
A Multi-Agent System for Addressing Cybersecurity Issues
in Social Networks
Antonella C. Garcia1,2,†, Maria Vanina Martinez3,*,†, Cristhian A. D. Deagustini1,† and
Gerardo I. Simari2,4,†

1Fac. de Cs. de la Administración, Universidad Nacional de Entre Ríos (UNER) and Departamento de Ciencias e Ingeniería de la Computación,
Universidad Nacional del Sur (UNS), Argentina
2Departamento de Ciencias e Ingeniería de la Computación, Universidad Nacional del Sur (UNS) & Instituto de Ciencias e Ingeniería de la
Computación (UNS–CONICET), Argentina
3Artificial Intelligence Research Institute (IIIA-CSIC), Bellaterra, Spain
4School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA

Abstract
The constant interaction of individuals on social networks and its implications in their lives, which affects decision-making and
can even impact their mental and physical health, sparks interest in studying these environments from different perspectives.
Of particular interest is the case of cyberattacks on these platforms, which includes not only low-level hacking activity but
also other events like cyberbullying, grooming, and hate speech, among others. In this paper, we investigate the design and
implementation challenges faced in the deployment of a multi-agent system that operates in social network platforms to prevent
or mitigate cyberattacks through the processing of streaming information using belief revision operations. We instantiate
the multi-agent system using the recently-proposed HEIST application framework, which guides the implementation of
hybrid socio-technical systems with a focus on explainability, and discuss the main challenges in this process. We propose
two possible approaches to building new knowledge dynamics operators: a cautious operator and a credulous operator, and
evaluate the implications and challenges in each case. In this preliminary work, we adopt a non-technical approach, focusing
on building a roadmap of the problems that need to be solved in order to develop a concrete solution, which is outside the
scope of this paper. We conclude by suggesting the first steps towards achieving the objective.

Keywords
Belief Revision, Stream Reasoning, Cybersecurity, Social Platforms

1. Introduction
Currently, people base their daily activities on continu-
ous direct or indirect interaction with information and
news from the internet. This interaction generates large
volumes of data, which are used for various purposes.
Within these purposes, those with malicious intent de-
serve special attention, since they can cause harm in
various areas, affecting the decision-making processes
of many people worldwide. This motivates research and
development closely related to efforts in cybersecurity,
understanding this area according to the general con-
ception1 that includes not only low-level information
security issues, but also human-centered factors such as
cyberbullying, hate speech, and attacks against mecha-

ENIGMA-23, September 03–04, 2023, Rhodes, Greece
*Corresponding author.
†

These authors contributed equally.
" antonella.garcia@uner.edu.ar (A. C. Garcia);
vmartinez@iiia.csic.es (M. V. Martinez);
ariel.deagustini@uner.edu.ar (C. A. D. Deagustini);
gis@cs.uns.edu.ar (G. I. Simari)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1Cybersecurity can be informally defined as “the protection of sys-
tems (including software, hardware, or humans) connected to the
internet”.

nisms that make online trust possible [1].
The U.S. Surgeon General recently published an Ad-

visory on Social Media and Youth Mental Health, which
states that:

“Extreme, inappropriate, and harmful con-
tent continues to be easily and widely acces-
sible by children and adolescents. This can
be spread through direct pushes, unwanted
content exchanges, and algorithmic designs.
In certain tragic cases, childhood deaths
have been linked to suicide- and self-harm-
related content and risk-taking challenges
on social media platforms. This content
may be especially risky for children and
adolescents who are already experiencing
mental health difficulties.” [2]

This underscores the significance of addressing cyberse-
curity issues in social media.

We now briefly discuss several problems that tend to
occur in social platforms, and therefore represent key
challenges in cybersecurity that motivate this work; this
discussion is based on [1, 3].

Mis/Disinformation: Information in social environ-
ments is not always true; the spread of misleading or

43

mailto:antonella.garcia@uner.edu.ar
mailto:vmartinez@iiia.csic.es
mailto:ariel.deagustini@uner.edu.ar
mailto:gis@cs.uns.edu.ar
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

false information is very common, causing various levels
of damage such as fake news, manipulated elections, and
stock market bubbles. Misinformation has the ability to
exploit vulnerabilities in social systems, and it can thus
be classified as a cyber threat [4]. The challenge in these
cases is to identify false or highly biased information, as
well as users who contribute to its distribution. This is
considered to be one of the most challenging threats in
social environments, as there are no automated solutions
that effectively mitigate this problem.

Cyber Attribution: Determining who is responsible
for an attack—a problem commonly referred to as cyber
attribution—is often a difficult proposition, and social
platforms are no exception. It requires great effort to
find and process evidence that can lead to attributions,
taking into account that attackers often plant false evi-
dence to cover their tracks or mislead law enforcement.
Techniques such as reverse engineering, source tracking,
and honeypots, among others [5], are commonly used to
address cyber attribution.

Bot/Botnet Detection: Botnets are sets of connected
and organized bots (automated software agents operating
within a platform typically meant only for human users)
designed to fulfill a specific objective. In this particular
case, we are interested in malicious bots that, in social
environments, have objectives such as trolling, spread-
ing false information, or generating hate speech, among
many others. To mitigate these actions, it is essential to
determine whether an account on a social platform is
being controlled by a person or a bot [6].

Adversarial Deduplication: It is not uncommon for
multiple accounts on social media to belong to or be
managed by the same real-world entity, often for the
purposes of carrying out malicious or inauthentic actions;
adversarial deduplication [7] seeks to determine which
accounts are controlled by the same real-world entity.
Various practices can be grouped under this category,
such as sock puppets, Sybil attacks, and other malicious
hacker activities. Actors in these scenarios usually seek
to remain anonymous, but often also aim to be virtually
identifiable in order to maintain a reputation within the
community.

