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Abstract
Rolling stock maintenance is essential to ensure train reliability. Adapting automation to optimise the
efficiency of train maintenance procedures is crucial to maintain a smooth operation of rail transport.
Information related to the scheduling and planning requirements for train maintenance procedures,
however, adhere to task-specific schemas or worse, exists in unstructured formats, which hinders
computerised analysis and impedes interoperability. To fill this gap, a knowledge acquisition pipeline is
introduced to semantically organise textual information found in semi-structuredmaintenance instruction
manuals. XML transformations, pattern matching and elastic search over industrial vocabularies are
utilised to automatically populate a domain-specific ontology and construct a knowledge graph that
describes maintenance tasks. Through demonstration, we exemplify how the resulting knowledge source
can be accessed and used in Short-Term Scheduling operations.
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1. Introduction

With the use of rail transport on the increase, more trains are operating on the network, and
train reliability becomes increasingly important to avoid disrupting the service. Additionally,
a large proportion of rolling stock life cycle costs is related to the preventive and corrective
maintenance processes undertaken in the train maintenance depot (henceforth referred to as
depot). Hence there is a need to optimise or at least improve the efficiency of the maintenance
processes. Given the abundance of data, it is possible to discover ways to improve maintenance
efficiency, cost management or to forecast demands to avoid negative events. Most of the
information systems involved, however, are built independently using task-specific schemas,
resulting in poor interoperability between component systems [1]. Consequently, integration
becomes a labour-intensive work of aligning different databases and changing source code.
Furthermore, a great deal of information exists in unstructured formats, such as text, impeding
computerised analysis that relies on the content of this textual information. In particular,
where these information systems feature scheduling or planning operations, as is the case in
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train maintenance, automating these operations requires detailed ontological knowledge of
often company-specific maintenance instructions. Encoding and engineering the knowledge
necessary by hand (such as Planning Domain Definition Language - PDDL), in order to automate
and optimise such complex activities, would be extremely inefficient, if at all feasible.

The work reported here has been carried out in the context of a £1.8 million project (referred
to as the SRS Project below) to establish a “Smart Rolling Stock Maintenance Research Facility”
in the Institute of Railway Research, University of Huddersfield 1. The aim is to carry out
research into the improvement of the efficiency and effectiveness of rolling stock maintenance
to meet the challenges of the near future of rail. This has led to our development of a rich
digital infrastructure called a Virtual Depot which attempts to integrate data and maintenance
processes such as planning and scheduling into a common framework, based on ontological
engineering. Given the complexity and variability of the underpinning knowledge, our project
relies in part on the success of employing knowledge acquisition tools to create structures such
as knowledge graphs, which represent and connect up heterogeneous data.

The generic question that this paper seeks to answer is as follows: to construct a rich digital
infrastructure (such as a Virtual Depot) for an industrial process (here train maintenance) which
requires the ability to reason about activities in this process, such as performing planning and
scheduling, requires a detailed and complex set of ontologies. While creating or acquiring generic
ontologies that capture the essence of such industrial processes is feasible, the peculiar details of
company-created processes and procedures may amount to huge amounts of information. For
example, in one train company with which we are partnering, they produce circa 250 vehicle
maintenance instruction manuals (VMIs) for their products. How is it possible to overcome this
knowledge acquisition bottleneck, and harvest the specific knowledge required to provide rich
knowledge structures that can be used in scheduling tasks?

This paper describes the methodology to construct a Knowledge Graph2 about railway
maintenance tasks (henceforth RailMain-KG). Utilising the Resource Description Framework
(RDF3), the RailMain-KG captures and organises information about entities, attributes and
relations within the domain of railway vehicle maintenance enabling the automated scheduling
of maintenance activities. Guided by a domain-specific ontology and industrial vocabularies
introduced by rolling stock maintenance resource management systems, the authors employ
information extraction on semi-structured data sources to encode detailed knowledge about
maintenance tasks. The resulting Knowledge Graph captures information about maintenance
tasks, parts of the vehicle they are applied to, and their requirements in terms of resources. The
authors illustrated the knowledge acquisition process by applying it to a large set of VMIs for a
particular train manufacturer, and show how the resulting knowledge can be accessed for and
used in Short-Term Scheduling operations. Finally, the extremely important issue of validating
the resultant knowledge is discussed.

