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Abstract
We present a framework to integrate OWL ontologies into planning specifications. The resulting planning
problems consider states that correspond to OWL knowledge bases, so that implicit information deduced
using OWL reasoning may influence the decisions taken by the planner. While other approaches
integrate ontology languages directly into the planning specification, our approach keeps planning
specification and ontology separated, and only loosely couples them through an interface. This allows
the ontology to be developed and maintained by ontology experts, and the planning specification by
planing experts. We developed a practical method for planning in those ontology-mediated planning
specifications, which, different to other ontology-based approaches to planning, supports full OWL-DL.
Specifically, we implemented a problem-dependent rewriting approach that translates the ontology-
mediated planning specification—including the planning domain and the planning problem—into a PDDL
planning specification that can be processed by a standard PDDL planner.
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1. Introduction

OWL ontologies are used in many application areas to model domain knowledge. Typically,
such an ontology focuses on terminological knowledge, and contains axioms that specify the
meaning of terminology via definitions and subsumption axioms, thus providing meaning to
OWL classes and properties (unary and binary predicates). Having a foundation on description
logics (DLs) allows OWL ontologies to be processed by an OWL reasoner, so that implicit
information can be inferred from the ontology, or from a fact base that is used in conjunction
with the ontology [1]. Both planning and ontologies are commonly used in approaches to
develop autonomous robots [2, 3], which is also the motivation of the present paper.

In particular, the motivation for this work comes from planning problems for autonomous
underwater vehicles (AUVs). Such robots are often used for inspection tasks, e.g. of underwater
infrastructure such as pipelines or oil platforms, as well as for mapping of the sea floor [4], but
eventually they should also be able to complete more complex missions that include manipulation
tasks [5]. The robots need to be able to work autonomously, because their operation area is very
remote and without a connection to a human operator. Even recovering the vehicle in case of a
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problem is a difficult and time consuming task. Therefore, the mission plans for such vehicles
should be as robust as possible, which includes that the robots have some understanding of the
domain they operate in. This domain knowledge is not specific to planning, and would thus
be ideally formalized in an ontology that can also be used in other contexts of AUVs, such as
configuring them, or recognizing unexpected situations [6]. For example, such an ontology
might define a concept of ProtectedAnimal, based on the concept of Animal and having a
position that is located in a NatureProtectionArea. Using such an ontology, the robot would
then be able to understand when it needs to keep a larger distance to an animal in order not
to disturb it. Ontologies are an ideal framework to represent such domain knowledge, and
there are existing ontologies for the underwater domain, such as the SWARMS ontology [7, 8].
However, if we want to use such an ontology in connection with planning, we need a planning
framework that can make use of the ontology.

In this paper, we propose a general framework to connect planning problems with OWL
ontologies, and a technique to compute plans for such problems. Using this framework, we
can create a planning domain that interacts with the ontology to generate plans that take its
domain knowledge into account. Similar to [5], we use the ontology to model the environment.
But additionally, we model actions of the robot that manipulate the objects and the relations
between objects in the environment, e.g. that the robot opens or closes a valve.

1.1. Related Work

Using ontologies to support planning is not a new idea, and has been investigated for decades.
[9] gives an overview about early works in which ontologies are used to infer implicit informa-
tion about planning states. Different approaches have since then been used to model planning
domains, actions, and even planning problems using ontologies, but also to use ontologies to
generate planning problems, in domains as diverse as kitting and assembly [10, 11], semantic
web service decomposition [12, 13], robotics [14], train depot management [15] and manufac-
turing [16]. These approaches usually depend on a static ontology that is used to generate
specifications for the planner, while the actions of the planning specifications cannot modify
the ontology.

In [17, 18], actions can use DL concepts in the preconditions and postconditions of an action,
which then operate on the models of an OWL ontology. A downside of letting actions directly
operate on the models is that it is not trivial to determine the implicit consequences of an
actions, that is, to ensure that after executing an action on a model, we obtain an interpretation
that is still a model of the ontology.