These problems, though different in nature, share the
fact that solving or addressing them involve an effective
use of incomplete, uncertain, and even biased knowledge.
Therefore, cybersecurity is a broad area of research and
practice that requires leveraging tools to address common
issues for different types of attacks. Artificial Intelligence
is useful in this context since it provides many basic
tools that can be applied on their own or in combination
towards the development of an effective and efficient
solution. The model we propose in this work is intended
to be used in the context of social platforms in general,

allowing for systematic processing of a larger amount
of data than what humans are capable of. Our model is
an instantiation of the HEIST (Hybrid Explainable and
Interpretable Socio-Technical Systems) [8] application
framework, which provides the foundations developing
systems that are capable of offering explanations about
the decisions made.

The main goal of our model, a multi-agent system
(MAS) of Supervisor Agents, is to supervise social plat-
forms, seeking to detect malicious content and activities
and respond so as to avoid or mitigate their effect. We
now discuss two motivating domains within social plat-
forms that allow us to introduce the main functional
requirements for our approach.

Medical content. In this context a supervising system
should be able to distinguish between a post with sex-
ual content and a post that mentions sexual matters in a
medical/health context. For example, it should prevent
censorship of content related to breast cancer awareness—
this would reduce false positives of sexual content on the
social network. It could adjust alerts for dangerous/sus-
picious profiles against accounts that are whitelisted be-
cause they are known to disseminate alerts, educational
content, awareness campaigns, etc. Currently, campaigns
for breast cancer prevention cannot be freely shared as
social networks censor any image of a breast, hinder-
ing the dissemination of proper self-examination and
warning signs.

Parental control. Supervising systems can also be lever-
aged as tools that can be applied by users themselves in
specific platforms to exert personalized control. Such a
system could be conceived as an extension to be used “on
top of” the social platforms, as is the case with Google’s
Family Link2. For instance, an application for mobile
devices could, based on what is displayed on the screen,
show alerts or—in the case in which the user is a minor—
send notifications to guardians. In this case, the system
would have full access to all of the device’s activity; if
any suspicious behavior is detected, it can activate alerts
on the same device or on devices owned by guardians.
Another interesting functionality to consider is the pos-
sibility that, with prior authorization, the device’s super-
vising system send alerts to devices owned by children/-
guardians within the same class/school/interest group.
This would generate what we will refer to as a news
item for all such devices, and each corresponding agent
would have the chance to decide what to do with that
new knowledge.

The main contributions of this work are the follow-
ing: (i) The proposal of a multi-agent system designed
to address issues related to malicious behavior in social
platforms; the system is based on the instantiation of

2https://families.google/familylink/

44

https://families.google/familylink/

a recently-proposed application framework for XAI in
socio-technical systems; (ii) the definition of a novel kind
of belief dynamics operator to guide the flow of knowl-
edge within the framework, which we call stream-based
belief revision; and (iii) the identification of the hurdles
that must be overcome for the development of effective
and efficient stream-based revision operators. Though
preliminary in nature, this article is meant to serve as a
roadmap for ongoing and future research in the area of
cybersecurity in social platforms.

2. Preliminary Concepts
We now recall the basic details of two models that we
leverage in the development of our Supervisor Agent
framework.

2.1. Network Knowledge Bases
The work developed in [9, 10] on Network Knowledge
Bases (NKBs) adopts the typical model of social networks
as sets of agents with various relationships among them;
however, in NKBs each agent (a user in the social net-
work) has its own knowledge base. Each agent is rep-
resented as a vertex, and relationships are represented
as arcs between the vertices. NKBs can thus be seen
as complex multilayer networks that allow represent-
ing the individual beliefs of each network node, as well
as multiple attributes of the nodes and their relation-
ships, affording the possibility of combining models for
more than one social platform. Feeds—the pieces of in-
formation that each user sees when engaging with the
platform—are modeled as news items that represent the
source, content, and an indication of whether the user
who posted it is signaling an addition or deletion to their
own KB. In [11], the authors show that the model can
be used for predicting users’ reactions to the content in
their Twitter feed.

For the purposes of this work, we will adopt a slightly
modified model since we are not assuming that we have
full access to users’ knowledge bases. Instead of address-
ing the local belief revision problem (as is done in [9, 10]),
we focus on analyzing the activity visible by a companion
app as discussed in the examples above, which includes
a rich variety of actions and content (cf. Section 3). As
an additional novel aspect in this work with respect to
the original research line on NKBs, we also take into ac-
count time, which is central to effectively tackle problems
arising in cybersecurity domains [3].

2.2. The HEIST Application Framework
HEIST (which stands for Hybrid Explainable and Inter-
pretable Socio-Technical Systems) [3, 8] is an application

framework3 that aims to guide the implementation of
hybrid4 socio-technical systems that require explainable
outputs.

We briefly describe each of the six components, re-
ferring the reader to [8] for a full description. For an
illustration of the architecture, see Figure 4 (Section 4).

Data Ingestion: Handles the integration of data sources,
addressing basic issues like data cleaning, schema match-
ing, inconsistency, and incompleteness management. It
also deals with higher-level challenges such as trust and
uncertainty management, ensuring the proper handling
of heterogeneous data.

Subsymbolic Services: This module focuses on tasks
that are best solved using data-driven (machine learning)
services. Having such tools isolated in a module helps to
identify specific application scenarios for each service,
facilitating faster implementation, providing alternative
implementations, and the generation of explanations.

Symbolic Reasoning: High-level reasoning is key for
addressing general problems. This module, which serves
as the core of the framework, leverages preprocessed data
from the Data Ingestion Module and outputs from the
Subsymbolic Services Module. Rule-based systems are
commonly employed here to perform complex tasks like
combining low-level data and knowledge, or providing
responses based on well-defined reasoning mechanisms
over structured knowledge. The reasoning processes
implemented in this module are essential for answering
user queries.

Explanations: Generates different types of explanations
associated with query answers. It leverages outputs from
the Symbolic Reasoning module (via the Query Answer-
ing module) and the Subsymbolic Services module.

Human in the Loop: In socio-technical environments,
the system’s effectiveness relies on adequately addressing
user demands. This module aims to enhance system
performance by incorporating iterative feedback from
human users5. This feedback includes queries, responses,
explanation requests, explanation ratings, and utility-
based classification of data sources, among other options.