1This work is funded by the European Regional Development Fund (ERDF)
2https://www.ibm.com/topics/knowledge-graph
3https://www.w3.org/TR/rdf-concepts/



2. Related Work

The benefits of fusing planning and description logic have long been recognised by the commu-
nity of AI planning and scheduling [2]. A common drive behind the applications of this research
area is to draw the benefits of ontological modelling and knowledge sharing. In particular,
domain knowledge is represented in a formal language, such as an ontology, which provides an
intuitive representation of information that is intrinsically interoperable. This knowledge can
then be filtered, packed and translated into planning or scheduling-friendly formulations.

In the domain of business, researchers utilise ontologies to inform workflow generation [3],
by encoding planning functions, actions and goals into RDF patterns that are converted into
domain PDDL models using RDF transformations. In the domain of service composition, [4]
uses ontologies to implement a graphplan-like planner. In the area of Intelligent Transportation
Systems, domain knowledge is formalised in order to automate problem-solving and reasoning
procedures [5], thus facilitating reusability and transferability of knowledge. In space operations,
planning operations are fused with ontological models to allow subject experts to encode
domain knowledge; this facilitates automatic creation of PDDL components, which overcomes
the barrier of PDDL expertise Bonasso et al.. In an industrial setting, ontologies are used to
create fundamental knowledge for Industry 4.0 applications [7] enabling automated creation of
domain models and explanations for the generated sequence of actions. Other literature relies
on entity and relation extraction from text using neural-based natural language processing (NLP
and aims to construct knowledge graphs to be used in planning or scheduling maintenance
workflow within various domains. Indicatively, Li et al. converts manuals about flight control
maintenance into knowledge graphs to automate the planning of maintenance procedures
[8]. Another work semantically organises multiple sources of information about industrial
equipment by populating a domain-specific ontology to informmaintenance solutions [9]; in the
domain of nuclear energy production, [10] structures information about equipment failure and
troubleshooting into a knowledge graph in order to assist the planning of overhaul inspection
and fault diagnosis[10].

To the best of our knowledge, there has not been any research on constructing knowledge
graphs in the domain of rolling stock maintenance. The work presented in [11] focuses on
rolling stock maintenance failure, however not enough technical details are provided to allow a
fair comparison. To fill this gap, we introduce a knowledge acquisition pipeline to encode infor-
mation found in VMIs resulting into a knowledge graph, which can further inform scheduling
procedures. Note that many relevant works utilise deep learning approaches over annotated
corpora to identify key concepts from the text and built knowledge graphs. Considering the
diverse structure of VMIs and the scarcity of annotated text in the domain of train maintenance,
this work focuses on solutions that do not require labelled data.

3. RailMain-KG Schema

This work relies on a generic ontology to capture the main domain concepts, roles and relations
thereof. The knowledge acquisition pipeline is build on RailMaiin-KG schema, that is, an
extended subset of the Depot Ontology [1], which is an ontology capturing the knowledge



regarding train maintenance, ranging from physical entities such as vehicles and resources to
information objects like activities and tasks. RailMain-KG schema is built on the key notions
described below that form the classes of the graph and they are interlinked as shown in Figure 1

Figure 1: RailMain-KG Schema (Subset of Depot Ontology)

• Vehicle: a specific carriage within a train that is subjected to maintenance operations.
• Maintenance Task: an information object consisting of activities applied on components
of vehicles, in order to ensure their technical integrity.

• Activity type: categorisation of maintenance tasks that specify their effect effects on a
component, such as inspection, replacement, and cleaning.

• Component: systems on a vehicle that deliver a specific function. They can be single
elements (such as wheels) or permanently grouped components that form sub-systems
and act as single units (i.e., braking system).

• Requirement: information objects that express the necessary elements for the successful
execution of a maintenance task. They are expressed as pairs of resources coupled with
quantity restrictions.

• Maintenance Resource: assets in maintenance depots used to carry out maintenance
tasks. They are divided into tools and materials.

• Material: resources that are consumed duringmaintenance tasks, for instance, detergents,
engine oil as well as machine elements such as screws.

• Tool: reusable physical item used to physically manipulate or measure a component,
trains system or sub-systems as part of a maintenance task, for example hand-tools,
machinery or gauging equipment.

• Quantity: a quality that specifies the amount/number of resources needed for a task.
• Priority: indication of how critical a maintenance task is; it implies the expert-based
estimated risk posed by a component with compromised integrity, which is the result of
absent maintenance.

• Safety warning: messages describing potential harmful incidents that might occur
during a maintenance task.

• Maintenance Instructions: a written description of a maintenance task including how
to use the necessary tools, materials and replacement components.



