
Scalable Probabilistic Routes⋆

Suwei Yang1,2,*, Victor C. Liang2 and Kuldeep S. Meel1

1National University of Singapore
2Grabtaxi Holdings

Abstract
Inference and prediction of routes have become of interest over the past decade owing to a dramatic increase in package delivery
and ride-sharing services. Given the underlying combinatorial structure and the incorporation of probabilities, route prediction
involves techniques from both formal methods and machine learning. One promising approach for predicting routes uses
decision diagrams that are augmented with probability values. However, the effectiveness of this approach depends on the
size of the compiled decision diagrams. The scalability of the approach is limited owing to its empirical runtime and space
complexity. In this work1, our contributions are two-fold: first, we introduce a relaxed encoding that uses a linear number of
variables with respect to the number of vertices in a road network graph to significantly reduce the size of resultant decision
diagrams. Secondly, instead of a stepwise sampling procedure, we propose a single pass sampling-based route prediction. In
our evaluations arising from a real-world road network, we demonstrate that the resulting system achieves around twice the
quality of suggested routes while being an order of magnitude faster compared to state-of-the-art.

Keywords
Routing, Decision diagram, Knowledge Compilation, Sampling

1. Introduction
The past decade has witnessed an unprecedented rise of
the service economy, best highlighted by the prevalence of
delivery and ride-sharing services [1, 2]. For operational
and financial efficiency, a fundamental problem for such
companies is the inference and prediction of routes taken
by the drivers. When a driver receives a job to navigate
from location A to B, the ride-sharing app needs to predict
the route in order to determine: (1) the trip time, which
is an important consideration for the customer, (2) the
fare, important consideration for both the driver and the
customer, and (3) the trip experience since customers
feel safe when the driver takes the route described in
their app [3, 4]. However the reality is that drivers and
customers have preferences, as such the trips taken are
not always the shortest possible by distance or time [5].
To this end, delivery and ride-sharing service companies
have a need for techniques that can infer the distribution
of routes and efficiently predict the likely route a driver
takes for a given start and end location.

Routing, a classic problem in computer science, has
traditionally been approached without considering the
learning of distributions [6, 7]. However, Choi, Shen, and
Darwiche demonstrated through a series of papers that the
distribution of routes can be conceptualized as a structured
probability distribution (SPD) given the underlying com-
binatorial structure [8, 9, 10]. Decision diagrams, which
are particularly well-suited for representing SPDs, have

ENIGMA-23, September 03–04, 2023, Rhodes, Greece
⋆

This is an existing work published in LPAR-24.
*Corresponding author.

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

emerged as the state-of-the-art approach for probability
guided routing. The decision diagram based approach
allows for learning of SPDs through the use of decision
diagrams augmented with probability values, followed by
a stepwise process for uncovering the route node by node.

However, scalability remains a challenge when using
decision diagrams to reason about route distributions, par-
ticularly for large road networks. Existing works address
this concern in various ways, such as through the use of
hierarchical diagrams [8] and Structured Bayesian Net-
works [9]. Choi et al. [8] partition the structured space into
smaller subspaces, with each subspace’s SPD being repre-
sented by a decision diagram. Shen et al. used Structured
Bayesian Networks to represent conditional dependencies
between sets of random variables, with the distribution
within each set of variables represented by a conditional
Probabilistic Sentential Decision Diagram (PSDD) [9, 10].
Despite these efforts, the scalability of decision diagrams
for routing, in terms of space complexity, remains an open
issue [11].

The primary contribution of this work is to tackle the
scalability challenges faced by the current state-of-the-
art approaches. Our contributions are two-fold: first, we
focus on minimizing the size of the compiled diagram
by relaxation and refinement. In particular, instead of
learning distributions over the set of all valid routes, we
learn distributions over an over-approximation, perform
sampling followed by refinement to output a valid route.
Secondly, instead of a stepwise sampling procedure, we
perform one-pass sampling by adapting existing sampling
algorithm [12] to perform conditional sampling. Our ex-
tensive empirical evaluation over benchmarks arising from
real-world publicly available road network data demon-
strates that our approach, called ProbRoute, is able to

64

https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

handle real-world instances that were clearly beyond the
reach of the state-of-the-art. Furthermore, on instances
that can be handled by prior state-of-the-art, ProbRoute
achieves a median of 10× runtime performance improve-
ments.

2. Background
In the remaining parts of this work we will discuss how to
encode simple, more specifically simple trips, in a graph
using Boolean formulas. In addition, we will also discuss
decision diagrams and probabilistic reasoning with them.
In this section, we introduce the preliminaries and back-
ground for the rest of the paper. To avoid ambiguity, we
use vertices to refer to nodes of road network graphs and
nodes to refer to nodes of decision diagrams.

2.1. Preliminaries
Simple Trip Let 𝐺 be an arbitrary undirected graph,
a path on 𝐺 is a sequence of connected vertices
𝑣1, 𝑣2, ..., 𝑣𝑚 of 𝐺 where ∀𝑚−1

𝑖=1 𝑣𝑖+1 ∈ 𝑁(𝑣𝑖), with
𝑁(𝑣𝑖) referring to neighbours of 𝑣𝑖. A path 𝜋 does not
contain loops if ∀𝑣𝑖,𝑣𝑗∈𝜋𝑣𝑖 ̸= 𝑣𝑗 . 𝜋 does not contain
detour if ∀𝑣𝑖,𝑣𝑗 ,𝑣𝑘,𝑣𝑙∈𝜋𝑣𝑗 ̸∈ 𝑁(𝑣𝑖)∨ 𝑣𝑘 ̸∈ 𝑁(𝑣𝑖)∨ 𝑣𝑙 ̸∈
𝑁(𝑣𝑖). Path 𝜋 is a simple path if it does not contain
loops. A simple path 𝜋 is a simple trip if it does not
contain detours. We denote the set of all simple trips in
𝐺 as SimpleTrip(𝐺). In Figure 1, d-e-h is a simple trip
whereas d-e-f-c-b-e-h and d-e-f-i-h are not because they
contain a loop and a detour respectively. We use Term(𝜋)
to refer to the terminal vertices of path 𝜋.

𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

𝑔 ℎ 𝑖

Figure 1: A 3 × 3 grid graph

Probabilistic Routing Problem In this paper, we
tackle the probabilistic routing problem which we define
as the following. Given a graph 𝐺 of an underlying road
network, training and testing data 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑡𝑒𝑠𝑡, start
and end vertices 𝑠, 𝑡, sample path 𝜋 from 𝑠 to 𝑡 such
that 𝜀-match rate with ground truth path 𝜋′ ∈ 𝐷𝑡𝑒𝑠𝑡 is
maximized. We define 𝜀-match rate between 𝜋 and 𝜋′

as |𝑈𝑐𝑙𝑜𝑠𝑒(𝜋)| ÷ |𝑈 | where 𝑈 is the set of vertices of 𝜋′

and 𝑈𝑐𝑙𝑜𝑠𝑒(𝜋) is the set of vertices of 𝜋′ that are within
𝜀 euclidean distance away from the nearest vertex in 𝜋.
More details on 𝜀 will be discussed in Section 4.