Query Answering: Focuses on answering user queries
by coordinating the execution of all other modules.

Next, we discuss the building blocks that will be used
later on (in Section 4) to instantiate HEIST to obtain a
specific architectural model for our Supervisor Agent
framework.
3A general-purpose software structure designed to facilitate the
development of applications via instantiations or extensions.

4The term “hybrid” refers to the combination of data-driven and
symbolic tools.

5Reinforcement Learning with Human Feedback [12, 13], is a special
case of HITL.

45

…

Alerts-KB

Platform1

SA

SAKB1

SA

SAKBn

Platformn

Figure 1: Proposed MAS for addressing cybersecurity issues
in social platforms. Each platform has a dedicated Supervisor
Agent that monitors it and interacts with central repository
Alerts-KB.

3. Towards a Supervisor Agent
Framework

In this section, we develop the proposed model, a multi-
agent system aimed at addressing cybersecurity chal-
lenges in social networking environments; Figure 1 pro-
vides an overview of the proposed system. Each agent
in the system is responsible for supervising a particu-
lar social network, and exchanges information through
a centralized knowledge base called Alerts-KB, which
serves as a repository for the agents to have up-to-date
information on security alerts arising from different so-
cial networks. Alerts-KB consolidates knowledge related
to cybersecurity events, encompassing various social net-
works regardless of their specific characteristics. This
knowledge repository is reviewed and updated based on
the information shared by each agent in the system. As
a result, the agents exchange information that enables
them to proactively address potential cybersecurity is-
sues that have already been identified in other networks.

Each supervisor agent maintains its own knowledge
base about the social network it operates in. As we will
discuss below, agents engage in belief revision processes
in order to update their own KB. Continuous belief revi-
sion processes performed by agents enable them to make
informed decisions and implement appropriate actions
in a timely manner.

Example 1. Consider the context of a social network such
as Instagram, Twitter, or Facebook. A recurring security
issue is the distribution of sexually suggestive images of
the human body. There are various security measures in
place that filter out images containing certain sensitive
content, such as uncovered body parts, including nipples.
While these measures aim to address security concerns, they
also hinder the positive uses of such images, such as breast
cancer prevention campaigns.

Consider the scenario where a user called “Medical Cen-

Amelia

Clara

Beatriz

Daniel Elsa

fo
llo

w
(F
ac
e
b
o
o
k;
1
)

Figure 2: A simple social network.

ter”, validated as a health authority, posts a video showing
a breast as part of a breast cancer prevention campaign.
In the proposed model, the intelligent agent can consult
the information about this user in the knowledge base and
determine that they consistently share legitimate medical
content. Based on this knowledge, it would be best not to
censor this particular post, since it would allow for more
effective prevention campaigns.

3.1. Modeling Social Networks
In order to address cybersecurity issues in social plat-
forms, we must be able to model users and their relation-
ships, for which we first adopt the way social networks
are modeled in [10]. According to this definition, a social
network is a tuple consisting of four elements: a finite set
of vertices, a finite set of edges, a vertex labeling function,
and an edge labeling function:

A Social Network is a 4-tuple (𝑉,𝐸, 𝑙𝑣𝑒𝑟𝑡, 𝑙𝑒𝑑𝑔𝑒) where:

1. V is a finite set whose elements are called vertices.
2. 𝐸 ⊆ 𝑉 × 𝑉 is a finite set whose elements are

called edges.
3. 𝑙vert : 𝑉 → 2𝐿𝑉 is a vertex labeling function,

where 𝐿𝑉 is a set of vertex labels.
4. 𝑙edge : 𝐸 → 2𝑇 is an edge labeling function, where

𝑇 = {⟨𝑏, 𝑤⟩ | 𝑏 ∈ 𝐿𝐸 , 𝑤 ∈ [0, 1]} and 𝐿𝐸 is a
set of edge labels.

Next, we provide a simple example of a social network.

Example 2. Consider the social network depicted in Fig-
ure 2, where the users are Amelia, Bautista, Clara, Daniel,
and Elsa. The graph encodes relationships between different
users. For example, Elsa follows Amelia and Bautista, and
she is followed by Bautista and Daniel. The relationships
may not be reciprocal, as Clara follows Daniel, but Daniel
does not follow Clara.

Considering the specific characteristics of social net-
works, it is crucial to model the different users and their
relationships, i.e., the edges and vertices of the network,

46

as well as the various interactions among them. The lat-
ter are events within the social network, and thus we
must model a continuous sequence of events that contain
relevant information for the system, which we refer to
as a data stream.

Events within the social network can take different
forms. We now mention the most common events in
these environments and their specific characteristics.
However, a particular social network may have additional
types of events beyond those mentioned here.

Post. Each time a user creates new content, a Post event
is created. This event reaches the vertices that are con-
nected to the posting vertex. It consists of: event ID,
source (publisher), text, multimedia element,
set of tags, and timestamp.

Share. Based on a Post event, a user can generate a
Share event, which means sharing the original post with
or without adding new data. Sharing increases the reach
of the original post to the vertices connected to the Share-
generating vertex. It contains the same elements as a Post
event, plus a pointer to the ID of the original post: event
ID, source (Share generator), text, multimedia
element, set of tags, pointer to original
post ID, and timestamp.

Reaction. Refers to the reactions to a post, such as
“like”, “love”, or other types of reactions depending on the
platform. This event does not increase the reach of the
original post but can influence its visibility to a greater
number of users in their feeds. It consists of: event ID,
source (Reaction generator), reaction type,
pointer to original event ID, and timestamp.

Comment. A comment is the addition of text to a pre-
viously generated post, either by the same user or an-
other user. The event data includes: event ID, source
(Comment generator), comment text, pointer to
original event ID, and timestamp.

Connection. Connections between users can be cre-
ated or removed—each such occurrence is encoded as a
Connection event (if two nodes are already connected, a
Connection event encodes the removal of the edge). The
event data includes: event ID, source, target, and
timestamp.

Figure 3 illustrates these events in the context of the
network from Figure 2.

