These actions result in interactions with
the end-user, such as questions or feedback that are converted to a natural language output.
SERVICE actions, on the other hand, are specified to manage aspects of the dialogue session
that occur in the background (e.g. setting a constraint to avoid a dead-end).

In order to address the needs of the health domain in the information retrieval process,
the specification of the main actions within the planning domain integrates the usefulness
framework previously described. Since the usefulness value of a slot varies by state according
to the information retrieved, the integration of this framework into the planning domain relies
on abstraction. That is, the planning domain includes abstract actions that instruct the agent to
search for and request the most useful slot, anticipating the paths for the different alternatives.
Since goal achievement also depends on the information retrieved, the corresponding actions
(named report) also rely on abstraction. This way, it is only during execution time that the
agent deploys the usefulness framework and determines the most useful slot or whether a
classification was reached. This strategy makes it possible to separate domain knowledge
reasoning from dialogue management, supporting the flexibility and portability of the approach.

In the remainder of this section, we focus on the description of these main actions 2.

search_most_useful_slot A SERVICE action named search_most_useful_slot is specified to
support the information retrieval process. This action states that a search for the most useful slot
is the next step to be conducted by the agent. The precondition for this action is the predicate
search_most_useful. This action has a non-deterministic effect, which implies that any of the
listed slots could be the most useful one. However, the actual value can be determined only
upon action execution. A simplified example of this action, including three slots, is given below:

2Full samples of planning specifications are available at
https://osf.io/t48qm/?view_only=98403c3d7ce34f71bacdf6d180764c96



:action search_most_useful_slot
:precondition search_most_useful
:effect (oneof

(is_most_useful slot1)
(is_most_useful slot2)
(is_most_useful slot3) )

request All ClosedQuestion (subconcepts of DialogAction) instances related to a Subdialog
instance are translated to a request action in the planning domain. Request actions are of type
DIALOGUE as they will be translated to a question that is made to the end-user. Request actions
specify two main preconditions: (i) the associated slot is empty and (ii) the slot is the most
useful. The effect of a request action, on the other hand, is non-deterministic since its execution
may result in (i) the identification that a value was received for the slot (i.e. it is no longer
empty) and the possible classifications3 that might have been achieved as a consequence of
filling this information; or (ii) a fallback_intent is reported, meaning that the agent did not
understand the user’s answer. A simplified example of a request action is given below:

:action request_slot1
:precondition (and (is_most_useful slot1) (not(has_value slot1)))
:effect (oneof

(and (has_value slot1) (possible_classification_us class1))
(fallback_intent) )

report All UserStatus instances related to a Subdialog instance are translated to a report
action in the planning domain. These actions are used for the classification of the UserStatus
(goal achievement), after retrieving the expected information. Like the actions for information
retrieval (i.e. request), the specification of report actions is based on the usefulness framework.
Therefore, instead of a predefined set of Slot instances that classify a given UserStatus, different
combinations of slot values might lead to a classification. To avoid specifying every possible
combination as preconditions of report actions, the modeling strategy adopted in this work
abstracts this information with the predicate possible_classification_us. This predicate works as
a flag indicating that the agent must check if a classification is achieved for the corresponding
UserStatus. Since every new information received by the agent might lead to a classification,
this flag is raised as an effect of a request action, as previously described. This way, report
actions have a non-deterministic effect and they can be considered a mix of SERVICE and
DIALOGUE actions. The former is given when no classification is reached and, therefore, the
flag search_most_useful enables the continuation of the information retrieval process. The latter
is a consequence of a classification, which should result in output to the end-user.

A simplified example of a classification action for a UserStatus instance (class1) is shown next:

:action report_classification_class1
:precondition (possible_classification_us class1)
:effect (oneof (search_most_useful) (GOAL_ACHIEVED) )

3The precondition for a report action is now satisfied.



4.2.2. Planning Problem Specification

The problem instance, which is based on the domain instance, is also specified according to the
knowledge available in the ontology. This instance defines (i) the initial state, (ii) the goal state,
and (iii) the set of objects of the modeled world.

The initial state specifies the information currently available; i.e. the information regarding
the Slot instances. The goal state is abstracted with the predicate GOAL_ACHIEVED. Since
different combinations of parameters might reach the goal, it is enough to specify this predicate
as an effect of actions that lead to the goal. In some cases, when goal-achievement is a possibility
but it is not guaranteed upon action execution, like report actions, this predicate is associated
with a non-deterministic effect.

Finally, the finite list of objects represents the pieces of information that are available within
the problem. This list is obtained from the instances of three classes that are mapped to planning
types in the planning domain: RelevantInformation, Slot, and UserStatus. Consequently, each
object is associated with its type. If replanning is required at some point in the dialogue, it is
enough to update the initial state with updated values for these objects.