This problem is avoided in approaches where actions do not operate on models, but on the
knowledge base itself. This is the case with the Knowledge Action Bases (KABs) and extended
Knowledge Action Bases (eKABs) introduced in [19, 20], which combine DL knowledge bases
with actions that can add facts to and remove them from the knowledge base. Here, every
state in the planning domain corresponds to a DL knowledge base, and pre-conditions of
actions can query implicit information entailed in the current state via DL reasoning. The
idea is that what is known about the world in each system state is represented using facts of a
knowledge base, interpreted as potentially incomplete under the open-world assumption, and
any implicit consequences of an action are accessed only through reasoning with the ontology.



Existing approaches to plan with eKABs practically rely on rewriting the eKABs into planning
problems in pure PDDL [21] or its extension with derived predicates, i.e. axioms, [22], so that
a standard planning system such as Fast-Downward planner [23] can be used. The limits of
such an approach are investigated in [24], where the underlying ontology can be expressed
in the description logic Horn-𝒜ℒ𝒞ℋ𝒪ℐ𝒬, which roughly corresponds to the Horn-fragment
of OWL-DL without complex object property axioms. Many naturally occurring constructs
such as disjunction (e.g. to express that a valve must be either open or closed), or at-most
constraints (e.g. to express how many objects an AUV can carry), go beyond the Horn fragment,
and can thus not be handled by this approach. Also SWRL-rules, which are used in the SWARM
ontology, are not supported. To our knowledge, there is no research yet in this direction that
would support this expressivity.

1.2. Our Approach

Our approach is close to that of eKABs, but goes beyond existing approaches in the following
way: 1) Rather than integrating actions and knowledge, we strive for a separation of the
representation formalisms. 2) Using a domain-dependent rewriting approach, we are able to
support the full OWL DL 2 syntax as defined in [25], including SWRL rules [26].

The aim of 1) is to have a presentation format that is tailored towards the specific needs and
skills of knowledge engineers and planning experts. In particular, in our framework, we favor a
strong separation of concerns, with the planning specification encoded in standard PDDL, and
the domain knowledge encoded in a separate OWL ontology. The connection between the two
is established via an interface that links statements in the planning language to OWL axioms.
This way, existing OWL ontologies can be easily integrated, and PDDL experts do not need to
learn another knowledge representation formalism.

Our solution to 2) is inspired by a technique for ontology-mediated probabilistic model
checking presented in [27, 28], which uses a similar separation of concerns as our approach,
but with a simpler representation of states using propositional logic. This allows us to support
ontologies that go beyond Horn. Similar to [29], we use justifications [30] to determine which
elements of a planning state are relevant to an action to be executed. However, while [29] are
interested in explaining pre-conditions in an action for a singular state, we use justifications to
determine conditions on all possible states. Initial experiments of our implementation indicate
that this approach can deal even with larger planning problems, with the comparatively high
cost of generating justifications being mitigated by very short planning times.

2. Preliminaries

We recall the relevant notions regarding planning with PDDL. We assume the reader is familiar
with the basics of OWL and description logics (DLs). For an introduction into OWL and
description logics, we refer to [1]. We further assume standard knowledge of first-order logic,
and use |= to express entailment between theories and satisfaction in models. We call a formula
𝑃 (�⃗�) atom, which is ground if �⃗� contains only constants.