Boolean Formula A Boolean variable can take values
true or false. A literal 𝑥 is a Boolean variable or its
negation. Let 𝐹 be a Boolean formula. 𝐹 is in conjunctive
normal form (CNF) if 𝐹 is a conjunction of clauses, where
each clause is a disjunction of literals. 𝐹 is satisfiable if
there exists an assignment 𝜏 of the set of variables 𝑋
of 𝐹 such that 𝐹 evaluates to true. We refer to 𝜏 as a
satisfying assignment of 𝐹 and denote the set of all 𝜏 as
Sol(𝐹). In the remaining parts of this paper, all formulas
and variables are Boolean unless stated otherwise.

Decision Diagrams Decision diagrams are directed
acyclic graph (DAG) representations of logical formulas
under the knowledge compilation paradigm. Decision
diagrams are designed to enable the tractable handling
of certain types of queries, that is the queries can be an-
swered in polynomial time with respect to the number of
nodes in the diagram [13]. We use diagram size to refer to
the number of nodes in a decision diagram. In this work
we use the OBDD[∧] [14] variant of OBDD, more specif-
ically Probabilistic OBDD[∧] (PROB) [12], for which
there are existing efficient sampling algorithm. We will
discuss the PROB decision diagram in later sections.

2.2. Related Works
The continuous pursuit of compact representations by the
research community has resulted in several decision dia-
gram forms over the years. Some of the decision diagram
forms include AOMDD for multi-valued variables, OBDD
and SDD for binary variables [15, 16, 17]. Both OBDD
and SDD are canonical representations of Boolean for-
mulas given variable ordering for OBDD and Vtree for
SDD respectively. OBDD [15] is comprised of internal
nodes that correspond to variables and leaf nodes that
correspond to ⊤ or ⊥. Each internal node of OBDD have
exactly two child and represents the Shannon decompo-
sition [18] on the variable represented by that internal
node. SDDs are comprised of elements and nodes [16].
Elements represent conjunction of a prime and a sub, each
of which can either be a terminal SDD or a decomposition
SDD. A decomposition SDD is represented by a node
with child elements representing the decomposition. A
terminal SDD can be a literal, ⊤ or ⊥. The decomposi-
tions of SDDs follow that of the respective Vtree, which is
a full binary decision tree of Boolean variables in the for-
mula. In this work, we use the OBDD[∧] [14] variant of
OBDD, which is shown to be theoretically incomparable
but empirically more succinct than SDDs [14].

A related development formulates probabilistic circuits
[19], based on sum-product networks [20] and closely
related to decision diagrams, as a special class of neural
networks known as Einsum networks [21]. In the Einsum
network structure, leaf nodes represent different gaussian
distributions. By learning from data, Einsum networks are

65

able to represent SPDs as weighted sums and mixtures of
gaussian distributions. Einsum networks address scalabil-
ity by utilizing tensor operations implemented in existing
deep learning frameworks such as PyTorch [22]. Our work
differs from the Einsum network structure, we require the
determinism property for decision diagrams whereas the
underlying structure for Einsum network lacks this prop-
erty. We will introduce the determinism property in the
following section.

Various Boolean encodings have been proposed for rep-
resenting paths within a graph, including Absolute, Com-
pact, and Relative encodings [23]. These encodings cap-
ture both the vertices comprising the path and the ordering
information of said vertices. However, these encodings
necessitate the use of polynomial number of Boolean vari-
ables, specifically |𝑉 |2, |𝑉 |𝑙𝑜𝑔2|𝑉 |, and 2|𝑉 |2 variables
for Absolute, Compact, and Relative encoding respec-
tively. While these encodings accurately represent the
space of paths within a graph, they are not efficient and
lead to high space and time complexity for downstream
routing tasks.

Choi, Shen, and Darwiche demonstrated over a series
of papers that the distribution of routes can be concep-
tualized as a structured probability distribution (SPD)
given the underlying combinatorial structure [8, 9, 10].
This approach, referred to as the ‘CSD’ approach in the
rest of this paper, builds on top of existing approaches
that represents paths using zero-surpressed decision dia-
grams [24, 25, 26]. The CSD approach utilizes sentential
decision diagrams to represent the SPD of paths and em-
ploys a stepwise methodology for handling path queries.
Specifically, at each step, the next vertex to visit is deter-
mined to be the one with the highest probability, given the
vertices already visited and the start and destination ver-
tices. While the CSD approach has been influential in its
incorporation of probabilistic elements in addressing the
routing problem, it is not without limitations. In particular,
there are two main limitations (1) there are no guarantees
of completion, meaning that even if a path exists between
a given start and destination vertex, it may not be returned
using the CSD approach [8]. (2) the stepwise routing pro-
cess necessitates the repeated computation of conditional
probabilities, resulting in runtime inefficiencies.

In summary, the limitations of prior works are Boolean
encodings that require a high number of variables, lack of
routing task completion guarantees, and numerous condi-
tional probability computations.

2.3. PROB: Probabilistic OBDD[∧]
In this subsection, we will introduce the PROB (Proba-
bilistic OBDD[∧]) decision diagram structure and proper-
ties. We adopt the same notations as prior work [12] for
consistency.

Notations We use nodes to refer to nodes in PROB 𝜓
and vertices to refer to nodes in graph 𝐺(𝑉,𝐸) to avoid
ambiguity. Child(𝑛) refers to the children of node 𝑛.
Hi(𝑛) refers to the hi child of decision node 𝑛 and Lo(𝑛)
refers to the lo child of 𝑛. 𝜃Hi(𝑛) and 𝜃Lo(𝑛) refer to the
parameters associated with the edge connecting decision
node 𝑛 with Hi(𝑛) and Lo(𝑛) respectively in a PROB.
Var(𝑛) refers to the associated variable of decision node 𝑛.
VarSet(𝑛) refers to the set of variables of 𝐹 represented
by a PROB with 𝑛 as the root node. Subdiagram(𝑛)
refers to the PROB starting at node 𝑛. Parent(𝑛) refers
to the immediate parent nodes of 𝑛 in PROB.

PROB Structure Let 𝜓 be a PROB which represents
a Boolean formula 𝐹 . 𝜓 is a DAG comprising of four
types of nodes - conjunction node, decision node, true
node, and false node.

A conjunction node (or ∧-node) 𝑛𝑐 splits Boolean for-
mula 𝐹 into different sub-formulas, i.e. 𝐹 = 𝐹1 ∧ 𝐹2 ∧
... ∧ 𝐹𝑗 . Each sub-formula is represented by a PROB
rooted at the corresponding child node of 𝑛𝑐, such that
the set of variables in each of 𝐹1, 𝐹2, ..., 𝐹𝑗 are mutually
disjoint.

A decision node 𝑛𝑑 corresponds to a Boolean variable
𝑥 and has exactly two child nodes, Hi(𝑛𝑑) and Lo(𝑛𝑑).
Hi(𝑛𝑑) represents the decision to set 𝑥 to true and Lo(𝑛𝑑)
represents otherwise. We use Var(𝑛𝑑) to refer to the
Boolean variable 𝑥 that decision node 𝑛𝑑 is associated
with in 𝐹 . Each branch of 𝑛𝑑 has an associated parameter,
and the branch parameters of 𝑛𝑑 sum up to 1.

