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Abstract
This paper focuses on multi-modal learning and introduces an AdaBoost-based approach for multi-modal learning. We
address two foundation problems, (1) the difference be-tween AdaBoost with homogeneous and heterogeneous weak learners;
(2) generalization metric. By addressing these research questions, this paper enhances our under-standing of AdaBoost in the
context of multi-modal learning through comprehensive experiments. The experiment results show that the heterogeneous
structure is a trade-off between the performances of different weak learners rather than a clear synergy. The multi-modal
learning model’s performance depends on how the individual weak learners are composed, and the heterogeneous structure’s
ad-vantage lies in harnessing the diverse strengths of individual weak learners, even though the improvement achieved is not
overwhelmingly pronounced.
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1. Introduction
Multi-modal learning refers to the process of extracting
at-tributes from one or more data streams, known as
modalities, that have different dimensions. The goal is to
learn how to combine and project the extracted hetero-
geneous features into a shared representation space. In
various applications, leveraging multiple modalities and
sensors can provide valuable contextual information for
a given task. Each modality, such as textual, visual, or au-
ditory, has its own structure and encoding mechanisms
for handling heterogeneous information harmoniously
within a conceptual framework.

While the combination of different modalities or data
sources to enhance performance is an ongoing research
focus, it is often challenging to distinguish between noise,
concepts, and conflicts among the data sources in prac-
tice.

Among boosting algorithms, AdaBoost is widely rec-
ognized as a prominent member. It converts a set of
weak learners into a strong learner. Typically, AdaBoost
is formulated using an additive model, where a linear
combination of base learners is employed to minimize
the exponential loss function. AdaBoost implementation
is straightforward and comprehensible, and it is known
for its resistance to overfitting [1]. Multi-modal learning
aims to tap potentialities of multiple modality data, while
AdaBoost is a successful example of ensemble learning.
It is natural to apply AdaBoost to multi-modal learning.

However, regardless of whether ensemble learning or
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multi-modal learning techniques, they all encounter a
common challenge: generalization. Initially, these algo-
rithms were developed to tackle the issue of generaliza-
tion, where a pre-trained model can effectively handle
unseen domains. In this paper, we leverage the power
of AdaBoost and introduce novel multi-modal learning
methods based on it. Unlike the conventional imple-
mentation of AdaBoost that assumes homogeneous weak
learners, in multi-modal learning scenarios, each modal-
ity may have its own individual learners, resulting in
heterogeneous learners.

The main challenge we face in our proposed algorithm
involves two aspects: (1) Assessing the performance dif-
ference of AdaBoost with homogeneous and heteroge-
neous classifiers, respectively; (2) Establishing a quantifi-
able metric for generalization, which has been lacking in
existing research. Our contributions in this paper are as
follows:

1. We demonstrate that AdaBoost performs equally
well with homogeneous weak learners as with
heterogeneous weak learners.

2. We introduce a new metric for measuring the
generalization capability of the proposed algo-
rithm. This metric allows us to assess how well
the algorithm generalizes to unseen data.

By addressing these challenges and making these con-
tributions, our paper aims to enhance the understanding
and application of multi-modal learning techniques, es-
pecially in the context of AdaBoost-based approaches.

2. Related Work
Multi-modal learning currently addresses four key chal-
lenges as outlined in [2]. First, the challenge of represen-
tation involves effectively summarizing and combining
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data from diverse modalities while accounting for hetero-
geneity, noise levels, and missing data. Deep networks
have been employed to represent visual, acoustic, and
textual data, with recent efforts focusing on fine-tuning
these representations for specific tasks [3].

The second challenge is translation, which aims to
generate an entity in one modality based on information
from a different modality. An example of this is video
description generation. Previous work by [4] proposed
a system that describes human behavior in videos using
detected head and hand positions combined with rule-
based natural language generation. Evaluating multi-
modal translation methods is challenging, as there are
often multiple correct answers and subjective judgments
involved.

The third challenge is alignment, which involves find-
ing relationships and correspondences between sub-
components of instances across multiple modalities. For
instance, aligning a movie with its corresponding script
or book chapters. Dynamic Time Warping and Canoni-
cal Cor-relation Analysis are commonly used for multi-
modal data alignment, and [5] introduced the deep canon-
ical time warping approach, which generalizes deep CCA
and DTW.