As mentioned above, we adapt here the NKB model
presented in [9, 10]:

NKBs. A Network Knowledge Bases (NKB) is a 5-tuple
(𝑉,𝐸, 𝑙vert, 𝑙edge,𝐾) where the first four elements com-
prise a social network, and 𝐾 is a mapping assigning a
knowledge base to each vertex. Given 𝑣, 𝐾(𝑣) is called
the knowledge base associated with vertex 𝑣.

In our model, we make a slight modification: whereas
in NKBs as proposed by Gallo et al. the KB associated
with each vertex is meant to encode the corresponding
user’s private beliefs, here it will group the posts made
by that vertex and the interactions with posts from other
vertices; 𝐾(𝑣) thus contains the events generated by that
specific vertex; as shown in Figure 3, and as we discuss
below, these KBs will be referred to as “SAKBs”. Another
difference with the original NKB model is that here we
explicitly model time via the assignment of timestamps to
each event, as described above. Each event reaching ver-
tices through their feeds is assumed to do so immediately
(based on the timestamp of the original event).

Example 3. Consider again the network from Figure 2.
Based on its structure and available event data, we can
observe the reach of events that occur. For example, if
Bautista generates a Post event, it will reach the vertices
connected to it: Amelia, Daniel, and Elsa. Furthermore, if
Daniel shares the post by Bautista, it will also be seen by
Amelia and Clara, and Bautista will see the event with the
additions made by Daniel.

With the necessary tools in place for understanding
the structure of the social network and characterizing
specific aspects of the environment, we can proceed with
the definition of our framework.

3.2. Supervisor Agents
We now discuss the requirements for Supervisor Agents
(SA, for short) in our model—in Section 4 we provide
an architectural design based on the HEIST application
framework. Each SA’s objective is to provide recommen-
dations and/or make cybersecurity decisions based on
the observation of the social network’s structure that it is
monitoring, and the data stream generated by its events.
SAs operate in an alert state within the social network
they supervise, and have access both to the NKB model
of the corresponding social network and its data stream,
so it can access all the events generated by vertices in
the network.

Each agent SA𝑖 maintains its own KB, which we will
call SAKB𝑖, containing information about the social net-
work and the security alerts occurring in that particu-
lar platform. SAKB𝑖 receives information from the NKB
model of the social platform 𝑖 and its data stream. As we
will discuss in Section 5, the SA must dynamically keep
its KB up to date based on this knowledge. Furthermore,
the SA also updates its KB with security alerts from other
social platforms sent to Alerts-KB by other agents. We
propose the application of belief revision operators for
these purposes.

47

Amelia

Clara

Beatriz

Elsa

Post(p0001; Beatriz; (#*!?*#);
multimedia; [tags,Elsa]; t1)

Share(s0002; Daniel; (*##*!?);
multimedia; [tags,Elsa]; p0001; t4)

Share(s0004; Clara; (*##*!?);
multimedia; [tags,Elsa]; p0001; t11)

Share(s0003; Amelia; (*##*!?);
multimedia; [tags,Elsa]; p0001 t8)

SA

SAKB

Daniel

Figure 3: Events in social network example

Example 4. Consider the network in Figure 3. The agent
analyzes the data stream and observes that Beatriz made a
post tagging Elsa that contains offensive language.

Initially, the SA may decide to remain alert without tak-
ing action. At a later time, the SA observes that Daniel
makes offensive comments against Elsa in the original post
by Beatriz. Subsequently, Amelia and Clara share Beat-
riz’s post, adding offensive comments. Based on this be-
havior, the SA raises an alert and issues warnings to the
involved users.

Making the decisions described in Example 4 is the
central problem faced by each SA—there is a wide range
of possibilities, and exploring this in detail is outside the
scope of this paper. Different alternatives can be for-
malized as policies that the SA can carry out within its
network. Examples include simple approaches based on
thresholds (for instance, a three-strike rule that issues
alerts after allowing two violations of a posting policy), or
more complex schemes such as implementing a user clas-
sification mechanism, for instance based on user types
as described in [9], that can be used to predict behaviors
of interest.

Among the tasks that agents must carry out, we have:
(i) maintaining an updated SAKB specific to the social
network it operates in; (ii) detecting potential threats or
suspicious behaviors within the platform; (iii) sending
notifications for security-based decision-making, (iv) no-
tifying the individuals involved and the responsible party
about security measures taken, (v) sending updates of
new security alerts to the Alerts-KB, and (vi) revising
their knowledge based on updates to the Alerts-KB made
by other SAs.

Based on the available knowledge, the SA could predict
the viral effect of a post and recommend or implement
security actions such as detecting negative viral effects,
suspending users, managing the relevance level of posts,
nullifying posts, or removing fake accounts. Several is-
sues need to be addressed to enable SA’s to carry out such
tasks. In the following section we provide details regard-
ing the use of HEIST to implement supervisor agents,

and then in Section 5 we focus on how the data stream of
the social network will be processed, and how the belief
revision problem for each SA’s KB can be formulated.

4. The HEIST-SA System
We now present HEIST-SA, an extension of HEIST [3, 8]
that yields an architectural design that guides the imple-
mentation of Supervisor Agents. We choose this model
for its flexibility in combining both symbolic and sub-
symbolic tools, and because it explicitly considers expla-
nations for query answers, which is central to cybersecu-
rity applications.

In the following, we discuss the modules described in
Section 2 in the specific context of a use case based on a
typical social platform where users generate events as de-
scribed in Section 3 that must be processed in HEIST-SA.

Data Ingestion. This component receives all the activity
from the social platform, which includes all the events
generated by each vertex of the network. The stream
activity is continuous and unbounded, so this module
must deal with aspects related to stream processing such
as windowing, load shedding, etc. [14]. As these tasks
are completed, the module divides the data flow into win-
dows, which are fed to the Symbolic Reasoning module.

Sub-symbolic Services. This module provides support
in the form of basic services, such as user classification
to predict certain behaviors in users [11], determining if
posts contain hate speech, predicting virality of posts, etc.
This will allow making more relevant security decisions,
deploying specific services depending on the context,
such as image, audio, or video-based classifiers.