4. Building the RaiMain-KG

This section describes the steps to populate the RailMain-KG Schema with detailed knowledge
resulting into a knowledge graph (referred as RailMain-KG) about train maintenance procedures.
Using the schema as a guide, the graph is formed through knowledge extraction over the train
manufacturer’s set of rolling stock maintenance instruction manuals, formatted in HTML for
online viewing. This procedure converts semi-structured text-based information into a formal
representation that adheres to the principles of the Semantic Web and it is organised as a
pipeline (Figure 2) consisting of three sub-processes, data acquisition, information extraction
and encoding of knowledge as RDF triples.

4.1. Data Acquisition

RailMain-KG is built on rolling stock documentation, in particular vehicle maintenance instruc-
tions (known as VMIs). These documents are provided by railway industry manufacturers, and
capture guidelines that ensure the mechanical integrity of various components equipped on
a vehicle. Although the template of VMIs depends on the manufacturer, their content covers
the identification of the task being documented, its essential requirements and a step-by-step
procedure.

Figure 2: Overview of the knowledge acquisition pipeline

For RailMain-KG, we use VMIs provided by a well-established railway manufacturer, who for
the sake of confidentiality must remain anonymous. Each document is formatted as a HyperText
Markup Language (HTML) page and provides a thorough description over the guidelines of a
single maintenance task applied on a particular component, sub-assembly or vehicle system.
The content is encoded as text framed in a semi-structured fashion via the hierarchy introduced
by the HTML building blocks and their class attributes. Context-wise, the structure of the VMI
documents includes the following sections:

General information is encapsulated in the header of a VMI and includes a title, importance
and applicability. Title is formatted as raw text and covers the name of the task and the



component it is applied on. Importance is represented as a unique label expressing the criticality
of the task according to safety (i.e., normal, critical or high risk), whereas applicability is
expressed as comma-separated terms describing the types of vehicle for which the task in
question is eligible.
Resource requirements are summarised in two sections, which cover the materials and

tools that are essential for the task being described. Each section is provided in tabular format,
where each row represents a resource and columns cover its textual description and expected
quantity.
Procedure is described as an enumerated list of instructions; occasionally supplementary

material may be provided that encompasses safety warnings and other miscellaneous notes.
Although there is a clear separation between the aforementioned sections, their content is in

the form of free text, which hinders consistency. Components and the name of the task might
appear in any order within the title. Furthermore, cell values within tabular structures are not
consistent. For instance, there are references to a single entity using a wide range of spelling
variations or interchanging between general descriptions and product brands (such as lubricant
spray and WD-40). Inconsistent text structure and terminology raises some serious obstacles in
data integration, which we address by employing text mining methods and entity alignment
techniques based on deep learning models.

4.2. Information Extraction

The first step in the creation pipeline is to parse a set of VMIs and extract relevant information
about tasks that fit the purpose of RailMain-KG. This version of the graph is based on 246 unique
VMIs that cover a wide range of tasks ranging from simple inspections and measurements to
more advanced activities such as repair or replacement of mechanical parts. During information
extraction, each VMI is converted into groups of labelled entities that describe the thematic
sections covered within the document. First, we employ several pattern-matching templates
implemented in Extensible Stylesheet Language Transformations (XSLT) to organise the content
of each VMI into 7 groups that reflect the RailMain-KG schema. These include title, priority,
vehicle eligibility, required resources (grouped as materials and tools), safety warnings and
procedure. Then, several natural language processing steps transform the textual elements of
each group into distinct typed entities that reflect the key notions mentioned in Section 3.

Title of VMIs describes the applicability of a task, for instance, “Engine - Coolant Filter
Change”. Regular expressions and phrase matchers are utilised to extract a) the activity type of
the task, such as change, b) the component, where the task has been applied on (e.g., engine)
and c) the actual name of the task.

Information about eligible vehicles, safety warnings and procedures is retrieved through
regular expressions that break down comma or new line - separated and enumerated phrases.
This step ensures that composite information is expanded into its constituent elements, which
in turn are linked to the entities of the RailMain-KG schema. For instance, safety warnings
and vehicle types are considered instances of namesake entities. In similar lines, the textual
description of the procedure is transformed into a series of indivisible entities that stand for
maintenance steps. Information about the criticality of the maintenance task is a self-contained
label (i.e., ‘mission critical’), which is linked to the entity of significance.