2.1. PDDL Planning Specifications

We consider the common syntax and semantic as introduced in [21, 31] and described in detail in
[32]. A PDDL planning specification P is a tuple ⟨𝐷,𝑃 ⟩ that contains a domain 𝐷 = ⟨𝒫,𝒜,𝒟⟩
and a problem 𝑃 = ⟨𝑂, 𝐼,𝐺⟩. Here, 𝒫 is a finite set of predicate names,𝒜 a finite set of actions,
𝒟 a finite set of derivation rules, 𝑂 a finite set of objects, 𝐼 is an initial state and the goal 𝐺
is a first-order formula with predicates from 𝒫 . A state is a finite set of ground atoms over 𝒫
and 𝑂, interpreted as first-order interpretation; an action is a tuple 𝑎 = ⟨𝑉, pre, eff⟩ where 𝑉
is a vector of variables, pre is the precondition (a first-order formula with predicates from 𝒫
and free variables from 𝑉 ) and eff = ⟨add, del⟩ is the effect. Both add and del are finite sets of
atoms over predicates from 𝒫 using variables from 𝑉 and constants from 𝑂. If neither pre nor
eff contain variables from 𝑉 or 𝑉 = ∅, we call 𝑎 a ground action.

Derivation rules are of the form 𝑝(𝑉 )← 𝜑(𝑉 ), where 𝑉 is a vector of variables, 𝑝 ∈ 𝒫 , and
𝜑 is a first-order formula over the predicates in 𝒫 with free variables 𝑉 and constants from 𝑂.
We often call derivation rules just rules. If a predicate 𝑝 occurs on the left hand side of a rule,
it is called a derived predicate. Derived predicates are neither allowed to occur negatively in a
derivation rule, nor are they allowed to occur in an effect of an action. For a finite set of atoms
𝑠, we define 𝒟(𝑠) as the least fix point over the possible applications of some rules from 𝒟 to
the atoms in 𝑠, i.e., we apply the rules from 𝒟 exhaustively and add the derived ground atoms
until no more rules can be applied.

Let 𝑎 = ⟨𝑉, pre, eff⟩ with eff = ⟨add, del⟩ be an action and 𝜃 : 𝑉 ↦→ 𝑂 a variable assignment.
We denote by 𝜃(𝑎) the ground action obtained by replacing each 𝑥 ∈ 𝑉 in 𝑎 with 𝜃(𝑥). A
ground action is applicable in a state 𝑠 iff𝒟(𝑠) |= pre, that is, the precondition is evaluated over
the atoms in the state and the entailed derived atoms. The result of applying the action 𝑎 on 𝑠
is then denoted 𝑠(𝑎), defined as 𝑠(𝑎) := (𝑠 ∖ del) ∪ add, i.e., all atoms are deleted and added
according to the effect. A plan 𝜋 is now a sequence 𝑎1 . . . 𝑎𝑛 of ground actions that generates a
sequence of states 𝑠0 . . . 𝑠𝑛 such that 1) 𝑠0 = 𝐼 is the initial state of the planning problem, 2)
for each 𝑖 ∈ {1, . . . , 𝑛}, 𝑎𝑖 is applicable in 𝑠𝑖−1 and 𝑠𝑖 = 𝑠𝑖−1(𝑎𝑖), and 3) the goal is reached:
𝒟(𝑠𝑛) |= 𝐺.

There are many extensions to PDDL, for example conditional effects. The described compo-
nents are the ones necessary for our framework but it can also be used with such extensions.

3. Ontology-Mediated Planning

We capture our framework formally via ontology-mediated planning specifications. At the heart
of those is the notion of ontology-enhanced states, which combine a PDDL state with an OWL
ontology.

Definition 1 (Ontology-Enhanced State). An ontology-enhanced state is a tuple 𝑞 = ⟨𝑃𝑞,𝒪𝑞⟩,
where 𝑃𝑞 is a set of atoms called the planner perspective of 𝑞, and 𝒪𝑞 is a set of OWL axioms
called the OWL perspective of 𝒪.