Symbolic Reasoning. This module takes input from
the Data Ingestion module and is thus responsible for
implementing the stream reasoning [15] aspects that we
discuss in more detail in Section 5, as well as maintain-
ing the agent’s SAKB. Concretely, the SA must perform
stream reasoning-based belief revision in its SAKB as
events occur in the social platform, seeking to detect
malicious behavior. Specifically, the module receives a
window from the stream, with which the NKB model is
updated at the same time that the sub-symbolic services
are applied to the events of that window. Rule-based
approaches such as [16], or other formalisms based on
computational logic, are good candidates for implement-
ing such functionalities.

Query Answering. The QA module is responsible for
user interaction—it coordinates the other modules to re-
spond to user queries. Different types of users need to
be distinguished, including regular users, expert users
who are part of the working team, cybersecurity experts,
and administrators of various groups within the social
network, such as groups or pages, as explored in [3].

48

Symbolic Reasoning Sub-symbolic Services

Explanations ModuleQuery Answering Module

Data
Ingestion
Module

User type classifier
Hate speech classifier
Fake news classifier

Sensitive image classifier
Sensitive video classifier

Viral content predictor
Cyberbullying risk predictor

…

SAKB

Belief Revision

Social Network Amelia
@amelia

Excellent photos that were
shared with me by @dani

Views(3)

Daniel
@dani

Good event at #costaneraCdia
Views(2)

Beatriz
@bea

Very good event at
#costaneraCdia Views(0)

Elsa
@elsa

@elsa follows @clarita

NKB

Data Stream

Window

Figure 4: Overview of HEIST-SA

Explanations. This module provides explanations for
the decisions made or actions suggested by the SA. As
the agent’s decision-making is governed by the Symbolic
Reasoning module, the Explanations module works in
conjunction with the Query Answering module (and the
Sub-symbolic Services module if it is used) to derive ex-
planations for the security decisions made so they can
be evaluated by different kinds of users.

Human in the loop. This module is responsible for
recording and responding to user feedback, which may
involve updating the SAKB, reissuing a query, maintain-
ing statistics of interest, etc. It also manages the type of
explanations presented to each type of user in the social
network, as discussed above.

Next, we will focus on the challenges specific to the
Symbolic Reasoning module, which will carry out belief
revision tasks based on inputs from the data stream.

5. Stream-based Belief Revision
Belief revision is the problem of deciding how to re-
act to epistemic inputs to a knowledge base [17, 18].

We now discuss how our agents perform belief revision
tasks based on epistemic inputs coming from the data
stream. First, we provide a more concrete definition of
data stream.

Data Stream: The data stream produced by a social
network 𝑆 is a continuous, a priori unbounded, sequence
of social network events, where each event is generated
by a vertex belonging to 𝑆.

These data streams contain information that needs to
be processed promptly to extract knowledge as soon as
relevant information becomes available [14]. The distinc-
tive feature of data streams is that in general we cannot
assume that their elements can be stored for later use.
As a first step towards solving this problem, we need to
address the processing of the data stream that the Data
Ingestion module must perform.

In the rest of this section, we first discuss basic issues
that need to be addressed when considering implementa-
tions in this setting, then formalize the statement of the
problem we wish to solve, discuss challenges that arise,
and propose two preliminary proposals for solving our
problem.

49

Peak activityData Stream

t1 t2 t3 t4 t5

Figure 5: Sliding Pane Logical Window

5.1. Information Stream Processing
Given the nature of social networks and the large volume
of data generated in short periods of time, conditions
must be established to ensure that the processing of the
data can be carried out in the best possible way. To this
end, it is necessary to evaluate how stream reasoning [15]
can be carried out in such settings so that the agent is
capable of making the best possible use of the data stream
produced by the associated social network, aiming to gain
as much information as possible and respond to events
of interest effectively. Next, we will consider different
aspects related to handling the data stream from the so-
cial network that will enter the Data Ingestion module.
As mentioned, data streams may contain inconsistencies,
so we need to ensure that these are also processed in a
way that provides the best handling of the data for the
system’s objective. Since we cannot store all the incom-
ing data, we must “discretize” the stream. We now define
various aspects of the data stream processing effort.

Firstly, we need to define the datamodel, which refers
to how information is represented. The data stream is
comprised of events represented as tuples whose struc-
ture depends on the specific type of event, as discussed in
Section 3. In summary, we have the following five types
of event:

• Connection: ⟨event_id, user1, user2, time⟩
• Post: ⟨event_id, user_src, text, media_elem,

tag_set, time⟩
• Share: ⟨event_id, user_src, text, media_elem,

tag_set, post_id, time⟩
• Reaction: ⟨event_id, user_src, react_type,

orig_event, time⟩
• Comment: ⟨event_id, user_src, text,

orig_event, time⟩

Once the data model is established, the next relevant
aspect for data stream processing in our context is to
consider windows, which is the construct typically used
to discretize streams [14]. In our case, they will allow us
to limit the scope of the revision operators.

Window: A subset of events from a data stream selected
according to a given criterion.

Windows can be either logical, which implement a
selection criterion based on bounds over timestamps,
or physical, which work with prefixed bounds on the

Peak activity
Data Stream

t1 t2 t3 t4 t5 t6

Figure 6: Sliding Pane Physical Window

number of tuples to be considered. A second factor that
needs to be addressed is how the bounds of the windows
will be updated, which corresponds to how the window
“moves” with time. Here, we will adopt the more general
case of the sliding window, where both lower and upper
bounds advance with the arrival of new items or the
passage of time. A special case of this is the tumbling
window, in which all items change each time the bounds
are updated.

We now analyze the strengths and weaknesses associ-
ated with two types of windows, both of which are valid
options for discretizing the social platform data streams.

Sliding pane logical window: In this case, windows are
specified by a fixed time interval, allowing us to know
the processing schedule—Figure 5 illustrates this case. A
problem with this approach is that windows may become
overloaded with data during peak activity, which can
result in processing time that is greater than the validity
of the window itself.