Information extraction is finalised by recognising the essential resources of VMIs along with
their specified quantity. Although the quantity of a resource is mined directly from the text,
the diverse use of industrial terminology within the sections of tools, materials and protective
equipment renders the extraction of the actual resources as an entity-linking challenge. To
address this, we convert the tabular structure that summarises the prerequisites of a maintenance
task into tuples of resource references and quantities. In order to associate resources to the
corresponding entities within RailMain-KG schema, each textual reference is linked to a unique
entity drawn from a pool of formal industrial concepts. This collection of terms is suggested by
industrial vocabularies, which are constructs primarily used to keep records of the available
stock (such as spare parts) within a railway depot. They are formatted as comprehensive
catalogues of industrial terms that cover a wide variety of elements that are already classified
as materials, tools or equipment used in rolling stock maintenance.

Matching textual references of resources to industrial concepts is accomplished via elastic
search over the predefined set of concepts conjured by the industrial vocabularies. This method is
implemented with approximate nearest neighbours search based on hierarchical navigable small
world graphs [12]. In particular, frequency inverse document frequency (tf-idf) on character
3-grams is used to convert industrial terms into vectors. Projecting terms to a non-metric space
enables cosine similarity to be used to retrieve the most relevant industrial concepts given a
sample text and a similarity threshold (empirically set to 80%).

4.3. Creation of RDF Triples

The knowledge acquisition pipeline is concluded with the conversion of the extracted informa-
tion into RDF triples that conform to RailMain-KG schema (Figure 1). Every VMI is an instance
of a maintenance task that is populated with several properties that link to entities relevant
to the thematic sections introduced in Section 4.2. Simple entities or collections of the same
type, such as vehicles, are represented by repeating (as needed) properties. Composite entities
such as resources and procedures are implemented using reification. In this case, the task in
question is connected with an intermediate object that aggregates the individual properties of
the associated entity. For instance, a resource is represented by an object that encapsulates both
its type and required quantity. The creation of the graph and its serialisation is achieved using
RDFLib library4. Figure 3 illustrates the conversion of a task into a graph-like format.

5. Accessing Knowledge in RailMain-KG

During our fieldwork, we have characterised rolling Stock maintenance depots as requiring
several distinct scheduling operations depending on the granularity of scheduling objects
and overall time span. A three-stage (long, short, daily) collection of scheduling processes
seems the most natural structure. Long-term scheduling (horizon is in the order of years) is
invariably automated in Maintenance Depots, where abstract schedules of maintenance contain
due dates of periodic maintenance of train units, and are arranged according to manufacturers’
specifications. In contrast, short-term scheduling processes (horizon is approximately 1-2

4https://github.com/RDFLib/rdflib

https://github.com/RDFLib/rdflib


Figure 3: Graph representation of a task for changing coolant filter in the engine. Note: Data properties
are skipped for the sake of readability.

weeks) appear to be poorly supported by tools, and it is this area where we have focused. This
requires information about the maintenance interventions’ due dates (provided by the long-term
schedule), fleet availability constraints, day restrictions and workforce in addition to specific
resources. Indeed, each maintenance intervention has specific depot resource requirements,
including fixed/mobile depot resources, tools, and materials. Automating short-term scheduling
requires up-to-date information about the availability of the required resources. However, as
of today, the tools and materials required for each maintenance intervention is mainly stored
in VMI documents and technicians’ heads. The construction of the RailMain-KG above is a
major step in the full automation of the scheduling process (a description of the automation of
a short-term scheduling process in this train maintenance domain is given in [13]). This section
describes how scheduling operations and other processes can access the knowledge harvested
in RailMain-KG, through examples. In particular, we demonstrate how, since the results of the
semantic search are generated into a digitized format, they may be accessed and used directly
by scheduling scripts. The results are generated by issuing a SPARQL query against an instance
of RailMain-KG using the GraphDB5 platform and visualised accordingly.
Resource-aware scheduling: A common strategy for resource management that mainte-

nance depots adopt is a recurrent resupply cycle. Spare parts and other materials are being
replenished on the basis of fixed thresholds depending on the available stock. This method
ensures that there is always a surplus of resources regardless of the actual demand. Despite the
effectiveness of this solution, it does not harbour any intelligence, which impedes automation.
For instance, changes in depot policies, such as the introduction of more frequent maintenance
tests or cancelling others may lead to resource inadequacy or excessive stock. Information
within RailMain-KG can be accessed by the short-term scheduling process to account for the
availability of resources in advance, hence skipping tasks when resources are not enough,
prioritising critical tasks based on the available stock, and allowing active management of stock
level to ensure all required maintenance tasks can be carried out on time. Hence, the proposed
approach contributes to the spare parts management and preventive maintenance scheduling
processes: rolling stock maintenance costs have around 27 influential variables [14]; the highest
among the influential costs are 13.8% spare part cost, 11% life cycle cost, 6.4% preventive mainte-
nance costs. Figure 4 depicts a query that aggregates the requirements of a set of maintenance