The fourth challenge is fusion, which aims to integrate
in-formation from multiple modalities to improve the
robustness of predictions. In the context of continuous
multi-modal emotion recognition, [6] demonstrated the
advantages of using LSTM models over graphical models
and SVMs.

It is worth noting that these challenges and approaches
are part of a broader survey on multi-modal learning, and
further details can be found in [2].

The main objective of generation is to develop a model
from one or multiple distinct yet related domains (i.e.,
di-verse training datasets) that can generalize effectively
on unseen testing domains. Ensemble learning leverages
the connections between multiple source domains by
employing specific model architecture designs and train-
ing strategies to enhance generalization. The underlying
assumption is that any sample can be seen as a combina-
tion of multiple source domains, resulting in an overall
prediction that combines the outputs of various domain-
specific models. [7] introduced domain-specific layers
cor-responding to different source domains and learned
the linear aggregation of these layers to represent a test
sample. Similarly, [8] proposed Domain Adaptive Ensem-
ble Learning (DAEL), which comprises a CNN feature
extractor shared across domains and multiple domain-
specific classifier heads. Each classifier acts as an expert
for its own domain but a non-expert for others. The ob-
jective of DAEL is to collaboratively train these experts
by teaching the non-experts with the expert knowledge,
encouraging the ensemble to effectively handle data from
previously unseen domains. This approach fosters do-

main adaptation and allows the model to generalize well
across different domains.

In this paper, we aim to tackle these challenges by
employing the AdaBoost algorithm since it allows more
diversity of models and features.

3. Methodology

3.1. Problem Description
Consider two modalities generated from the sample set
𝑆, 𝑋 = {𝑥1, . . . , 𝑥𝑛} and 𝑌 = {𝑦1, . . . , 𝑦𝑛}, where n
denotes the index of samples, 𝑥𝑛 ∈ 𝑅𝑎 and 𝑦𝑛 ∈ 𝑅𝑏

with a and b dimensions respectively. Given the ground
truth labels 𝑍 = {𝑧1, . . . , 𝑧𝑛}, where 𝑧𝑛 ∈ {0, 1} or
multiple classes, we aim to train a multi-modal learning
model to map both 𝑋 and 𝑌 into the same categorical
set of 𝑍 .

3.2. AdaBoost with heterogeneous weak
learners

In terms of the additive model in [9], the weak classifier
ℎ(𝑡) minimizes the classification error under the distribu-
tion 𝐷𝑡 over the training data. Its classification error rate
should be less than 0.5 for the 𝐷𝑡. It can be noted that if
anyℎ(𝑡) could satisfy this requirement, the resulting final
strong classifier 𝐻(𝑡) still satisfy the error bound in [10].
Moreover, with the assumption of the error rate (i.e., loss
function) is convex, it’s possible to prove that AdaBoosts
outperform individual learners according to Jensen’s in-
equality. Note that it is true regardless of where the
individual learners come from. These imply that whether
homogeneous or heterogeneous weak classifiers do not
influence the performance of AdaBoost. Our numerical
experiments in Section 4.1 verify this assertion.

3.3. Multi-modal learning based on
AdaBoost

The basic idea is that the different modalities 𝑋 and 𝑌
are bundled with weak learners together and are viewed
as heterogeneous learners. The sample set 𝑆 and the
label set 𝑍 are employed to the training dataset. The
proposed multi-modal learning model is implemented
based on AdaBoost as shown in Figure 1.

The weak classifiers may be either homogeneous or
heterogeneous, which is suited to the scenario that modal-
ity data has their individual classifiers. Moreover, each
sample in𝑆 may be a collection of multi-class data. Under
the AdaBoost scheme, we update the rule of the sample
distribution 𝐷𝑡 over the 𝑆.

Note that different modalities may share the same clas-
sifier and their combinations are still regarded as inde-
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Figure 1: Illustration of multi-modal learning model.

pendent heterogeneous learners. This can maximally
generalize weak learners.

4. Generalization metric
Indeed, the generalization error of an AdaBoost algo-
rithm is influenced by the diversity of its individual learn-
ers. This relationship is elucidated through the error-
ambiguity decomposition method introduced in [11]. It
is sensible to consider the diversity of a classifier as a rep-
resentation of its generation capabilities. In other words,
a more robustly generated classifier exhibits greater di-
versity, leading to improved performance metrics, such
as a lower error rate.