Sliding pane physical window: In this case, we cannot
predict the speed at which the window is updated since
it depends on the number of tuples that arrive in the
stream (cf. Figure 6). The advantage, of course, is that by
knowing the number of items in each window, we can
estimate how long it will take to process each window.
On the other hand, we do not know now the frequency at
which the window will be updated, which can again lead
to problems during peak activity, as a large number of
elements need to be processed in a short period of time
and this may not be possible.

These two cases show that the processing model needs
to define a load shedding policy [14], which essentially
decides how to deal with data bursts or spikes in the
stream by ignoring some of the tuples. In the general
case in which several social platforms are involved, it
seems unavoidable that such a policy be used since the
volume of data streams varies depending on the number
of active users on the platform at a given time, resulting
in increased data volume during peak activity. In fu-
ture work, we plan to study more precisely under which
conditions each of these discretizations is most suitable
for our system, what the impact of each one is in terms
of effectiveness, and whether hybrid solutions might be
possible.

50

Other challenges related to streamprocessing. There
are several challenges that need to be addressed in this
context. First, we need to establish the relationship be-
tween items and the passage of time so that some kind of
order among the items can be established. In cybersecu-
rity applications, it is crucial to know when an incident
originated and who replicated or amplified it. In our case,
though items have timestamps, these may be fixed either
at the origin by the social platform itself or, when this
is not the case, by the Data Ingestion module as events
are read. Related to this issue, in stream processing items
may arrive out of order, meaning that we receive an item
after receiving others that have a more recent timestamp.
This has been studied recently in the Databases commu-
nity [19], and it is important to study it in this setting
as well.

Other important challenges involve providing support
for uncertainty. Agents should be able to handle inputs
with uncertainty, as they may for instance encounter in-
sults in a post that may not necessarily indicate an attack
but rather a playful interaction between two users. Addi-
tionally, SAs need to support outputs with uncertainty
since alerts generated may not always indicate a real
problem.

5.2. Belief Revision: Problem Statement
Let K be an SAKB and 𝑤 a window belonging to data
stream DS of the social network SN. We wish to define a
stream-based belief revision operator 𝜖 as a function that
takes 𝐾 and 𝑤 and produces a new SAKB 𝐾′:

K′ = 𝜖(K, 𝑤)

That is, K′ is obtained by applying operator 𝜖 to the orig-
inal K with epistemic inputs from 𝑤 arising from data
stream DS.

Assuming a scenario with no computational resource
limitations, applying 𝜖 would result in a consistent and
updated K that could be handled with existing belief
revision operators. However, this ideal scenario is not
possible since in general we may not have enough time
to process each window. Our system must therefore have
principled mechanisms for deciding which elements in
the window will not processed, and for this to be effective
we must study how that impacts the result.

In the following section, we discuss several challenges
that arise in practice: (i) real-time processing, (ii) out-of-
order events, and (iii) event overload during peak activity.
Given that classical belief revision operators—such as [17,
20, 21, 22, 23]—are not designed to work in this setting,
their direct application would lead to one or more of such
requirements to not be met.

5.3. Challenges in Stream-based Belief
Revision

Though in abstract the stream-based belief revision prob-
lem is straightforward—simply apply a belief revision op-
erator to the current window and continue doing so each
time it is updated—things fall apart when we consider the
challenges described above that arise when processing
data streams. For instance, events in the stream may ar-
rive out of order; applying an operator with incomplete
information can generate different results than if we have
all the information in a timely manner, and by the time
the remaining data arrives it may be too late to correct
the mismatch. Therefore, policies for handling out of
order events will play a crucial role in deriving effective
solutions to this problem, and their properties need to be
thoroughly studied.

Since belief revision operators tend to be computation-
ally costly [24], this leads to the problem of overload in
windows where the volume of events is large or where
windows are updated within short periods of time. While
the operator processes the current window, an update
may occur and the Supervisor Agent in this case would
fall behind, causing a bottleneck in the operator and an
outdated knowledge base. There are essentially three
ways in which we may deal with this situation. First,
as discussed above, we may implement a load shedding
policy that simply chooses which elements are ignored so
that the operator finishes in time. A second option is to
develop a suite of operators, ranging from a lightweight
option suitable for heavy loads to an ideal one that may
be applied when time is available. Finally, as a compro-
mise solution, we may consider developing something
akin to “second order windows” where unprocessed ele-
ments are saved for later processing—though additional
cost is incurred in terms of space, and results will not be
available in a timely manner, correctness is not sacrificed.

Next, we describe a preliminary proposal in the form
of two possible options for simple operators to address
these challenges.

5.4. First Steps towards a Solution
To tackle the challenges identified above, we may con-
sider two possibilities: (i) ignoring the unprocessed events
(i.e., not addressing them at all), and (ii) allowing the KB
to accept inconsistency by incorporating the unprocessed
events.

These two options represent distinct semantic deci-
sions that we discuss below. Note that depending on the
specific system load there may be windows in which all
events can be processed resulting in the updated SAKB.
We focus on the interesting case that corresponds to sit-
uations where the available time for window processing
may be insufficient to process all events contained in the

51

SAKB

Cautious
operator

Cautious
operator

Cautious
operator

Cautious
operator

Cautious
operator

Unprocessed events

Data Stream

t1 t2 t3 t4 t5

Figure 7: Discarding unprocessed knowledge from window.

window.
In the following, in order to be able to use classical

revision operators, we simplify the knowledge represen-
tation model and assume SAKBs and 𝑤 are formulas in
a propositional language ℒ. Furthermore, let 𝑃 (𝑤) rep-
resent the set of elements in window 𝑤 that have been
processed so far, and 𝑈(𝑤) = 𝑤∖𝑃 (𝑤) represent the set
of elements in window 𝑤 that have not been processed.

Option 1: Ignore unprocessed events

Let “*” be a classical multiple revision op-
erator; a cautious operator Υ can be de-
fined as follows:

Υ(K, 𝑤) = K * 𝑃 (𝑤)

If the unprocessed knowledge (𝑈(𝑤)) from the current
window is discarded, the SAKB will be consistent, and
consequently, queries can be resolved using classical rea-
soning. This simplifies the processing of the SAKB, but it
results in partial knowledge, since a significant number
of events may be left out. This could include a multi-
tude of attacks or events that could indicate potential
threats, which would not be processed by the SA. This is
illustrated in Figure 7.