The idea is that each state has a planner perspective, on which the planner directly operates,
and on which preconditions and effects of actions are evaluated and executed, respectively. The
planner perspective of an ontology-enhanced state is, as for classical planning problems, a set
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Figure 1: Example of ontology based planning. The interface maps ontology queries to planning
predicates and atoms in the planning perspective to ABox atoms. The static part of the ontology
contains information about instances (ABox) as well as general axioms (TBox). The connections between
the two perspectives via the fluent (F) and query (S) interface are shown in green.

of ground atoms, where predicates of arbitrary arity may occur. On the other side, there is
the OWL perspective of the ontology-enhanced state, which corresponds to an OWL ontology,
i.e. a set of OWL axioms, and from which implicit entailments can be derived using reasoning.
The two perspectives are linked via an interface: which axioms are in the OWL perspective
depends on the atoms in the planner perspective. There is however also a static part, which we
call the static ontology, that describes time-independent information (such as class definitions
and general domain knowledge), which is obtained from an external OWL file and has no
direct correspondence in the planner perspective. The planner perspective can access implicit
information from the OWL perspective using query predicates, Specifically, whether a query-
atom is active in the planner perspective depends on what can be derived from the OWL
perspective of the state. Before we give the formal definition of how this works, we illustrate
this idea with an example.

Example 1. An example of an ontology-enhanced state is depicted in Figure 1. The scenario is
inspired from the classic blocksworld planning example. In contrast to the classic problem where
the robot has only one hand, we use an OWL ontology to specify the type of the robot and infer its
number of hands. In the example, the stacking robot is a PR2 robot [33] that can hold two blocks at
a time, and if it holds two blocks, it becomes an instance of FullHands. While relatively simple,
those cardinality constraints are already more expressive than the most expressive DL currently
supported by existing implementations for eKABs (see Section 1.1). The planner perspective of the
state is shown on the left, and the OWL perspective is shown on the right. The interface is in the
middle. If the atom holds(stackBot, blockA) becomes true in the planner perspective, this is
reflected in the ontology perspective as an OWL axiom expressing a corresponding relation between
the two individuals stackBot and blockA. Using the static ontology, we can infer that stackBot
is an instance of the OWL class FullHands, because the holds relation is true for two different



OBJECT stackBot -> stackBot
OBJECT blockA -> blockA
OBJECT blockB -> blockB
OBJECT blockC -> blockC

PREDICATE holds(_,_) -> holds

(a) Example of a fluent interface.

PREDICATE: fullHands
VARIABLES: ?r
TYPE_SPECIFICATION:

Robot(?r)
QUERY:

FullHands(?r)

(b) Example of a query specification.

Figure 2: Interface specification using the syntax of our implementation.

blocks. This is reflected by the entailed OWL axiom FullHands(stackBot). We also have a query
predicate fullHands, which corresponds to a query over instances of the OWL class FullHands.
Since we can infer from the OWL perspective that stackBot is an instance of FullHands, the atom
fullHands(stackBot) becomes true in the planner perspective of the state.

The central notion of this paper is that of an ontology-mediated planning specification, which
consists of three components

1. the PDDL component P, which is a PDDL planning specification consisting of a domain
and a problem,

2. the static ontology 𝒪, which is an OWL ontology specifying the static knowledge, that is,
it contains axioms whose truth cannot be affected by actions, and

3. the interface that specifies how the two perspectives of an ontology-enhanced state should
be linked. The interface itself consists of two parts:

a) the fluent interface, and

b) the query interface.

The fluent interface maps objects, unary and binary predicates used in the planner perspective
to the named individuals, OWL classes and OWL properties that are used in the OWL perspective.
An example of how this looks like for our implementation is shown in Figure 2a. In the context
of this paper, it is convenient to see the fluent specification simply as a partial function 𝐹 that
assigns to some of the predicates and objects 𝑋 in the planning specification an IRI 𝐹 (𝑋). We
require 𝐹 to be inverse functional, that is, 𝐹− is also a function. We lift 𝐹 in a straight-forward
way to atoms by setting 𝐹 (𝑃 (𝑡1, . . . , 𝑡𝑛)) = 𝐹 (𝑃 )

(︀
𝐹 (𝑡1), . . . , 𝐹 (𝑡𝑛)

)︀
if it is defined.