However, a significant challenge in this context is the
absence of a well-defined diversity measurement. While
it is intuitive to link diversity to better performance, there
is currently a lack of standardized and quantifiable met-
rics to precisely evaluate and compare the diversity of
classifiers. Addressing this gap could potentially enhance
our understanding of how diversity impacts generaliza-
tion and lead to further improvements in ensemble learn-
ing algorithms like AdaBoost.

To measure AdaBoost diversity, we apply the Kappa
statistic to measuring the pairwise similarity/dissimilar-
ity between two learners, and then average all the pair-
wise measurements for the overall diversity. This can be
simply described in a binary classification application.
We have the following contingency table for two learners
ℎ𝑖 and ℎ𝑗 , where 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑛 are non-negative
variables showing the numbers of examples satisfying
the conditions specified by the corresponding rows and
columns.

ℎ𝑗 = 0 ℎ𝑗 = 1

ℎ𝑖 = 0 𝑎 𝑏

ℎ𝑖 = 1 𝑐 𝑑

Kappa statistic:

𝑘 =
𝑝1 − 𝑝2
1− 𝑝2

(1)

where,

𝑝1 =
𝑎+ 𝑑

𝑛
(2)

𝑝2 =
(𝑎+ 𝑏)(𝑎+ 𝑐) + (𝑐+ 𝑑)(𝑏+ 𝑑)

𝑛2
(3)

The Kappa statistic is computed using the weak
learner’s performance data (e.g. error rate) when it is
involved in AdaBoost.

5. Experiments and analysis

5.1. Data Collection
5.1.1. Synthetic dataset

To evaluate the performance of AdaBoost, we conducted
experiments using homogeneous weak learners and het-
erogeneous weak learners respectively. For this purpose,
we generated a synthetic dataset consisting of 1000 sam-
ples, 10 features, and 2 classes using the Gaussian func-
tion with zero-mean and variance of 1.

5.1.2. CIFAR-10 dataset

The CIFAR-10 dataset [12] is a widely-used benchmark
for image classification. It comprises 60,000 color images
of size 32x32, distributed across 10 classes with 6,000 im-
ages per class. The dataset exhibits diverse and relatively
low-resolution images. To simulate a multi-modal learn-
ing scenario, we extract three types of feature representa-
tions: color-based features (HSV histogram), shape-based
features (Histogram of Oriented Gradient), and texture-
based features (Gabor filter). How-ever, considering that
the original AdaBoost algorithm was designed for binary
classification, we selected two classes from the CIFAR-10
dataset for experiments.

5.1.3. Million Song Dataset

We also design experiments based on AdaBoost for mu-
sic emotion recognition with Million Song Dataset [13],
which refers to recognizing and classifying emotions in
music using multiple modalities (such as audio, lyrics).
We chose two different emotion categories as labels based
on the quadrant distribution in Russel’s emotion model,
i.e., positive and negative [14]. We extract the lyrics
features from the MusiXmatch dataset derived from Mil-
lion Song Dataset and a series of emotionally represen-
tative acoustic features (i.e., Tempo, Beats, Harmonic,
Percussive, Root Mean Square, Zero Crossing Rate, Onset
Frames, Chroma short-time Fourier transform, Chroma
Energy Normalized, Chroma Constant-Q chromagram,
Mel-spectrogram, MFCC, Poly, Tonnetz, Spectral band-
width, Spectral roll-off, Spectral contrast, Spectral cen-
troid) by the librosa python library [15].
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Table 1
Performance of AdaBoost with homogeneous weak learners
on the synthetic dataset

Weak Learner Accuracy (%)

DT 91.09
NB 90.37
Per 84.55

Table 2
Performance of AdaBoost with heterogeneous weak learners
on the synthetic dataset

Weak Learner Combination Accuracy (%)

DT + NB 92.31
DT + Per 90.96
NB + Per 90.49
DT + NB + Per 92.38

Figure 2: Performance of AdaBoost with homogeneous (left)
and heterogeneous (right) weak learners on synthetic dataset.

5.2. Results and analysis
5.2.1. Experiment 1: Comparison of AdaBoost

with homogeneous and heterogeneous weak
learners

We firstly performed AdaBoost on the synthetic dataset
and apply three weak learners to homogeneous and het-
erogeneous scenarios, i.e., Decision Tree (DT), Naive
Bayes (NB), Perceptron (Per). The results are shown
in Table 1,2 and Figure 2. It can be noted that whether
homogeneous or heterogeneous weak learners do not
affect the AdaBoost performance.