The leaf nodes of PROB 𝜓 are true and false nodes.
An assignment 𝜏 of Boolean formula 𝐹 is a traversal of
the PROB from the root node to the leaf node, we denote
such a traversal as Rep𝜓(𝜏). At each decision node 𝑛𝑑,
the traversal follows the value of variable Var(𝑛𝑑) in 𝜏 .
At each conjunction node, all child branches are traversed.
A satisfying assignment of 𝐹 will result in a traversal from
root to leaf nodes where only the true nodes are visited.
If a traversal leads to a false node at any point, then the
assignment is not a satisfying assignment.

𝑥

𝑦 𝑧

⊤⊥

𝑛1

𝑛2 𝑛3

𝑛4 𝑛5

𝜃Hi(𝑛2)𝜃Lo(𝑛2) 𝜃Hi(𝑛3) 𝜃Lo(𝑛3)

𝜃Lo(𝑛1) 𝜃Hi(𝑛1)

Figure 2: A PROB 𝜓1 representing 𝐹 = (𝑥∨𝑦)∧(¬𝑥∨¬𝑧)

An assignment of Boolean formula 𝐹 is represented by

66

a top-down traversal of a PROB compiled from 𝐹 . For
example, we have a Boolean formula 𝐹 = (𝑥∨𝑦)∧(¬𝑥∨
¬𝑧), represented by the PROB 𝜓1 in Figure 2. When 𝑥
is assigned true and 𝑧 is assigned false, 𝐹 will evaluate to
true. If we have a partial assignment 𝜏 , we can perform
inference conditioned on 𝜏 if we visit only the branches
of decision nodes in 𝜓 that agree with 𝜏 . This allows for
conditional sampling, which we discuss in Section 3.

PROB inherits important properties of OBDD[∧] that
are useful to our algorithms in later sections. The proper-
ties are - determinism, decomposability, and smoothness.

Property 1 (Determinism). For every decision node 𝑛𝑑,
the set of satisfying assignments represented by Hi(𝑛𝑑)
and Lo(𝑛𝑑) are logically disjoint

Property 2 (Decomposability). For every conjunction
node 𝑛𝑐, VarSet(𝑐𝑖) ∩ VarSet(𝑐𝑗) = ∅,∀𝑐𝑖, 𝑐𝑗 ∈
Child(𝑛𝑐), 𝑐𝑖 ̸= 𝑐𝑗

Property 3 (Smoothness). For every decision node 𝑛𝑑,
VarSet(Hi(𝑛𝑑)) = VarSet(Lo(𝑛𝑑))

In the rest of this paper, all mentions of PROB refer
to smooth PROB. Smoothness can be achieved via a
smoothing algorithm introduced in prior work [12]. We
defer the smoothing algorithm to the appendix.

3. Approach
In this section, we introduce our approach, ProbRoute,
which addresses the aforementioned limitations of ex-
isting methods using (1) a novel relaxed encoding that
requires a linear number of Boolean variables and (2) a
single-pass sampling and refinement approach which pro-
vides completeness guarantees. The flow of ProbRoute
is shown in Figure 3.

Encode
(Sec 3.1)

Compile into
OBDD[∧]

Learn parameters
(Sec 3.2)

Sample and refinement
(Sec 3.3)

Graph

Data

Query Sampled Trip

Figure 3: Flow of ProbRoute, with red rectangles indicat-
ing this work. For compilation, we use existing off-the-
shelf techniques.

In our approach, we first use our relaxed encoding to en-
code SimpleTrip(𝐺) of graph 𝐺 into a Boolean formula.
Next, we compile the Boolean formula into OBDD[∧].
In order to learn from historical trip data, we convert the
data into assignments. Subsequently, the OBDD[∧] is pa-
rameterized into PROB 𝜓 and the parameters are learned

from data. Finally to sample trips from start vertex 𝑣𝑠
to destination vertex 𝑣𝑡, we create a partial assignment
𝜏 ′ with the variables that indicate 𝑣𝑠 and 𝑣𝑡 are terminal
vertices set to true. The ProbSample algorithm, algo-
rithm 2, takes 𝜏 ′ as input and samples a set of satisfying
assignments. Finally, in the refinement step, a simple trip
𝜋 is extracted from each satisfying assignment 𝜏 using
depth-first search to remove disjoint loop components.

3.1. Relaxed Encoding
In this work, we present a novel relaxed encoding that
only includes vertex membership and terminal informa-
tion. Our encoding only requires a linear (2|𝑉 |) number
of Boolean variables, resulting in more succinct decision
diagrams and improved runtime performance for down-
stream tasks. In relation to prior encodings, we observed
that the ordering information of vertices can be inferred
from the graph given a set of vertices and the terminal ver-
tices, thus enabling us to exclude ordering information in
our relaxed encoding. Our relaxed encoding represents an
over-approximation of trips in SimpleTrip(𝐺) for graph
𝐺(𝑉,𝐸) using a linear number of Boolean variables with
respect to |𝑉 |. We discuss the over-approximation in later
parts of this section.

Our encoding uses two types of Boolean variables, 𝑛-
type and 𝑠-type variables. Each vertex 𝑣 ∈ 𝑉 in graph
𝐺(𝑉,𝐸) has a corresponding 𝑛-type and 𝑠-type variable.
The 𝑛-type variable indicates if vertex 𝑣 is part of a trip
and 𝑠-type variable indicates if 𝑣 is a terminal vertex of
the trip. Our encoding is the conjunction of the five types
of clauses over all vertices in graph 𝐺 as follows.

⋁︁
𝑖∈𝑉

𝑠𝑖 (H1)

⋀︁
𝑖∈𝑉

[𝑛𝑖 −→
⋁︁

𝑗∈𝑎𝑑𝑗(𝑖)

𝑛𝑗] (H2)

⋀︁
𝑖,𝑗,𝑘∈𝑉,
𝑖 ̸=𝑗 ̸=𝑘

(¬𝑠𝑖 ∨ ¬𝑠𝑗 ∨ ¬𝑠𝑘) (H3)

⋀︁
𝑖∈𝑉

𝑠𝑖 −→ 𝑛𝑖 ∧
⋀︁

𝑗,𝑘∈𝑎𝑑𝑗(𝑖),𝑗 ̸=𝑘

(¬𝑛𝑗 ∨ ¬𝑛𝑘) (H4)

⋀︁
𝑖,𝑗∈𝑉,𝑗∈𝑎𝑑𝑗(𝑖)

[𝑛𝑖 ∧ 𝑛𝑗 −→ 𝑠𝑖

∨ [(
⋁︁

𝑘∈𝑎𝑑𝑗(𝑖),
𝑘 ̸=𝑗 ̸=𝑖

𝑛𝑘) ∧
⋀︁

𝑙,𝑚∈𝑎𝑑𝑗(𝑖),
𝑙,𝑚 ̸=𝑗

(¬𝑛𝑙 ∨ ¬𝑛𝑚)]] (H5)

A simple trip 𝜋 in graph 𝐺 has at least one terminal
vertex and at most two terminal vertices, described by
encoding components H1 and H3 respectively. At each
terminal vertex 𝑣𝑖 of 𝜋, there can only be at most 1 adja-
cent vertex of 𝑣𝑖 that is also part of 𝜋 and this is encoded

67

by H4. For each vertex 𝑣𝑖 in 𝜋, at least one of their adja-
cent vertices is in 𝜋 regardless if 𝑣𝑖 is a terminal vertex
or otherwise, this is captured by H2. Finally, H5 encodes
that if a given vertex 𝑣𝑖 and one of its adjacent vertices
are part of 𝜋, then either another neighbour vertex of 𝑣𝑖 is
part of 𝜋 or 𝑣𝑖 is a terminal vertex.