The query interface is a set of query specifications 𝑆 = ⟨𝑝𝑆 , 𝑉𝑆 , 𝑇𝑆 , 𝑄𝑆⟩, which each consist
of four components:

1. 𝑝𝑆 is the query predicate,

2. 𝑉𝑆 is a vector of query variables, whose number corresponds to the arity of 𝑝𝑆 ,

3. the type specification 𝑇𝑆 assigns to each variable 𝑥 ∈ 𝑉𝑆 an OWL class expression
specifying its static type, and



4. the query 𝑄𝑆 is a set of OWL axioms using variables from 𝑉𝑆 as place holders for
individual names.

An example of how this looks like for our implementation is shown in Figure 2b. Note that in
the type specification, we can only assign one class expression to each variable, while variables
may occur in arbitrary ways in the query. The static types are used to restrict the set of named
individuals that can be assigned to a variable: candidates for a variable 𝑥 ∈ 𝑉𝑆 are individual
names 𝑎 for which the static ontology entails 𝑎 : 𝑇𝑆(𝑥), that is, which are an instance of the
class expression assigned to 𝑥 via 𝑇𝑆 . For the specification in Figure 2b, 𝑉𝑠 = (?r) and ?r
can be associated with instances of the class Robot. For a given static ontology 𝒪 and query
specification 𝑆, we thus have a set Θ(𝑆,𝒪) of legal assignments 𝜃 : 𝑉𝑆 → Ind(𝒪) of variables
to individual names in 𝒪. Finally, 𝑄𝑆 specifies the OWL query that the query predicate 𝑝𝑆
stands for. For a given assignment 𝜃 ∈ Θ(𝑆,𝒪), 𝜃(𝑄𝑆) denotes the set of OWL axioms obtained
by replacing each variable 𝑥 ∈ 𝑉𝑆 in 𝑄𝑆 by 𝜃(𝑥). In the present example, for the assignment
𝜃(?r) = stackBot, we would have 𝜃(𝑄𝑆) = { fullHands(stackBot) }.

We have now all ingredients to define ontology-mediated planning specifications.

Definition 2. An ontology-mediated planning specification is a tuple ⟨P,𝒪, 𝐹,S⟩, where P
is a PDDL planning specification consisting of a planning domain and a planning problem, 𝒪
is an OWL ontology called the static ontology, 𝐹 is a fluent interface, and S is a set of query
specifications called the query interface.

An ontology-mediated planning specification determines when an ontology-enhanced state
is compatible for that specification. In particular, a state 𝑞 = ⟨𝑃𝑞,𝒪𝑞⟩ is compatible to an
ontology-mediated planning specification OP = ⟨P,𝒪, 𝐹,S⟩, where 𝒟 are the derivation rules
in P, iff:

C1 𝑃𝑞 is a set of atoms over predicates and constants occurring in P,

C2 𝒪 ⊆ 𝒪𝑞 (the static ontology is always part of the OWL perspective),

C3 for every atom 𝛼 ∈ 𝒟(𝑃𝑞) for which 𝐹 (𝛼) is defined, 𝐹 (𝛼) ∈ 𝒪𝑞

C4 𝒪𝑞 contains no axioms that are not required due to Conditions C2 and C3

C5 for every query specification 𝑆 = ⟨𝑝𝑆 , ⟨𝑥1, . . . , 𝑥𝑛⟩, 𝑇𝑆 , 𝑄𝑆⟩ ∈ S and 𝜃 ∈ Θ(𝑆,𝒪), if
𝐹−(𝜃(𝑥𝑖)) is defined for each variable 𝑥𝑖 and 𝒪𝑞 |= 𝜃(𝑄𝑆), then

𝑝𝑆(𝐹
−(𝜃(𝑥1)), . . . , 𝐹

−(𝜃(𝑥𝑛))) ∈ 𝑃𝑞.