5https://www.ontotext.com/products/graphdb/

https://www.ontotext.com/products/graphdb/


tasks, commonly denoted as exams. For the sake of simplicity, the exemplified exam contains 7
random tasks; the result is a collective overview of the necessary material complemented with
the stock availability (in-stock quantities are arbitrarily introduced for demonstration purposes).

Figure 4: Aggregation of requirements

Filter Tasks by resources: Due to unforeseen circumstances, a supplier announces a recall
for the last batch of engine oils. This event causes major changes in the current schedule because
it cancels out maintenance tasks that depend on the affected material. Currently, spotting
problematic tasks relies on expertise or requires manual scanning of the instruction manual of
every scheduled task. RailMain-KG automatically addresses this question by retrieving tasks
from a predefined collection, which considers engine oil as a prerequisite. The maintenance
scheduling process may take this information to delay the scheduling of tasks requiring engine
oil until it is available. Figure 5 illustrates a query that retrieves all the maintenance tasks that
are applied on a vehicle’s engine and require engine oil. The result indicates the “Engine - Oil
Level Check” is the only affected task. Reversing the previous query, it is possible to generate
recommendations of alternative tasks which can be used as input for new scheduling procedures
or be used to replace the problematic tasks.

Figure 5: Semantic search: Find all tasks applied on the Engine that use engine oil.

Task Priority: Maintenance supervisors are responsible for determining the importance
of maintenance tasks (discovered during inspections or received as part of the daily reports
containing all the raised issues that require the supervisor’s input) based on their effect on
vehicle parts. For instance, inspecting the integrity of wheels is considered a high-risk task,
which, if skipped, might render the vehicle incapable of operation. Supervisors conform to



the guidelines of the manufacturers and current maintenance authority to inform how critical
some tasks are before they are subjected to scheduling. To this end, RailMain-KG can provide
customised decision support by prioritising maintenance tasks. Figure 6 illustrates a query that
orders and groups a predefined set of tasks based on their estimated risk. Applying additional
filters enables further customisation of the results, such as retrieving critical tasks that are
applied on the air system.

Figure 6: Tasks ordered by the estimated risk.

6. Analysis and Validation of Acquired Knowledge

In this section, we discuss the nature of the knowledge captured in RailMain-KG and how it
may be validated. Through a brief manual validation, we assess the quality of the generated
information during the knowledge acquisition pipeline. Furthermore, we describe the mainte-
nance plans and provide some interesting insights on how the proposed resource can impact
contemporary planning problems in the train maintenance context.

6.1. Size of RailMain-KG

We applied the acquisition procedure to a particular manufacturer during a recent exercise. The
RailMail-KG includes information about 250 maintenance tasks that are classified across 19
unique activity types and covers 65 components. Each task is assigned to at most three vehicle
types, marked with a priority rank and contains links to maintenance instructions and safety
warnings. There are references to 777 resource requirements aligned to 212 unique materials
and 154 tools. Overall, information within RailMain-KG is encoded in 7,610 triples.

6.2. Validation Against Manual Encodings

Entities are automatically extracted and linked to formal concepts during the knowledge ac-
quisition pipeline. The quality of the generated content is assessed by comparing a subset
of VMIs against information encoded within RailMain-KG. To this end, 20 randomly selected
VMIs were manually digitised based on the thematic sections introduced in Section 4.2. This
information was then compared to triples within RailMain-KG and the results are summarised
in a confusion matrix (Table 1). The validation indicates that the proposed pipeline performs



Table 1
Comparison of 20 manually extracted VMIs against RailMain-KG. TP: true positive (correctly identified
element), FP: false positive (incorrectly identified element), FN: false negative (missing element). F1: f1
score (correlation of precision and recall).