4.2.3. Plan Generator

The resulting PDDL specifications are compiled by an automated planner. An efficient state-of-
the-art planner for generating strong-cyclic FOND plans is the Planner for Relevant Policies
(PRP)4 [18]. In this work, PRP is exploited to generate plans that correspond to the dialogue
policy to be integrated into the dialogue system.

Figure 3 illustrates a short graph of a resulting plan for the information retrieval process of a
single slot. While each node represents a dialogue state, the edges represent actions applied to
that state5. Note that the policy starts by searching for the most useful slot and, next, a request
action follows. The request action leads either to (i) a fallback question that leads to the goal
state, aiming to force a replanning operation, or (ii) to a state where the requested information
was acquired. When the information is acquired, the policy checks for a classification (report
action). At this point, the dialogue goal might be achieved. As this is a short example and no
further information can be acquired, the other outcome of the report action is to report a default
classification, i.e. the classification achieved when no other is possible. However, in a domain
with further slots, the next action would correspond to a new search for the most useful slot.
Note that this resulting policy can be analyzed by the dialogue author, who is in charge of
judging whether this is the agent’s expected behavior.

4.3. Execution Module

The execution module is part of the agent’s online reasoning process. Its role is to interpret the
policy generated in the previous stage, using it to manage the ongoing dialogue session. That is,
based on the planned policy, the executor identifies the new dialogue state and learns which
action should be executed next. The execution module integrates the natural language layers

4https://github.com/QuMuLab/planner-for-relevant-policies
5Note that in FOND planning a single action might result in different states (e.g. request_slot1).



Figure 3: Sample of resulting policy to retrieve one slot.

that are responsible for interacting with the end-user by (i) interpreting the user’s input and (ii)
translating the system’s response to a human-understandable output. This module integrates (i)
Convology as a knowledge base for the execution algorithm and (ii) the usefulness framework
to reason on the most useful information to be asked and support classification.

5. Further Aspects on Dialogue Management

In this work, the resulting plan corresponds to the dialogue policy that dictates the behavior of
the dialogue agent. Every action executed by the agent must be informed by the dialogue policy,
that is, it must be planned in advance. At the beginning of each sub-dialogue, an initial dialogue
policy is generated by the planner according to the information available in the ontology at that
stage. This policy is dynamically replanned during the dialogue session to adapt to updates in
the available knowledge. Both replanning operations and sub-dialogue switches are transparent
to the end user. The remainder of this section discusses how planning contributes to some
additional aspects regarding the management of a dialogue.

Dialogue State Tracking: non-deterministic actions foresee a set of different states that
can be reached after their execution. Therefore, the FOND plan anticipates all states that are
possible within a sub-dialogue. However, it is only during dialogue execution that it is possible
to determine what changed in the real world as a consequence of the execution of the last
planned action. This change is what takes the dialogue to a new state. The definition of the
possible effects of an action supports state recognition since the agent has a direction on which
variables might change upon execution. For example, to recognize the new state after executing
the planning action named ’search_most_useful_slot’, the agent can iterate through the action
possible outcomes and query the corresponding instances in the ontology. Consequently, the
agent identifies which Slot was set as the most useful at the current stage. Given this information,
the planned action for this state can be executed. Through reasoning, the dialogue history
available in the ontology can also support the interpretation of the user input and consequent
state recognition. However, this aspect will be investigated in future work.



Mixed-Initiative Dialogues: to keep the dialogue system flexible, our approach supports
mixed-initiative, a research problem frequently discussed by the dialogue community [19]. The
planned dialogue keeps predominantly a system-initiated flow, where the dialogue actions
executed by the agent anticipate which information should be included in the intents that are
expected in the next user input. However, the user may input some non-expected information at
any moment. Addressing user-initiated actions adds extra complexity to the dialogue manager
since it is difficult to predict what will be the user input. In fact, considering that the same sort
of alternatives may appear in several places, it is not reasonable to anticipate all possible intents
that may occur in every dialogue turn. Although this approach deals with non-deterministic
actions, adopting such a strategy would lead to a scalability problem in the planning solution.
This way, we have adopted replanning as the main strategy to handle mixed-initiative.

Replanning: replanning operations are necessary to adjust the policy to unexpected states.
An example is when instead of replying to a previous system’s question, the user mentions
unrelated information. Before replanning, the initial state must be updated in the planning
problem to match the current dialogue state. Only then, is the automated planner called to
generate an updated policy. The executor then uses this policy to give continuity to the ongoing
dialogue session. Depending on what triggered the replanning operation, corrective actions must
be included in the updated plan. Corrective actions are additional actions that are included to fix
what went wrong in the previous plan. Since predicting everything that can go wrong during the
session might lead to scalability problems, these actions are an alternative that makes it possible
to continue the dialogue flow upon errors. This work includes two corrective actions: (i) the
feedback_unexpected_intent action acknowledges that the system has processed the unexpected
information before continuing the information retrieval, and the (ii) enable_fallback_question
action (Figure 3) enables the agent to provide a Feedback on what went wrong and invite the
user to try to repeat the last information in a different way.