Given an ontology-mediated planning specification OP = ⟨P,𝒪, 𝐹,S⟩ and a state 𝑃 in the
corresponding planning domain, we define the extension ext(𝑃,OP) of 𝑃 according to OP as
follows. Let 1) 𝑃 ′ be the set of atoms in 𝑃 that are not over query predicates, 2) 𝒪𝑞 the set
of axioms required to satisfy Conditions C2 and C3 based on the atoms in 𝑃 ′, and 3) 𝑃𝑞 the
extension of 𝑃 ′ by all atoms over query predicates that are required to satisfy Condition C5 for
the ontology 𝒪𝑞 . Then, ext(𝑃,OP) = ⟨𝒪𝑞, 𝑃𝑞⟩.



Example 2. Consider the example in Figure 1 where 𝛼 = holds(stackBot, blockA) and
𝛽 = holds(stackBot, blockB) with 𝛼, 𝛽 ∈ 𝑃𝑞 and 𝐹 is defined as in Figure 2a and S as in
Figure 2b. Then, according to C3, the axioms from the mappings 𝐹 (𝛼) = holds(stackBot, blockA)
and 𝐹 (𝛽) = holds (stackBot), blockB) are part of 𝒪𝑞 . Using the static part of 𝒪𝑞 , which states
that stackBot is a PR2 robot and blockA is different from blockB, we can infer that 𝒪𝑞 |=
{FullHands(stackBot)}. Using 𝜃 = {(?r ↦→ stackBot)}, 𝐹 and 𝑆 from Figure 2b, we can apply
C5 to determine that fullHands(stackBot) ∈ 𝑃𝑞 .

It remains to define the semantics of actions and plans on ontology-mediated planning
specifications. Fix an ontology-mediated planning specification OP = ⟨P,𝒪, 𝐹,S⟩. Let 𝑎 be a
ground action with precondition pre and effect eff = ⟨add, del⟩. Let 𝑞 be an ontology-enhanced
state. We say that 𝑎 is applicable on 𝑞 iff 𝒟(𝑃𝑞) |= pre. The result of applying 𝑎 on 𝑞 is
then denoted by 𝑞(𝑎) and defined as 𝑞(𝑎) = ext(𝑃𝑞(𝑎),OP). We can now define plans for OP
similarly as we did for planning specifications: Namely, a plan is a sequence 𝑎1 . . . 𝑎𝑛 of actions
that generates a sequence 𝑞0𝑞1 . . . 𝑞𝑛 of ontology-enhanced states s.t.

1. 𝑞0 = ext(𝐼,OP), where 𝐼 is the initial state of the PDDL planning problem in OP,

2. for each 𝑖 ∈ {1, . . . , 𝑛}, 𝑞𝑖 = 𝑞𝑖−1(𝑎𝑖),

3. for each 𝑖 ∈ {1, . . . , 𝑛}, 𝑎𝑖 is applicable on 𝑞𝑖−1, and

4. 𝒟(𝑃𝑞𝑛) |= 𝐺, where 𝒟 are the derivation rules of the planning domain, and 𝐺 is the
formula describing the goal of the planning problem.1

4. A Rewriting-Based Approach to Compute Plans in Practice

Semantically, our approach is very related to that of eKABs introduced in [20]. eKABs do not offer
a differentiation between OWL perspective and planner perspective. Instead, actions operate
directly on OWL axioms, which can be directly referenced to both pre-conditions and post-
conditions of the actions. We conjecture that it is always possible using simple transformations
to translate an eKAB with a finite domain into an ontology-mediated planning problem. In the
other direction, we can translate ontology-mediated planning problems into eKABs by replacing
atom predicates by the corresponding OWL class and OWL properties, and replacing query
atoms by the corresponding queries. It is thus in theory possible to use an eKAB planner to
compute plans for ontology-mediated planning problems. However, existing implementations
for eKAB planning have limitations regarding the supported OWL fragment. The general idea
of these approaches is to take the eKAB planning specification, and translate it into a PDDL
specification that can then be used by a standard PDDL planner. Those techniques focus on
the planning domain, that is, the obtained rewritings are independent of the planning problem.
The approach presented in [20, 34] only supports rewritable DLs, which would correspond to

1Note that we allow the plan to go through states whose OWL perspective is inconsistent. If this is not wanted,
an easy way to avoid this would for example be to use a query predicate to detect such states, and to adapt the
preconditions of all actions so that they are not applicable in inconsistent states, so that a goal state can never be
reached from such a state.