Definition 1. Letℳ : SimpleTrip(𝐺) ↦→ Sol(𝐹) such
that for a given trip 𝜋 ∈ SimpleTrip(𝐺), 𝜏 =ℳ(𝜋) is
the assignment whereby the 𝑛-type variables of all vertices
𝑣 ∈ 𝜋 and the 𝑠-type variables of 𝑣 ∈ Term(𝜋) are set to
true. All other variables are set to false in 𝜏 .

We refer to our encoding as relaxed encoding because
the solution space of constraints over-approximates the
space of simple trips in the graph. Notice that while all
simple trips correspond to a satisfying assignment of the
encoding, they are not the only satisfying assignments.
Assignments corresponding to a simple trip 𝜋 with dis-
joint loop component 𝛽 also satisfy the constraints. The
intuition is that 𝛽 introduces no additional terminal ver-
tices, hence H1, H3, and H4 remain satisfied. Since the
vertices in 𝛽 always have 𝑛-type variables of exactly two
of its neighbours set to true, H5 and H2 remain satisfied.
Thus, a simple trip with a disjoint loop component also
corresponds to a satisfying assignment of our encoding.

3.2. Learning Parameters from Data

Algorithm 1 ProbLearn - updates counters of 𝜓 from
data
Input: PROB 𝜓, 𝜏 - complete assignment of data
instance

1: 𝑛← rootNode(𝜓)
2: if 𝑛 is ∧-node then
3: for 𝑐 in Child(𝑛) do
4: ProbLearn(𝑐, 𝜏)
5: if 𝑛 is decision node then
6: 𝑙← getLiteral(𝜏,Var(n))
7: if 𝑙 is positive literal then
8: Hi#(𝑛) += 1
9: ProbLearn(Hi(n), 𝜏)

10: else
11: Lo#(𝑛) += 1
12: ProbLearn(Lo(n), 𝜏)

We introduce algorithm 1, ProbLearn, for updating
branch counters of PROB 𝜓 from assignments. In order
to learn branch parameters 𝜃Hi(𝑛) and 𝜃Lo(𝑛) of decision
node 𝑛, we require a counter for each of its branches,
Hi#(𝑛) and Lo#(𝑛) respectively. In the learning process,
we have a dataset of assignments for Boolean variables
in the Boolean formula represented by PROB 𝜓. For

each assignment 𝜏 in the dataset, we perform a top-down
traversal of 𝜓 following Algorithm 1. In the traversal, we
visit all child branches of conjunction nodes (line 4) and
the child branch of decision node 𝑛 corresponding to the
assignment of Var(𝑛) in 𝜏 (lines 6 to 12), and increment
the corresponding counters in the process. Subsequently,
the branch parameters for node 𝑛 are updated according
to the following formulas.

𝜃Hi(𝑛) =
Hi#(𝑛) + 1

Hi#(𝑛) + Lo#(𝑛) + 2

𝜃Lo(𝑛) =
Lo#(𝑛) + 1

Hi#(𝑛) + Lo#(𝑛) + 2

While we add 1 to numerator and 2 to denominator as
a form of Laplace smoothing [27], other forms of smooth-
ing to account for division by zero is possible. Notice
that the learnt branch parameters of node 𝑛 are in fact
approximations of conditional probabilities according to
Proposition 1 and Remark 1 as follows.

Proposition 1. Let 𝑛1 and 𝑛2 be decision nodes where
𝑛1 = Parent(𝑛2) and Lo(𝑛1) = 𝑛2, 𝜃Lo(𝑛2) =
Lo#(𝑛2)+1

Lo#(𝑛1)+2
and 𝜃Hi(𝑛2) =

Hi#(𝑛2)+1

Lo#(𝑛1)+2
.

Proof. Recall that the Lo branch parameter of 𝑛2 is:

𝜃Lo(𝑛2) =
Lo#(𝑛2) + 1

Hi#(𝑛2) + Lo#(𝑛2) + 2

Notice that Hi#(𝑛2) + Lo#(𝑛2) = Lo#(𝑛1) as all
top-down traversals of 𝜓 that pass through 𝑛2 will have
to pass through the Lo branch of 𝑛1.

𝜃Lo(𝑛2) =
Lo#(𝑛2) + 1

Lo#(𝑛1) + 2

A similar argument can be made for 𝜃Hi(𝑛2) by symmetry.
In the general case if 𝑛2 has more than one parent, then
the term Hi#(𝑛2) + Lo#(𝑛2) is the sum of counts of
branch traversals of all parent nodes of 𝑛2 that leads to
𝑛2. Additionally, any conjunction node 𝑐 between 𝑛1
and 𝑛2 will not affect the proof because all children of
𝑐 will be traversed. For understanding, one can refer to
the example in Figure 2 where 𝑛1 corresponds to the root
node.

Remark 1. Recall that Var(𝑛1) = 𝑥 and Var(𝑛2) = 𝑦

in PROB 𝜓1 in Figure 2. Observe that Lo#(𝑛2)

Lo#(𝑛1)
for

PROB 𝜓1 in Figure 2 is the conditional probability
𝑃𝑟(¬𝑦|¬𝑥) as it represents the count of traversals that
passed through Lo branch of 𝑛2 out of total count of

68

traversals that passed through Lo branch of 𝑛1. A similar
observation can be made for Hi(𝑛2).

Notice that as the Lo#(𝑛2) and Lo#(𝑛1) becomes
significantly large, that is Lo#(𝑛2) >> 1 and
Lo#(𝑛1) >> 2:

𝜃Lo(𝑛2) =
Lo#(𝑛2) + 1

Lo#(𝑛1) + 2
≈ Lo#(𝑛2)

Lo#(𝑛1)
= 𝑃𝑟(¬𝑦|¬𝑥)

As such, the learnt branch parameters are approximate
conditional probabilities.