We further performed AdaBoost on the CIFA-10 with
homogeneous and heterogeneous weak learners respec-
tively. The results are shown in Tables 3,4 and Figure
3. It can be noted that (1) the AdaBoost performance is
not influenced by homogeneous or heterogeneous weak
learners; (2) architecture of heterogeneous weak learn-
ers usually does not make the AdaBoost performance
improved. This is reasonable since different weak learn-
ers in the heterogeneous architecture have the individual
performances. This finally results in a trade-off of the per-
formance of different weak learners rather than synergy.

Table 3
Performance of AdaBoost with homogeneous weak learners
on CIFAR-10 dataset

Weak Learner Accuracy (%)

DT 80.13
NB 71.43
Per 79.55

Table 4
Performance of AdaBoost with homogeneous weak learners
on CIFAR-10 dataset

Weak Learner Combination Accuracy (%)

DT + NB 74.53
DT + Per 81.31
NB + Per 79.90
DT + NB + Per 80.18

Figure 3: Performance of AdaBoost with homogeneous (left)
and heterogeneous (right) weak learners on CIFAR-10 dataset.

Table 5
Performance of uni-modal learning based on AdaBoost

Feature Accuracy (DT) (%) Accuracy (NB) (%)

HSV 80.13 71.43
Gabor 84.68 63.24
HOG 67.48 65.16

5.2.2. Experiment 2: Multi-modal learning tests

We firstly per-formed AdaBoost with the homogeneous
weak learners (Decision Tree, Naive Bayes) on each uni-
modal feature in the CIFAR-10 and the Million Song
Dataset, respectively. The results are shown in Tables 5,6
and Figure 4.

We further applied AdaBoost with homogeneous weak
learners (DT, NB) to multi-modal dataset. To mock multi-
modal learning, we chose 4 combinations of the features
(HSV, Gabor, HOG) as multi-modal data. For the music
emotion recognition, there are two kinds of real modality
data available. The results are shown in Tables 7,8 and
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Table 6
Performance of uni-modal music emotion recognition

Feature Accuracy (DT) (%) Accuracy (NB) (%)

Audio 65.79 72.56
Lyrics 61.41 62.27

Figure 4: Performance of uni-modal learning on CIFAR-10
dataset (above) and uni-modal music emotion recognition
(below) based on AdaBoost. The left uses DT while the right
using NB.

Table 7
Performance of multi-modal learning based on AdaBoost on
CIFAR-10 dataset

Feature Acc (DT) (%) Acc (NB) (%)

HSV + Gabor 87.80 77.29
HSV + HOG 81.81 74.82
Gabor + HOG 82.18 76.18
HSV + Gabor + HOG 87.89 78.82

Table 8
Performance of multi-modal music emotion recognition based
on AdaBoost

Feature Acc (DT) (%) Acc (NB) (%)

Audio + Lyrics 66.29 75.11

Figure 5. It can be noted that multi-modal learning does
not outperform uni-modal learning.

However, an exception can be noted, that is, multi-
modal music emotion recognition with the Naive Bayes
as the weak learner obviously decreases the error rate.
Moreover, we also note that AdaBoost with the homoge-
neous learner of NB on the feature of lyrics has a good

Figure 5: Performance of multi-modal learning on CIFAR-10
dataset (above) and multi-modal music emotion recognition
(below) based on Ada-Boost. The left uses DT while the right
using NB in the above row.

Table 9
Performance of multi-modal learning on CIFAR-10 dataset and
multi-modal music emotion recognition based on AdaBoost

Feature Accuracy (%)

HSV + Gabor + HOG 87.60
Audio + Lyrics 88.83

performance in Figure 4. This implies that the features
usually have their individual classifiers. To take advan-
tage of the features, it is better to bundle the features
with their individual weak learners together as the inde-
pendent weak learners.

Therefore, on the CIFAR-10 dataset, we bundled the
HSV features with the DT weak learner, the Gabor fea-
tures with the DT weak learner, and the HOG features
with the Stochastic Gradient Descent weak learner (SGD).
In multi-modal music emotion recognition, we bundled
audio features with the Decision Tree weak learner and
lyrics features with the Naive Bayes weak learner. The
results are shown in Table 9 and Figure 6.