(:derived (inconsistent)
(and
(holds stackBot blockA)
(holds stackBot blockB)
(holds stackBot blockC)

)
)

(:derived (fullHands ?r)
(or

(inconsistent)
(and (= ?r stackBot) (or

(and (holds stackBot blockA)
(holds stackBot blockB))

(and (holds stackBot blockA)
(holds stackBot blockC))

(and (holds stackBot blockB)
(holds stackBot blockC))

))
)

)

Figure 3: Derivation rules in PDDL syntax as generated by our technique.

the OWL fragment OWL-QL. The approach presented in [24] goes further by using derivation
rules, which allows to encode Horn-𝒜ℒ𝒞ℋ𝒪ℐ𝒬 via a known translations of such ontologies
into datalog programs. Horn-𝒜ℒ𝒞ℋ𝒪ℐ𝒬 roughly corresponds to the Horn fragment of OWL
DL. For DLs that are not Horn, a translation into datalog is generally not possible, since datalog
is itself a Horn logic. The same applies to rewriting into derivation rules, if those are supposed
to be defined independently of the objects of the planning problem. Therefore, in order to
support full OWL DL, we need to take into account also the planning problem. Specifically, our
approach directly iterates over the possible assignments for each query predicate. This allows
us to develop a more generic approach that does not restrict the ontology language, as long as a
reasoner for it is available.

The basic idea is to construct a derivation rule for each query predicate, which determines for
each valid variable assignment a set of conditions that can be evaluated directly on the planner
perspective of a state.

Example 3. Figure 3 depicts the generated derived predicates for our running example. The special
atom (inconsistent) becomes true if the ontology perspective of the state is inconsistent. In
our example, the static ontology states that every individual from the class PR2 is only allowed to
hold at most two blocks. Using the fluent interface, we can determine the combination of atoms in
the planning perspective that would lead to an ontology that would violate this constraint. The
derivation rule for the query-predicate fullHands lists all possible variable mappings and gives
for each of them the conditions under which the query atom becomes true. In our case, the query
predicate is satisfied if the ontology is inconsistent and for ?r = stackBot if stackBot is holding
two blocks.

To construct these derivation rules automatically, we make use of justifications, which were
originally developed as a means to explain entailments in ontologies to end-users [30].

Definition 3. Let 𝒪, 𝒪′ be ontologies s.t. 𝒪′ ⊆ 𝒪 and 𝛼 be an axiom s.t. 𝒪 |= 𝛼. Then, a
justification for 𝒪 |= 𝛼 relative to 𝒪′ is a set 𝒥 ⊆ 𝒪 s.t. 𝒥 ∪ 𝒪′ |= 𝛼 and for no 𝒥 ′ ⊂ 𝒥 ,
𝒥 ′ ∪ 𝒪′ |= 𝛼. If 𝒪′ = ∅, 𝒥 is called a classical justification.



We use Just(𝒪,𝒪′, 𝛼) to denote the set of all justifications of𝒪 |= 𝛼 relative to𝒪′. A special
case of justifications are those of Just(𝒪,𝒪′,⊥), where ⊥ is an axiom stating inconsistency of
the ontology. Just(𝒪,𝒪′⊥) contains all sets of axioms from 𝒪 that are inconsistent with 𝒪′.

Classical justifications can be computed using standard tools such as the OWL API [35].
To compute relative justifications, we use an adaption of the existing implementation from
the OWL API that we already used in [27]. This can now be used to compute the described
derivation rules. Fix an ontology-mediated planning specification ⟨P,𝒪, 𝐹,S⟩. Let F be the
set of all OWL axioms in the range of 𝐹 , which we call fluents from now on. Furthermore, set
Just⊥ = Just(F∪𝒪,𝒪,⊥), and for an axiom 𝛼, we set Just𝛼 = Just(F∪𝒪,𝒪, 𝛼) ∖ Just⊥. Just⊥
contains all sets of fluents that are inconsistent with the static ontology. Just𝛼 contains all sets
of fluents that are consistent with the static ontology, and lead to an entailment of 𝛼 when
added to it. Since an inconsistent ontology entails every axiom, Just⊥ describes the special case
in which all query predicates should become active for all assignments.