3.3. Sampling Trip Query Answers

Algorithm 2 ProbSample - returns sampled assignment
Input: PROB 𝜓, partial assignment 𝜏 ′

Output: complete assignment that agrees with 𝜏 ′

1: caches 𝜔, 𝛾←− initCache()
2: for node 𝑛 in bottom-up ordering of 𝜓 do
3: if 𝑛 is ⊤ node then
4: 𝜔[𝑛]←− ∅, 𝛾[𝑛]←− 1
5: else if 𝑛 is ⊥ node then
6: 𝜔[𝑛]←− Invalid, 𝛾[𝑛]←− 0
7: else if 𝑛 is ∧ node then
8: 𝜔[𝑛]←− unionChild(Child(𝑛), 𝜔)
9: 𝛾[𝑛]←−

∏︀
𝑐∈Child(𝑛) 𝛾[𝑐]

10: else
11: if Var(𝑛) in 𝜏 ′ then
12: if 𝜔[𝜏 ′[Var(𝑛)]] is Invalid then
13: 𝜔[𝑛]←− Invalid, 𝛾[𝑛]←− 0
14: else
15: 𝜔[𝑛]←− followAssign(𝜏)
16: if 𝜏 ′[Var(𝑛)] is ¬Var(𝑛) then
17: 𝛾[𝑛]←− 𝜃Lo(𝑛)× 𝛾[Lo(𝑛)]
18: else
19: 𝛾[𝑛]←− 𝜃Hi(𝑛)× 𝛾[Hi(𝑛)]
20: else
21: 𝑙←− 𝜃Lo(𝑛)× 𝛾[Lo(𝑛)]
22: ℎ←− 𝜃Hi(𝑛)× 𝛾[Hi(𝑛)]
23: 𝛾[𝑛]←− 𝑙 + ℎ
24: 𝛼←− Binomial(ℎ

𝑙+ℎ
)

25: if 𝛼 is 1 then
26: 𝜔[𝑛]←− 𝜔[Hi(𝑛)] ∪ Var(𝑛)
27: else
28: 𝜔[𝑛]←− 𝜔[Lo(𝑛)] ∪ ¬Var(𝑛)
29: return 𝜔[rootnode(𝜓)]

The ability to conditionally sample trips is critical to
handling trip queries for arbitrary start-end vertices, for
which a trip is to be sampled conditioned on the given start
and end vertices. In this work, we adapted the weighted
sampling algorithm using PROB, which was introduced
by prior work [12], to support conditional sampling and
denote it as ProbSample.

Algorithm 2, ProbSample, performs sampling of satis-
fying assignments from a PROB𝜓 in a bottom-up manner.
ProbSample takes an input PROB 𝜓 and partial assign-
ment 𝜏 ′ and returns a sampled complete assignment that
agrees with 𝜏 ′. The input 𝜏 ′ specifies the terminal vertices
for a given trip query by assigning the 𝑠-type variables.
ProbSample employs two caches 𝜔 and 𝛾, for partially
sampled assignment at each node and joint probabilities
during the sampling process. In the process, ProbSample
performs calculations of joint probabilities at each node.
In addition, ProbSample stores the partial samples at each
node in 𝜔. The partial sample for a false node would be
Invalid as it means that an assignment is unsatisfiable.
On the other hand, the partial sample for a true node is
∅ which will be incremented with variable assignments
during the processing of internal nodes of 𝜓. The par-
tially sampled assignment at every ∧-node 𝑐 is the union
of the samples of all its child nodes, as the child nodes
have mutually disjoint variable sets due to decomposabil-
ity property. For a decision node 𝑑, if Var(𝑑) is in 𝜏 ′, the
partial sample at 𝑑 will be the union of the literal in 𝜏 ′

and the partial sample at the corresponding child node
(lines 11 to 19) to condition on 𝜏 ′. Otherwise, the partial
assignment at 𝑑 is sampled according to the weighted joint
probabilities 𝑙 and ℎ (lines 21 to 28). Finally, the output of
ProbSample would be the sampled assignment at the root
node of 𝜓. To extend ProbSample to sample 𝑘 complete
assignments, one has to keep 𝑘 partial assignments in 𝜔
at each node during the sampling process and sample 𝑘
independent partial assignments at each decision node.

Proposition 2. Let PROB 𝜓 represent Boolean for-
mula 𝐹 , ProbSample samples 𝜏 ∈ Sol(𝐹) according
to the joint branch parameters, that is

∏︀
𝑛∈Rep𝜓(𝜏)[(1−

𝐼𝑛)𝜃Lo(𝑛)+𝐼𝑛𝜃Hi(𝑛)] where 𝐼𝑛 is 1 if Hi(𝑛) ∈ Rep𝜓(𝜏)
and 0 otherwise.

Proof. Let 𝜓 be a PROB that only consists of decision
nodes as internal nodes. At each decision node 𝑑 in
the bottom-up sampling pass, assignment of Var(𝑑) is
sampled proportional to 𝜃Lo(𝑑)× 𝛾[Lo(𝑑)] and 𝜃Hi(𝑑)×
𝛾[Hi(𝑑)] to be false and true respectively. Without loss
of generality, we focus on the term 𝜃Lo(𝑑)× 𝛾[Lo(𝑑)], a
similar argument would follow for the other branch by
symmetry.

Let 𝑑2 denote Lo(𝑑). Notice that 𝛾[𝑑2] is 𝜃Lo(𝑑2) ×
𝛾[Lo(𝑑2)] + 𝜃Hi(𝑑2) × 𝛾[Hi(𝑑2)]. Expanding the equa-
tion, the probability of sampling ¬Var(𝑑) is 𝜃Lo(𝑑) ×
𝜃Lo(𝑑2)× 𝛾[Lo(𝑑2)] + 𝜃Lo(𝑑)× 𝜃Hi(𝑑2)× 𝛾[Hi(𝑑2)]. If
we expand 𝛾[Lo(𝑑)] recursively, we are considering all
possible satisfying assignments of VarSet(Lo(𝑑)), more
specifically we would be taking the sum of the product of
corresponding branch parameters of each possible satisfy-
ing assignment of VarSet(Lo(𝑑)).

Observe that Var(𝑑) is sampled to be assigned false

69

with probability 𝜃Lo(𝑑)×𝜃Lo(𝑑2)×𝛾[Lo(𝑑2)]+𝜃Lo(𝑑)×
𝜃Hi(𝑑2) × 𝛾[Hi(𝑑2)]. Similarly, Var(𝑑2) is sampled to
be assigned false with probability 𝜃Lo(𝑑2) × 𝛾[Lo(𝑑2)].
Notice that if we view the bottom-up process in reverse,
the probability of sampling ¬Var(𝑑) and ¬Var(𝑑2) is
𝜃Lo(𝑑) × 𝜃Lo(𝑑2) × 𝛾[Lo(𝑑2)]. In the general case, it
then follows that a satisfying assignment would reach the
true node which has 𝛾 value set to 1. It then follows
that for each 𝜏 ∈ Sol(𝐹), 𝜏 is sampled with probability
𝑃 =

∏︀
𝑛∈Rep𝜓(𝜏)[(1 − 𝐼𝑛)𝜃Lo(𝑛) + 𝐼𝑛𝜃Hi(𝑛)]. Notice

that ∧-nodes have no impact on the sampling probability
as no additional terms are introduced in the product of
branch parameters.