Feature TP FP FN Precision Recall F1

Task name 20 0 0 1 1 1
Component 20 0 0 1 1 1
Priority 20 0 0 1 1 1
Activity type 22 0 0 1 1 1
Vehicle 60 0 0 1 1 1
Material 45 3 8 0.94 0.85 0.89
Tool 38 3 0 0.93 1 0.96

Average 0.98 0.98 0.98

as required in extracting information about vehicles, components, priorities and so on. In the
case of resource identification, on the other hand, 94% of materials and 93% of tools within
the sample VMIs are correctly linked to industrial concepts; in terms of recall, 85% of the
necessary materials are included in the RailMain-KG triples. The incorrect linkage between
resources and industrial concepts is primarily due to strict thresholds used to parameterise
elastic search coupled with spelling variations between resource mentions in VMIs and terms
within industrial vocabularies. In terms of missing resources, the inconsistent structure of
VMI documents impedes XSLT transformations resulting in incomplete information extraction.
Despite the factors affecting performance, overall, RailMain-KG achieves an average F1 score of
0.98%, which is quite impressive given the fact that the knowledge acquisition pipeline does not
benefit from the predictive capabilities of deep learning and trained language models.

6.3. Generalisation

The current version of the graph is built on VMIs provided by a specific manufacturer. Conse-
quently, the knowledge acquisition pipeline is compatible with VMIs framed on a particular
template and format. The rolling stock maintainer may change during the rolling stock life cycle
(e.g., application of the manufacturer maintenance manuals during the first two years of the
rolling stock), which raises the need for transferability. Since there is no industry wide standard
structure for VMIs, the proposed methodology requires parsers to accommodate the structure
of unseen VMI templates. In particular, information extraction and entity linking require a
third-party component to divide and organise the textual content of VMIs into themed sections
as they are described in Section 4.2. Entity linking mechanisms that identify resources (elastic
search) can be applied on text introduced by parsers assuming it is framed in a semi-structured
format. This assumption is due to the fact that to the best of the authors’ knowledge, there is
currently no language model that allows entity recognition from free-form industrial-themed
text. We intend to lift this assumption in future research as described in Section 7. In the case
of regular expressions, generic patterns, such as text segmentation, can be reapplied out of
the box; however, patterns for identifying significance labels, actions and mechanical systems
might require tuning to capture the intended information effectively. For instance, they are



limited in identifying keywords, which are found within the data set that was used to build
RailMain-KG. Finally, investing further in transferability, one of the benefits of elastic search,
when used to link text to industrial concepts, is that it does not rely on annotated corpus or
pretrained language models. Therefore, acquired information such as components, priority
labels, vehicles, as well as aliases of known resources are utilised to introduce or extend existing
non-metric indices, which in turn enhances the linking capabilities of the proposed pipeline.

7. Conclusions

Creating rich digital models of industrial processes is seen as a step towards realising the benefits
in movements such as Industry 4.0. In our project, we have been engaged in creating a Virtual
Depot for capturing the processes, knowledge and data involved in train vehicle maintenance,
and in particular in an attempt to integrate scheduling and planning processes within the Depot.
A major challenge in this pursuit is in the knowledge acquisition of detailed company-specific
knowledge and data about maintenance tasks, resources, tools etc., which are required for input
to these processes. In this paper, the authors have described a novel ontology-driven process
which creates a digitised copy (RailMain-KG) of the information found in a sample set of VMIs.
Textual information within maintenance instructions is converted into a graph-like structure
with well-defined semantics, allowing information retrieval based on logical relations instead
of statistically driven text similarity. Section 5 briefly demonstrates the benefits of semantic
search over RailMain-KG, where text information encoded as semantically-rich concepts can
feed the maintenance scheduling process and further advance automation. Our work is ongoing:
while we have created a short-term scheduling operation which draws on knowledge in the
RailMain-KG, we have yet to animate the end-to-end maintenance process[13].

There are factors affecting the performance of the introduced pipeline in identifying and
linking terminology with industrial concepts. We plan to replace the strict pattern matching
of regular expressions by annotating maintenance instructions found in RailMain-KG with
the goal of training a language model specialised in named entity recognition of industrial
terminology within the domain of rolling stock maintenance. Regarding linking terms with
industrial concepts, a meticulous curation of the industrial vocabularies is in the proposed
pipeline; it intends to dissolve spelling discrepancies and also express hierarchical relations
between concepts. Other work will focus on condition-based maintenance scheduling processes
where the thresholds related to some maintenance intervention such as wheel flat length or
depth will be automatically extracted from VMIs to build an automated decision tool for the
maintenance scheduling process. To move from periodic preventive maintenance to condition-
based one, the thresholds, controlling when certain activities should be done, are required.
Some of these thresholds are standardised in the context of rolling stock maintenance such as
wheelset-related thresholds but many others are not. Each maintainer has its own threshold
values that are specified in VMIs.
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