First, we construct a derivation rule for an atom inconsistent:

inconsistent←
⋁︁

𝒥∈Just⊥

⋀︁
𝛼∈𝒥

𝐹−(𝛼).

Next, for a given query specification 𝑆 = ⟨𝑝𝑆 , ⟨𝑥1, . . . , 𝑥𝑛⟩, 𝑇𝑆 , 𝑄𝑆⟩, and an assignment 𝜃 ∈
Θ(𝑆,𝒪), we define the formula 𝜑𝑆,𝜃 that describes when 𝑝𝑆 should become active under that
assignment. Specifically, 1) we check that all variables are assigned according to 𝜃 and the fluent
interface 𝐹 , 2) we iterate over all the axioms 𝛼 ∈ 𝜃(𝑄𝑆), 3) we iterate over all the justifications
𝒥 ∈ Just𝛼, and 4) we translate all the axioms in 𝒥 based on the fluent interface 𝐹 . This leads
to the following formula:

𝜑𝑆,𝜃 =

𝑛⋀︁
𝑖=1

(︀
𝑥𝑖 = 𝐹−(𝜃(𝑥𝑖))

)︀
∧

⋀︁
𝛼∈𝜃(𝑄𝑆)

⋁︁
𝒥∈Just𝛼

⋀︁
𝛽∈𝒥

𝐹−(𝛽).

The derivation rule for 𝑝𝑆(𝑥1, . . . , 𝑥𝑛) is then constructed as follows:

𝑝𝑆(𝑥1, . . . , 𝑥𝑛)← inconsistent ∨
⋁︁

𝜃∈Θ(𝑆,𝒪)

𝜑𝑆,𝜃

We use a special atom for inconsistent states to simplify the derive-directives. But having
such an atom has the further advantage that we can easily adapt the planning specification to
avoid inconsistent states all together: we can for instance add a precondition to every action
that the current state is not inconsistent. This behavior is in line with the existing semantics of
eKABs [20].

The ontology-mediated planning specification is now translated to a standard PDDL specifi-
cation by just adding to P all these derivation rules. We can now use an off-the-shelf planner to
determine a plan for it.

In an initial evaluation, we tested our approach with an ontology-mediated planning spec-
ification in the AUV domain, where the AUV is supposed to inspect an underwater pipeline
with different sections of the pipe in different conditions at different waypoints (around 50
waypoints in total). We used a static ontology with around 200 axioms. The set of fluents of this



problem is around 50, while the set of valid groundings of query predicates is around 100. The
specification was translated into a PDDL specification in 22 seconds, for which Fast-Downward
planner was able to compute a plan of length 27 in less than a second.

5. Conclusion

We proposed ontology-mediated planning specifications as a way to integrate OWL reasoning
into planning. One objective was to find a formalism that allows for a separation of concerns,
allowing to separate the specification of ontologies from the specification of planning problems
and domains. This has the advantage that the ontology can be maintained by ontology experts,
while the planning specification can be developed by planning experts, with the interface
serving as the only connecting component. We developed a first practical method for computing
plans for such planning problems, which relies on justifications. This technique allows us to
be flexible with respect to the ontology language, with the result that our method supports
the entirety of OWL DL, going beyond what is currently supported by implementations for
the related frameworks of KABs and eKABs. We are currently setting up a larger evaluation,
comparing our approach to existing implementations for eKABs and on existing benchmarks,
and also want to evaluate those implementations on benchmarks created by us from the AUV
domain. Based on the results of these evaluations, we want to investigate optimizations of our
approach that lead to shorter plan evaluation times.
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