Remark 2. Recall in Remark 1 that 𝜃Hi(𝑛) and 𝜃Lo(𝑛)
are approximately conditional probabilities. By Proposi-
tion 2, assignment 𝜏 ∈ Sol(𝐹) is sampled with prob-
ability proportional to

∏︀
𝑛∈Rep𝜓(𝜏)[(1 − 𝐼𝑛)𝜃Lo(𝑛) +

𝐼𝑛𝜃Hi(𝑛)]. Notice that if we rewrite the product of branch
parameters as the product of approximate conditional
probability, it is approximately the joint probability of
sampling 𝜏 .

Refinement In the refinement step, we extract a trip
from sampled assignment 𝜏 by removing spurious disjoint
loop components using depth-first search.

Definition 2. Letℳ′ : Sol(𝐹) ↦→ SimpleTrip(𝐺) be the
mapping function of the refinement process, for a given
graph 𝐺 and its relaxed encoding 𝐹 . For an assignment
𝜏 ∈ Sol(𝐹), let 𝑉𝜏 be the set of vertices in 𝐺 that have
their 𝑛-type variables set to true in 𝜏 . A depth-first search
is performed from the starting vertex on 𝑉𝜏 , removing
disjoint components. The resultant simple path is 𝜋 =
ℳ′(𝐺).

Althoughℳ′(·) is a many-to-one (i.e. surjective) map-
ping function, it is not a concern in practice as trips with
disjoint loop components are unlikely to occur in real-
world or synthetic trip data from which probabilities can
be learned.

Theorem 1. Given 𝑣𝑠, 𝑣𝑡 ∈ 𝐺, let 𝜋𝑠,𝑡 ∈ SimpleTrip(𝐺)
be a trip between 𝑣𝑠 and 𝑣𝑡. Let 𝑅𝜋𝑠,𝑡 = {𝜏 | (𝜏 ∈
Sol(𝐹)) ∧ (ℳ′(𝜏) = 𝜋𝑠,𝑡)}. Then,

Pr[𝜋𝑠,𝑡 is sampled] ∝∑︁
𝜏∈𝑅𝜋𝑠,𝑡

∏︁
𝑛∈Rep𝜓(𝜏)

[(1− 𝐼𝑛)𝜃Lo(𝑛) + 𝐼𝑛𝜃Hi(𝑛)]

Proof. From Definition 1 and 2, one can say that
given a graph 𝐺 and its relaxed encoding 𝐹 , ∀𝜋 ∈
SimpleTrip(𝐺), ∃𝜏 ∈ Sol(𝐹) such thatℳ′(𝜏) = 𝜋.

Notice that sampling 𝜋𝑠,𝑡 amounts to sampling 𝜏 ∈
𝑅𝜋𝑠,𝑡 . As such, the probability of sampling 𝜋𝑠,𝑡 would

be the sum over probability of sampling each member
of 𝑅𝜋𝑠,𝑡 . Recall that the probability of sampling a sin-
gle assignment 𝜏 is proportional to

∏︀
𝑛∈Rep𝜓(𝜏)[(1 −

𝐼𝑛)𝜃Lo(𝑛) + 𝐼𝑛𝜃Hi(𝑛)] by Proposition 2. As such
the probability 𝑃𝑟[𝜋𝑠,𝑡 is sampled] is proportional to∑︀
𝜏∈𝑅𝜋𝑠,𝑡

∏︀
𝑛∈Rep𝜓(𝜏)[(1−𝐼𝑛)𝜃Lo(𝑛)+𝐼𝑛𝜃Hi(𝑛)].

Remark 3. It is worth noting that 𝑃𝑟[𝜋𝑠,𝑡 is sampled] >
0, as all branch parameters are greater than 0 by defini-
tion. Recall that branch parameters are computed with
a ’+1’ in numerator and ’+2’ in denominator, and given
that branch counters are 0 or larger, branch parameters
are strictly positive.

4. Experiments
In order to evaluate the efficacy of ProbRoute, we built a
prototype in Python 3.8 with NumPy [28], toposort [29],
OSMnx[30], and NetworkX [31] packages. We employ
KCBox tool1 for OBDD[∧] compilation [14]. The experi-
ments were conducted on a cluster of machines with Intel
Xeon Platinum 8272CL processors and 64GB of memory.
In the experiments, we evaluated ProbRoute against an
adaptation of the state-of-the-art probabilistic routing ap-
proach [8] and an off-the-shelf non-probabilistic routing
library, Pyroutelib3 [32], in terms of quality of trip sugges-
tions and runtime performance. In particular, we adapted
the state-of-the-art approach by Choi et al [8] to sample
for trips instead of computing the most probable trip and
refer to the adapted approach as ‘CSD’ in the rest of the
section. In addition, we compared our relaxed encoding to
existing path encodings across various graphs, specifically
to absolute encoding and compact encoding [23].

Through the experiments, we investigate the following:

R1 Can ProbRoute effectively learn from data and sam-
ple quality trips?

R2 How efficient is our relaxed encoding technique?

R3 What is the runtime performance of the ProbRoute?

Data Generation In this study, we use the real-
world road network of Singapore obtained from Open-
StreetMap [33] using OSMnx. The road network graph
𝐺𝑟 consisted of 23522 vertices and 45146 edges along
with their lengths. In addition, we also use an abstracted
graph2 of 𝐺𝑟 which we denote as 𝐺𝑎 for the remaining
of this section. A vertex in 𝐺𝑎 corresponds to a unique
subgraph of 𝐺𝑟 .

1https://github.com/meelgroup/KCBox
2We use the geohash system (geohash level 5) of partitioning
the road network graph. For more information on the format
http://geohash.org/site/tips.html#format

70

Table 1
Match rate statistics for completed benchmark instances by respective methods. The percentages under ‘Stats’
column refer to the corresponding percentiles. ‘Exact Match’ refers to match rate when 𝜀 = 0, and ‘𝜀-Match’ refers to
match rate when 𝜀 is set to median edge length of 𝐺𝑟 .

Stats Exact Match 𝜀-Match
Pyroutelib CSD ProbRoute Pyroutelib CSD ProbRoute

25% 0.045 0.049 0.082 0.061 0.066 0.102
50% 0.088 0.160 0.310 0.107 0.172 0.316
75% 0.185 0.660 1.000 0.208 0.663 1.000

Synthetic trips were generated by deviating from short-
est path given start and end vertices. A random pair of
start and end vertices were selected in 𝐺𝑟 and the shortest
path 𝜋 was found. Next, the corresponding intermediate
regions of 𝜋 in 𝐺𝑎 are blocked in 𝐺𝑟 , and a new shortest
path 𝜋′ was found and deemed to be the synthetic trip
generated. We generated 11000 synthetic trips, 10000 for
training and 1000 for evaluation. While we used 𝐺𝑎 to
keep the trip sampling time reasonable, it is possible to
use more fine-grained regions for offline applications.

4.1. R1: ProbRoute’s Ability to Learn
Probabilities

To understand ProbRoute’s ability to learn probabilities
from data, we evaluate its ability to produce trips that
closely resembles the ground truth. Both ProbRoute and
CSD, which are sampling-based approaches, were evalu-
ated by sampling 20 trips and taking the median match rate
for each instance. Recall that the 𝜀-match rate is defined
as the proportion of vertices in the ground truth trip that
were within 𝜀 meters of euclidean distance from the clos-
est vertex in the proposed trip. In the evaluation, we set
the 𝜀 tolerance to be the median edge length of 𝐺𝑟 , which
is 64.359 meters, to account for parallel trips. To further
emphasize the advantages of probabilistic approaches, we
included an off-the-shelf routing library, Pyroutelib3 [32],
in the comparison.