Consider a scenario where a user on the social net-
work is being targeted by other users, such as a case of
cyberbullying. Since the SA does not process all of the
events, it may only see a fraction of the comments and
overlook the attack. Let’s say there were 50 comments
in the window, but the agent only processed 10 of them,
along with other unrelated events. If we consider an
agent that takes action when it detects 30 offensive com-
ments, by processing only 10 comments, it would miss
identifying the attack. This simple example highlights
the drawbacks of this decision.

Option 2: Allow inconsistency by incorporating the un-
processed events

Let “*” be a classical multiple revision op-
erator, and “+” be a classical expansion

SAKB

Credulous
operator

Credulous
operator

Credulous
operator

Credulous
operator

Credulous
operator

Data Stream

t1 t2 t3 t4 t5

Figure 8: Incorporating unevaluated knowledge into K.

operator; a credulous operator Φ can be
defined as follows:

Φ(K, 𝑤) = K * 𝑃 (𝑤) + 𝑈(𝑤)

In this case, we incorporate the unevaluated knowledge
into the SAKB, and it may therefore become inconsistent
as a result (cf. Figure 8). Though this deals with the prob-
lem initially, it pushes the issue to the Query Answering
module, which must apply costly inconsistency-tolerant
methods in order to function properly.

By incorporating unevaluated data into the SAKB, we
may include information that appears to be a threat but
is actually not. For example, we may have comments
in a post that contain inappropriate words, but due to
the existing relationship between the involved parties
and the stored knowledge, it may be consistent with their
way of communicating. These comments could be insults
used in a playful manner and therefore do not represent a
real attack. Since the SA could not evaluate this event and
it was incorporated directly into the SAKB, this incident
may play a role it wouldn’t have if the window had been
processed fully.

In this case, the problem is pushed to the QA module
since decisions made by the agent will be “contaminated”
by unevaluated data. For instance, it would be necessary
to define the level of confidence in the information pro-
vided by the AS. We could establish a semantics based on
trust for conflict resolution. To achieve this, a measure
indicating the level of confidence should be assigned to
each piece of information and updated in each applica-
tion of the revision operator. One possibility would be
to consider a form of stratified SAKB [25, 23], where all
the processed data forms the “hard” layer with a high
level of confidence, and then having layers containing
the unevaluated data from each window, potentially with
different levels of confidence associated.

These operators could address the issue of event over-
load during peak activity, allowing (near) real-time pro-
cessing. However, the policy for handling out-of-order

52

events still needs to be defined. To implement these oper-
ators, as future work, we need to define new postulates
and constructs that allow us to apply belief revision in
these environments. One possibility is to consider the
possibility of defining postulates that do not necessarily
have to be fully satisfied, but rather think about degrees
of satisfaction that provide flexibility to better character-
ize real-world environments.

6. Conclusions and Future Work
In this work, we discuss the need to address cybersecurity
issues in social networks, and develop a preliminary pro-
posal for a multi-agent system based on the instantiation
of a recently-proposed application framework. Since the
system works with data streams comprised of the events
that occur within the social platforms being inspected,
we argue that stream-based belief revision operators are
at the heart of effective solutions to this problem. We
discuss the need to make different decisions regarding
the way in which the data stream is processed via win-
dow operators, such as the type of window to use and
the implications of defining their size and update criteria,
and identify several challenges that must be overcome
in the path to effective and efficient solutions. We illus-
trate these challenges by presenting two operators based
on classical belief revision, showing how they may not
behave as expected.

Future work in this research line involves defining pos-
tulates that are especially designed for this setting, as
well as constructions of operators based on (subsets) of
these postulates. Given the practical motivation of this
work, we also intend to design and carry out adequate em-
pirical studies to validate the results obtained. Finally, we
believe that this line of research—as well as any software
products that are built based on it—would benefit from
following guidelines towards achieving trustworthiness
by design6.

Acknowledgments
This work was funded in part by Universidad Nacional
del Sur (UNS) under grant PGI 24/ZN057, Secretaría de In-
vestigación Científica y Tecnológica FCEN–UBA (RESCS-
2020-345-E-UBA-REC), Universidad Nacional de Entre
Ríos under grant PDTS-UNER 7066, CONICET under the
grant PIP (11220200101408CO), and Agencia Nacional
de Promoción Científica y Tecnológica, Argentina under
grants PICT-2018-0475 (PRH-2014-0007) and PICT-2020
SERIE A-01481.

6http://tailor.isti.cnr.it/handbookTAI/TAILOR.html

References
[1] G. I. Simari, From data to knowledge engineering

for cybersecurity, in: S. Kraus (Ed.), Proceedings of
the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, ijcai.org, 2019, pp. 6403–6407.

[2] OSG, Social media and youth mental
health: The US Surgeon General’s ad-
visory, Online (accessed 9-June-2023) –
https://www.hhs.gov/sites/default/files/
sg-youth-mental-health-social-media-advisory.
pdf, 2023.

[3] J. Paredes, J. C. Teze, M. V. Martinez, G. I. Simari,
The HEIC application framework for implement-
ing xai-based socio-technical systems, Online Soc.
Networks Media 32 (2022) 100239. URL: https://doi.
org/10.1016/j.osnem.2022.100239. doi:10.1016/j.
osnem.2022.100239.

[4] K. M. Caramancion, An exploration of disinforma-
tion as a cybersecurity threat, in: 2020 3rd Inter-
national Conference on Information and Computer
Technologies (ICICT), IEEE, 2020, pp. 440–444.

[5] E. Nunes, P. Shakarian, G. I. Simari, A. Ruef, Artifi-
cial intelligence tools for cyber attribution, Springer
(2018).

[6] E. Ferrara, O. Varol, C. Davis, F. Menczer, A. Flam-
mini, The rise of social bots, Communications of
the ACM 59 (2016) 96–104.