It can be noted that bundling the features with their
individual classifiers together as the independent weak
learners can improve performance. For example, in
music emotion classification, bundling Audio+DT and
lyrics+NB as the weak learners has the accuracy of 88.83%
in the Table 9, multi-modal learning with the Naive Bayes
as the single learner has the accuracy of 75.11% in the
Table 8, and the highest accuracy of uni-modal learning
is of 72.56% in the Table 6. Alongside the results of music
emotion classification, we can also note that the result
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Figure 6: Performance of multi-modal learning on CIFAR-
10 dataset (left) and multi-modal music emotion recognition
(right) based on AdaBoost.

of bundling the features with their individual classifiers
(i.e., HSV+DT, Gabor+DT, HOG+SGD) on the CIFAR-10
as the weak learners in Table 9 is only comparable with
that of multi-modal learning with the single classifier
of DT in Table 7. This is acceptable since these three
combinations in Table 9 may have different performance.
Experiment 1 justifies that the final result is a trade-off of
the performance of different weak learners rather than a
synergy.

5.2.3. Experiment 3: AdaBoost based MLs’
diversities

In the proposed multi-modal learning model (refer to Fig.
1), the weak learner can exhibit different compositions,
which can be categorized into the following types:

1) The same classifier with different features, resulting
in multiple distinct weak learners.

2) The same feature with different classifiers, leading
to multiple diverse weak learners.

3) Different features with their individual classifiers,
yielding multiple weak learners.

To compare the structures of homogeneous and het-
erogeneous weak learners, each weak learner is first used
in the AdaBoost homogeneous structure. Subsequently,
these weak learners are incorporated into the AdaBoost
heterogeneous structure. In each AdaBoost iteration, we
calculate the pairwise Kappa statistics of weak learners
originating from the AdaBoost and their average error
rates, which are then represented in a scatter plot. Herein
the origin (0,0) denotes error rate=0 and Kappa=0, which
is the ideal point. Figure 7 illustrates the results for com-
position 2, while Figure 8 shows those for composition
1. Overall, the heterogeneous structure broadly encom-
passes the results obtained from the homogeneous struc-
tures. Figure 9 displays the results for composition 3. In
the homogeneous structure tests, we experimented with
various combinations of features and classifiers for weak
learner design, selecting 2 or 3 learners with satisfactory
performance for the heterogeneous structure test.

It is noteworthy that the selected weak learners, com-

Figure 7: Same feature + Multiple classifiers. Synthetic
dataset (above) and CIFAR-10 dataset (below). Homogeneous
weak learners (left), heterogeneous weak learners (right).

Figure 8: Same classifier + Multiple features. CIFAR-10
dataset (above) and multi-modal music emotion recognition
(below). Homogeneous weak learners (left), heterogeneous
weak learners (right).

posed of features and their individual classifiers, exhib-
ited good performance in the homogeneous structure
tests. Consequently, the heterogeneous structure demon-
strated improved performance compared to the results
of the homogeneous tests such as error rate in Figure
9. However, the extent of improvement was not signif-
icant, suggesting that the overall outcome represents a
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Figure 9: Multiple features with individual classifiers. CIFAR-
10 dataset (above) and multi-modal music emotion recognition
(below). Homogeneous tests (left), Heterogeneous tests (right).

trade-off between the performances of different weak
learners rather than a clear synergy. The heterogeneous
structure did not lead to a distinct and prominent change
in performance

6. Conclusion
In this paper, we conducted experiments and analysis to
explore AdaBoost-based multi-modal learning methods.
Our findings lead to the following conclusions:

(1) The architecture of homogeneous or heterogeneous
weak learners does not significantly impact the perfor-
mance of AdaBoost.

(2) In the architecture of heterogeneous weak learners,
each weak learner contributes individual performance,
and the ensemble learning result is a trade-off among the
performances of different weak learners rather than a
synergistic effect.

(3) In multi-modal learning, each modality possesses
its own classifiers. To fully maximize the potential of
multi-modalities, it is preferable to bundle the modali-
ties with their individual classifiers as independent weak
learners for ensemble learning. However, whether ho-
mogeneous or heterogeneous architectures do not bring
about distinct change.

In future research, we plan to apply AdaBoost-based
multi-modal learning to address various challenges in the
field, such as representation, alignment, explainability,
and more. This will further demonstrate the potential and
effectiveness of AdaBoost in the context of multi-modal
learning.
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