In order to conduct a fair comparison, we have adapted
the CSD approach to utilize PROB derived from our re-
laxed encoding. Our evaluation utilizes this adapted ap-
proach to sample a trip on𝐺𝑎 in a stepwise manner, where
the probability of the next step is conditioned on the pre-
vious step and destination. The conditional probabilities
are computed in a similar manner to the computations
of joint probabilities, which are the 𝛾 cache values, in
the ProbSample. The predicted trip on the road network
𝐺𝑟 is determined by the shortest trip on the subgraph
formed by the sequence of sampled regions. In contrast,
ProbRoute samples a trip on 𝐺𝑎 in a single pass, and
subsequently retrieves the shortest trip on the subgraph
of the sampled regions as the predicted trip on 𝐺𝑟 . It is
worth noting that for sampling-based approaches, there

may be instances where a trip cannot be found on 𝐺𝑟 due
to factors such as a region in 𝐺𝑎 containing disconnected
components. We incorporated a rejection sampling pro-
cess with a maximum of 400 attempts and 5 minutes to
account for such scenarios.

Table 1 shows the match rate statistics of the respective
methods. Under 𝜀-Match setting, where 𝜀 is set as the
median edge length of 𝐺𝑟 to account for parallel trips,
ProbRoute has the highest match rate among the three
approaches. In addition, ProbRoute produced perfect
matches for more than 25% of instances. ProbRoute has
0.316 𝜀-match rate on median, significantly more than
0.172 for CSD and 0.107 for Pyroutelib. The trend is sim-
ilar for exact matches, where 𝜀 is set to 0 as shown under
the ‘Exact Match’ columns in Table 1. In the exact match
setting, ProbRoute achieved a median of 0.310 match
rate, almost double that of CSD’s 0.160 median match rate.
The evaluation results also demonstrate the usefulness of
probabilistic approaches such as ProbRoute, especially
in scenarios where experienced drivers navigate accord-
ing to their own heuristics which may be independent of
the shortest trip. In particular, ProbRoute would be able
to learn and suggest trips that align with the unknown
heuristics of driver preferences given start and destination
locations. Thus, the results provide an affirmative answer
to R1.

4.2. R2: Efficiency of Relaxed Encoding
We compared our relaxed encoding to existing path en-
codings across various graphs, specifically to absolute
encoding and compact encoding [23]. In the experiment,
we had to adapt compact encoding to CNF form with
Tseitin transformation [34], as CNF is the standard in-
put for compilation tools. We compiled the CNFs of the
encodings into OBDD[∧] form with 3600s compilation
timeout and compared the size of resultant diagrams. The
results are shown in Table 2, with rows corresponding
to the different encodings used and columns correspond-
ing to different graphs being encoded. Entries with TO
indicate that the compilation has timed out.

Table 2 shows that our relaxed encoding consistently
results in smaller decision diagrams, up to 91× smaller.
It is also worth noting that relaxed encoding is the only

71

Table 2
Comparison of OBDD[∧] size for different graphs, with
3600s timeout. Grid 2 refers to a 2x2 grid graph. SGP
refers to abstract graph (𝐺𝑎) of Singapore road network.

Encoding Grid SGP
2 3 4 5

Absolute 99 1500 31768 1824769 TO
Compact 771 TO TO TO TO
Relaxed 31 146 2368 20030 38318

encoding that leads to compilation times under 3600s
for the abstracted Singapore graph. The results strongly
support our claims about the significant improvements
that our relaxed encoding brings.

4.3. R3: ProbRoute’s Runtime
Performance

For wide adoption of new routing approaches, it is crucial
to be able to handle the runtime demands of existing
applications. As such, we measured the relative runtimes
of probabilistic approaches, that is ProbRoute and CSD,
with respect to existing routing system Pyroutelib and
show the relative runtimes in Table 3.

Table 3
Relative runtime statistics (lower is better) for com-
pleted instances by CSD and ProbRoute. Under column
‘ CSD
Pyroutelib ’ and row ‘50%’, CSD approach takes a median

of 21.64× 103 times the runtime of Pyroutelib.

Stats CSD
Pyroutelib × 103 ProbRoute

Pyroutelib × 103

25% 6.33 1.40
50% 21.64 2.00
75% 47.90 3.03

From the result, ProbRoute is more than one order of
magnitude faster on median than the existing probabilis-
tic approach CSD. The result also shows that ProbRoute
is also on median more than a magnitude closer to Py-
routelib’s runtime using the same PROB as compared to
CSD approach. In addition, CSD approach timed out on
650 of the 1000 test instances, while ProbRoute did not
time out. Additionally, as mentioned in [8], CSD does
not guarantee being able to produce a complete trip from
start to destination. The results in Table 3 highlight the
progress made by ProbRoute in closing the gap between
probabilistic routing approaches and existing system.

5. Conclusion
Whilst we have demonstrated the efficiency of our ap-
proach, there are possible extensions to make our ap-

proach more appealing for wide adoption. In terms of
runtime performance, our approach is three orders of mag-
nitude slower than existing probability agnostic routing
systems. As such, there is still room for runtime improve-
ments for our approach to be functional replacements of
existing routing systems. Additionally, our relaxed encod-
ing only handles undirected graphs at the moment and it
would be of practical interest to extend the encoding to
directed graphs to handle one-way streets. Furthermore, it
would also be of interest to incorporate ideas to improve
runtime performance from existing hierarchical path find-
ing algorithms such as contractual hierarchies, multi-level
dijkstra and other related works [35, 36, 37].

In summary, we focused on addressing the scalability
barrier for reasoning over route distributions. To this end,
we contribute two techniques: a relaxation and refinement
approach that allows us to efficiently and compactly com-
pile routes corresponding to real-world road networks, and
a one-pass route sampling technique. We demonstrated
the effectiveness of our approach on a real-world road
network and observed around 91× smaller PROB, 10×
faster trip sampling runtime and almost 2× the match
rate of state-of-the-art probabilistic approach, bringing
probabilistic approaches closer to achieving comparable
runtime to traditional routing tools.

Acknowledgments
We sincerely thank Yong Lai for the insightful discus-
sions and reviewers for the constructive feedbacks. This
work is supported in part by grants – S18-1198-IPP-II,
NRF-NRFFAI1-2019-0004, MOE-T2EP20121-0011, and
R-252-000-B59-114. Suwei Yang is supported by the
Grab-NUS AI Lab, a joint collaboration between Grab-
Taxi Holdings Pte. Ltd., National University of Singa-
pore, and the Industrial Postgraduate Program (Grant:
S18-1198-IPP-II) funded by the Economic Development
Board of Singapore. Kuldeep S. Meel is supported in
part by National Research Foundation Singapore under
its NRF Fellowship Programme (NRF-NRFFAI1-2019-
0004), Ministry of Education Singapore Tier 2 grant
(MOE-T2EP20121-0011), and Ministry of Education Sin-
gapore Tier 1 Grant (R-252-000-B59-114).