[7] J. Paredes, G. I. Simari, M. V. Martinez, M. A.
Falappa, First steps towards data-driven adversarial
deduplication, Information 9 (2018) 189.

[8] J. C. L. Teze, J. Paredes, M. V. Martinez,
G. I. Simari, Engineering user-centered ex-
planations to query answers in ontology-driven
socio-technical systems, Semantic Web (2023)
1–30 (In Press). URL: https://content.iospress.
com/articles/semantic-web/sw233297. doi:DOI:10.
3233/SW-233297.

[9] F. R. Gallo, G. I. Simari, M. V. Martinez, M. A.
Falappa, N. A. Santos, Reasoning about sentiment
and knowledge diffusion in social networks, IEEE
Internet Comput. 21 (2017) 8–17.

[10] F. R. Gallo, G. I. Simari, M. V. Martinez, N. A. Santos,
M. A. Falappa, Local belief dynamics in network
knowledge bases, ACM Transactions on Computa-
tional Logic (TOCL) 23 (2021) 1–36.

[11] F. R. Gallo, G. I. Simari, M. V. Martinez, M. A.
Falappa, Predicting user reactions to twitter feed
content based on personality type and social cues,
Future Generation Computer Systems 110 (2020)
918–930.

[12] W. B. Knox, P. Stone, Augmenting reinforce-
ment learning with human feedback, in: ICML
2011 Workshop on New Developments in Imitation

53

https://www.hhs.gov/sites/default/files/sg-youth-mental-health-social-media-advisory.pdf
https://www.hhs.gov/sites/default/files/sg-youth-mental-health-social-media-advisory.pdf
https://www.hhs.gov/sites/default/files/sg-youth-mental-health-social-media-advisory.pdf
https://doi.org/10.1016/j.osnem.2022.100239
https://doi.org/10.1016/j.osnem.2022.100239
http://dx.doi.org/10.1016/j.osnem.2022.100239
http://dx.doi.org/10.1016/j.osnem.2022.100239
https://content.iospress.com/articles/semantic-web/sw233297
https://content.iospress.com/articles/semantic-web/sw233297
http://dx.doi.org/DOI: 10.3233/SW-233297
http://dx.doi.org/DOI: 10.3233/SW-233297

Learning (July 2011), volume 855, 2011, p. 3.
[13] P. F. Christiano, J. Leike, T. Brown, M. Martic,

S. Legg, D. Amodei, Deep reinforcement learn-
ing from human preferences, Advances in neural
information processing systems 30 (2017).

[14] G. Cugola, A. Margara, Processing flows of informa-
tion: From data stream to complex event processing,
ACM Computing Surveys (2012).

[15] E. Della Valle, S. Ceri, F. Van Harmelen, D. Fensel,
It’s a streaming world! reasoning upon rapidly
changing information, IEEE Intelligent Systems
24 (2009) 83–89.

[16] A. Ronca, M. Kaminski, B. C. Grau, I. Horrocks,
The delay and window size problems in rule-based
stream reasoning, Artificial Intelligence 306 (2022)
103668.

[17] C. E. Alchourrón, P. Gärdenfors, D. Makinson, On
the logic of theory change: Partial meet contraction
and revision functions, The journal of symbolic
logic 50 (1985) 510–530.

[18] P. Gärdenfors, Knowledge in flux: Modeling the
dynamics of epistemic states., The MIT press, 1988.

[19] M. Fragkoulis, P. Carbone, V. Kalavri, A. Kat-
sifodimos, A survey on the evolution of
stream processing systems, arXiv preprint
arXiv:2008.00842. (2020). doi:https://doi.org/
10.48550/arXiv.2008.00842.

[20] S. O. Hansson, Kernel contraction, Journal of
Symbolic Logic 59 (1994) 845–859. doi:10.2307/
2275912.

[21] L. Amgoud, S. Kaci, An argumentation framework
for merging conflicting knowledge bases: The pri-
oritized case, in: Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty: 8th Euro-
pean Conference, ECSQARU 2005, Barcelona, Spain,
July 6-8, 2005. Proceedings 8, Springer, 2005, pp.
527–538.

[22] J. P. Delgrande, D. Dubois, J. Lang, Iterated revision
as prioritized merging., KR 6 (2006) 210–220.

[23] M. A. Falappa, G. Kern-Isberner, M. D. Reis, G. R.
Simari, Prioritized and non-prioritized multiple
change on belief bases, Journal of Philosophical
Logic 41 (2012) 77–113.

[24] P. Liberatore, M. Schaerf, Belief revision and up-
date: Complexity of model checking, Journal
of Computer and System Sciences 62 (2001) 43–
72. URL: https://www.sciencedirect.com/science/
article/pii/S0022000000916982. doi:https://doi.
org/10.1006/jcss.2000.1698.

[25] G. Brewka, Preferred subtheories: An extended
logical framework for default reasoning., 1989, pp.
1043–1048.

54

http://dx.doi.org/https://doi.org/10.48550/arXiv.2008.00842
http://dx.doi.org/https://doi.org/10.48550/arXiv.2008.00842
http://dx.doi.org/10.2307/2275912
http://dx.doi.org/10.2307/2275912
https://www.sciencedirect.com/science/article/pii/S0022000000916982
https://www.sciencedirect.com/science/article/pii/S0022000000916982
http://dx.doi.org/https://doi.org/10.1006/jcss.2000.1698
http://dx.doi.org/https://doi.org/10.1006/jcss.2000.1698

	1 Introduction
	2 Preliminary Concepts
	2.1 Network Knowledge Bases
	2.2 The HEIST Application Framework

	3 Towards a Supervisor Agent Framework
	3.1 Modeling Social Networks
	3.2 Supervisor Agents

	4 The HEIST-SA System
	5 Stream-based Belief Revision
	5.1 Information Stream Processing
	5.2 Belief Revision: Problem Statement
	5.3 Challenges in Stream-based Belief Revision
	5.4 First Steps towards a Solution

	6 Conclusions and Future Work