6. Evaluation

This section first reports on a synthetic evaluation of the approach’s scalability, as well as its
applicability in real-time scenarios, given replanning operations. These aspects were evaluated
since real-time efficiency is crucial in a health-wise dialogue that needs to be responsive to
address emergencies. Next, we briefly describe a user study involving health experts.

6.1. Synthetic Evaluation

Since the synthetic evaluation covers the dialogue manager only, integration with the natural
language components was not required for this study. To conduct this evaluation, the ontology
was first populated with data related to the original asthma scenario, which is based on a medical
guideline. This scenario includes a set of 10 slots (symptoms) and 4 possible classification statuses.
This scenario addresses realistic-sized health domains. However, to evaluate the scalability of
the planning problem to different specification sizes, the scenario was expanded with synthetic
data, implementing different numbers of slots. The number of classification alternatives, instead,
was kept always the same. PRP planner was used to generating the policies. For the different



Table 1
Time required to generate policies according to the number of slots, specification and solution sizes

Number of slots Specification size Solution size
Time to generate

(secs)
10 35 51214 0.38
12 39 238340 1.92
13 42 509695 4.26
14 - - -

problem sizes, we analyzed the time required to generate a new policy, which is a sum of the
time taken to translate the ontology to PDDL and the search time reported by the planner. The
scalability of the solution size (in terms of nodes and edges) with respect to the specification
size (in terms of variables and actions) has also been analyzed. As can be seen in Table 1, the
solution size grew exponentially in the specification size. This aspect is common when handling
uncertainty within AI planning [16]. To our problem, this solution reinforces the contribution
of using an automated technique to generate such complex policies, which are far beyond what
could be manually done. Moreover, we can observe its benefit when it is necessary to update
any domain variable since small changes affect large portions of the final solution.

Our results show the feasibility of computing plans with specification sizes up to 39, which,
in our example, corresponded to 12 slots and 4 classification groups that resulted in 23 actions.
The next specification size, i.e. size 42 (13 slots and 4 classes), is already beyond the time
range accepted by experts (i.e. 2 seconds). Meanwhile, the planner fails to compile problems
including 14 slots or more. These results highlight the contribution of automated strategies to
generate huge dialogue policies. Besides being costly, such a specification, if manually built,
is prone to errors. However, we recognize that some efficiency is compromised with the aim
of delivering a reusable approach. Although larger policies could be implemented through
sub-dialogues, optimization is one of our interests for future work. An alternative to deal with
the limitation on the specification size is through the implementation of sub-dialogues. That is,
huge scenarios that present a huge number of slots, for example, can be divided into smaller
problems addressed by different instances of an information-seeking Subdialog in the ontology.
This way, the planner will address them separately, while covering the whole domain. Moreover,
the specification of an open initial question (e.g. "How are you feeling?"), that can be represented
as an OpenQuestion in the ontology, opens up the possibility that the end-user will provide
some relevant information at this early step. This strategy enables the reduction of the search
space for the replanning operation that follows since the information received provides some
direction on the possible classification.

6.2. Expert’s Evaluation

A dialogue manager covering the original asthma scenario was deployed into an agent that
integrated the additional natural language components. The agent was capable of interacting
with the end-user to retrieve asthma symptoms with the purpose of identifying what type of
crisis the patient might be experiencing. A recommendation was given accordingly (Figure 4).
For this agent, an early evaluation including four physicians was conducted. Three physicians



Figure 4: Sample of a Human-Machine Conversation in the Asthma Domain.

had expertise in allergy and immunology, and one in pediatric pulmonology. The experts were
invited to test the agent, playing the role of an end-user (i.e. asthma patient). After a few
interactions, they were invited to fill out the System Usability Scale (SUS) [20] questionnaire.
The SUS score for the agent was 68.75. A score of 68% has been used in the literature as the
usability threshold for interactive systems. This way, the agent still can be considered above
average, although there is lots of room for improvement. A more extensive user evaluation
including the target users of the system is expected for future work.

7. Conclusion

This work presented our approach for the dynamic generation of dialogue managers for the
health domain. We introduced the three units that compose this approach as well as the
additional resources that support dialogue interactions, namely a conversational ontology and
an agent-based framework for action selection within health scenarios. However, our focus was
directed to the plan-based aspects of the approach; by modeling the dialogue as a FOND planning
problem, our approach supports state tracking and delivers mixed-initiated and predictable
policies. The feasibility of deploying a resulting dialogue manager into a real-world problem
was tested for different problem sizes and an early user study showed experts’ appreciation
for a resulting agent. Our results show efficiency in automating the generation of policies for
realistic-sized health dialogues, i.e. that address a medical guideline. Since in the dialogue
community, there is no consensus on what comprises a good dialogue system, in future work
we intend to complement the evaluation here described with extensive user studies. In these
studies, we assess (i) the quality of the dialogue system and its acceptance by our target users
as well as (ii) the reusability of the approach for different domains.
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