References
[1] R. R. Clewlow, G. Mishra, Disruptive transportation:

The adoption, utilization, and impacts of ride-hailing
in the united states, 2017.

[2] J. Collison, The impact of online food delivery
services on restaurant sales (2020).

[3] S. Banerjee, C. Riquelme, R. Johari, Pricing in ride-
share platforms: A queueing-theoretic approach,

72

Econometrics: Econometric & Statistical Methods -
Special Topics eJournal (2015).

[4] Z. Wang, K. Fu, J. Ye, Learning to estimate the
travel time, Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining (2018).

[5] J. Letchner, J. Krumm, E. Horvitz, Trip router with
individualized preferences (trip): Incorporating per-
sonalization into route planning, in: AAAI, 2006.

[6] R. K. Ahuja, K. Mehlhorn, J. Orlin, R. E. Tarjan,
Faster algorithms for the shortest path problem, Jour-
nal of the ACM (JACM) 37 (1990) 213–223.

[7] D. J. Rosenkrantz, R. E. Stearns, P. M. Lewis, Ap-
proximate algorithms for the traveling salesperson
problem, in: 15th Annual Symposium on Switching
and Automata Theory (swat 1974), IEEE, 1974, pp.
33–42.

[8] A. Choi, Y. Shen, A. Darwiche, Tractability in struc-
tured probability spaces, in: NeurIPS, volume 30,
2017, pp. 3477–3485.

[9] Y. Shen, A. Choi, A. Darwiche, Conditional psdds:
Modeling and learning with modular knowledge, in:
AAAI, 2018.

[10] Y. Shen, A. Goyanka, A. Darwiche, A. Choi, Struc-
tured bayesian networks: From inference to learning
with routes, in: AAAI, 2019.

[11] A. Choi, G. Van den Broeck, A. Darwiche, Probabil-
ity distributions over structured spaces, in: AAAI,
2015.

[12] S. Yang, V. Liang, K. S. Meel, Inc: A scalable
incremental weighted sampler, in: FMCAD 2022,
2022, p. 205.

[13] A. Darwiche, P. Marquis, A knowledge compilation
map, J. Artif. Intell. Res. 17 (2002) 229–264.

[14] Y. Lai, D. Liu, M. Yin, New canonical representa-
tions by augmenting obdds with conjunctive decom-
position, Journal of Artificial Intelligence Research
58 (2017) 453–521.

[15] R. E. Bryant, Graph-based algorithms for boolean
function manipulation, IEEE Trans. Comput. 35
(1986) 677–691.

[16] A. Darwiche, Sdd: A new canonical representation
of propositional knowledge bases, in: IJCAI, 2011.

[17] R. Mateescu, R. Dechter, R. Marinescu, And/or
multi-valued decision diagrams (aomdds) for graph-
ical models, J. Artif. Intell. Res. (2008).

[18] G. Boole, An investigation of the laws of thought:
On which are founded the mathematical theories of
logic and probabilities, 1854.

[19] Y. Choi, A. Vergari, G. V. den Broeck, Probabilistic
circuits: A unifying framework for tractable proba-
bilistic models, 2020.

[20] H. Poon, P. M. Domingos, Sum-product networks:
A new deep architecture, 2011 IEEE International
Conference on Computer Vision Workshops (ICCV

Workshops) (2011) 689–690.
[21] R. Peharz, S. Lang, A. Vergari, K. Stelzner,

A. Molina, M. Trapp, G. V. den Broeck, K. Ker-
sting, Z. Ghahramani, Einsum networks: Fast and
scalable learning of tractable probabilistic circuits,
in: ICML, 2020.

[22] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Köpf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An
imperative style, high-performance deep learning
library, in: NeurIPS, 2019.

[23] S. Prestwich, Sat problems with chains of dependent
variables, Discret. Appl. Math. 130 (2003) 329–350.

[24] D. E. Knuth, The art of computer programming,
volume 4, fascicle 2: Generating all tuples and per-
mutations, 2005.

[25] T. Inoue, H. Iwashita, J. Kawahara, S. ichi Minato,
Graphillion: software library for very large sets of
labeled graphs, International Journal on Software
Tools for Technology Transfer (2016).

[26] J. Kawahara, T. Inoue, H. Iwashita, S. ichi Mi-
nato, Frontier-based search for enumerating all
constrained subgraphs with compressed represen-
tation, IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. (2017).

[27] C. D. Manning, P. Raghavan, H. Schütze, Introduc-
tion to information retrieval, 2008.

[28] C. Harris, K. J. Millman, S. Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,
S. Berg, N. Smith, R. Kern, M. Picus, S. Hoyer,
M. Kerkwijk, M. Brett, A. Haldane, J. F. del
R’io, M. Wiebe, P. Peterson, P. G’erard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,
C. Gohlke, T. E. Oliphant, Array programming with
numpy, Nature 585 (2020) 357 – 362.

[29] E. V. Smith, toposort, 2022. URL: https://pypi.org/
project/toposort/.

[30] G. Boeing, Osmnx: New methods for acquiring,
constructing, analyzing, and visualizing complex
street networks, Econometrics: Computer Programs
& Software eJournal (2017).

[31] A. A. Hagberg, D. A. Schult, P. Swart, Exploring
network structure, dynamics, and function using
networkx, in: Proceedings of the 7th Python in
Science Conference, 2008, pp. 11 – 15.

[32] O. White, M. Kuranowski, Pyroutelib3, 2017. URL:
https://github.com/MKuranowski/pyroutelib3.

[33] OpenStreetMap contributors, Planet dump re-
trieved from https://planet.osm.org , https://www.
openstreetmap.org, 2017.

[34] G. S. Tseitin, On the complexity of derivation in
propositional calculus, 1983.

[35] D. Delling, A. Goldberg, T. Pajor, R. Werneck, Cus-

73

https://pypi.org/project/toposort/
https://pypi.org/project/toposort/
https://github.com/MKuranowski/pyroutelib3
 https://www.openstreetmap.org
 https://www.openstreetmap.org

tomizable route planning, in: Proceedings of the
10th International Symposium on Experimental Al-
gorithms, 2011.

[36] R. Geisberger, P. Sanders, D. Schultes, C. Vetter, Ex-
act routing in large road networks using contraction
hierarchies, Transp. Sci. (2012).

[37] K. C. K. Lee, W.-C. Lee, B. Zheng, Y. Tian, Road:
A new spatial object search framework for road net-
works, IEEE Transactions on Knowledge and Data
Engineering (2012).

74

	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Related Works
	2.3 PROB: Probabilistic OBDD[]

	3 Approach
	3.1 Relaxed Encoding
	3.2 Learning Parameters from Data
	3.3 Sampling Trip Query Answers

	4 Experiments
	4.1 R1: ProbRoute's Ability to Learn Probabilities
	4.2 R2: Efficiency of Relaxed Encoding
	4.3 R3: ProbRoute's Runtime Performance

	5 Conclusion

