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Abstract
Conditioning is an important task for updating and revising uncertain information when new information, often considered
reliable, is added. This paper deals with the so-called Fagin and Halpern (FH-)conditioning within the framework of possibility
theory. We discuss in particular the computation of FH-conditioning when it is applied to weighted knowledge bases.
We also compare FH-conditioning with the two forms of standard possibilistic conditioning (min-based conditioning and
product-based conditioning).
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1. Introduction
Belief revision [1] is a fundamental problem in knowl-
edge representation. It consists in revising a set of
beliefs of an agent in the light of new information,
considered completely reliable. This problem has been
widely studied in the literature both from the rational
postulates point of view and from a computational point
of view. A large number of belief revision operators have
been proposed; in particular within the framework of
propositional logic (and its extensions).

Within the frameworks of uncertainty theories,
the process of belief revision is realized through the
concept of conditioning. A large number of conditioning
operators have been defined: Bayesian conditioning
(in probability theory), Dempster’s rule of condition-
ing (in belief functions theory [2]), min-based and
product-based possibilistic conditioning (in possibility
theory [3]), different forms of conditioning in ordinal
conditional functions (OCF) [4], etc. These "standard"
conditioning modes have been extensively studied in
the literature from a semantic point of view but also
from a computational point of view; in particular for the
propagation of the uncertainty of beliefs in the presence
of new observations.

This paper focuses on Fagin and Halpern condition-
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ing (denoted by FH-conditioning), initially defined
within the framework of belief function theory in [5].
This conditioning was proposed in order to have a
better characterization of belief functions in terms of
particular families of probability distributions (see [5]
for more details). We are interested in the study of
FH-conditioning within the framework of possibility
theory; a particular framework of belief function theory.
The possibilistic counterpart of FH-conditioning has
already been discussed only from a semantic point of
view [6]. This paper is interested in the revision of the
weighted belief bases which is in full agreement with
the possibilistic FH-conditioning. A weighted belief
base is represented by a set of pairs (𝜑𝑖, 𝛼𝑖) where 𝜑𝑖
is a propositional logic formula, and 𝛼𝑖 is a degree of
certainty (a degree of necessity) attached to the formula
𝜑𝑖.

The rest of the paper is organized as follows. We first
recall the basic elements of possibility theory. Next, we
summarize the syntactic computation of FH-conditioning
of the weighted knowledge bases that we recently devel-
oped in [7]. Section 4 briefly positions the computation
of possibilistic FH-conditioning in relation to the two
standard forms of possibilistic conditioning (min-based
and product-based possibilistic conditioning). Section 5
concludes the paper.

2. Weighted Knowledge Bases and
Possibility Distributions

We place ourselves within the framework of propositional
logic. We will denote ℒ the set of propositional logic for-
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mulas and Ω the set of interpretations. A possibility
distribution 𝜋 is a mapping from the set of propositional
logic interpretations Ω to the unit interval [0, 1]. 𝜋(𝜔)
represents the degree of compatibility or consistency
of the interpretation 𝜔 with respect to the set available
knowledge. A possibility distribution is said to be nor-
malized if there exists an interpretation 𝜔 which is fully
possible (i.e., 𝜋(𝜔) = 1).

Given a possibility distribution 𝜋, we can define two
measures over the set of formulas:

• The degree of consistency (or possibility):
Π(𝜑) = max{𝜋(𝜔)|𝜔 |= 𝜑}

which evaluates to what extend the propositional logic
formula 𝜑 is consistent with the available knowledge
expressed by 𝜋.

• The degree of certainty (or of necessity):
𝑁(𝜑) = 1−Π(¬𝜑)

which is measures to what extent a proposition the
propositional logic formula 𝜑 is entailed by the
knowledge expressed by 𝜋.

A possibilistic weighted knowledge base is a finite set
of weighted formulas, denoted as Σ = {(𝜑𝑖, 𝛼𝑖), 𝑖 =
1, ..., 𝑛}, where 𝛼𝑖 ∈]0, 1] serves as the weight assigned
to each formula. This weight is treated as a lower bound
for the degree of necessity 𝑁(𝜑𝑖).

Each possibilistic weighted knowledge base Σ induces
a unique possibility distribution [8], denoted by 𝜋Σ, de-
fined by :

𝜋Σ(𝜔) =

⎧⎪⎨⎪⎩
1, if ∀(𝜑𝑖, 𝛼𝑖) ∈ Σ, 𝜔 |= 𝜑𝑖

1−max{𝛼𝑖 : (𝜑𝑖, 𝛼𝑖) ∈ Σ, 𝜔 ̸|= 𝜑𝑖}
otherwise

(1)

3. Syntactic Computation of
Possibilistic FH-Condiotioning

At the semantic level, possibilistic conditioning consists
in transforming a priori possibility distribution 𝜋 and a
certain information, represented here by a propositional
logic formula 𝜓, into a new possibility distribution (a
posteriori) denoted by 𝜋(.|𝜓).

Several methods exist to define 𝜋(. | 𝜓) (as discussed
in [9]). The two major definitions of possibilistic condi-
tioning are [10]:

• Min-based conditioning :

𝜋(𝜔 |𝑚 𝜑) = 1 if 𝜋(𝜔) = Π(𝜑) and 𝜔 |= 𝜑
= 𝜋(𝜔) if 𝜋(𝜔) < Π(𝜑) and 𝜔 |= 𝜑
= 0 Otherwise .

(2)

• Product-based conditioning (also known as Dempster
rule of conditioning [2]) where we assume thatΠ(𝜑) >
0:

𝜋(𝜔 |· 𝜑) = 𝜋(𝜔)
Π(𝜑)

if 𝜔 |= 𝜑

= 0 otherwise
(3)

An alternative to these two definitions of possibilis-
tic conditioning is the FH-conditioning proposed by Fa-
gin and Halpern[11], which was originally introduced
within the context of belief functions. Since possibility
theory can be seen as a special case of belief functions
(i.e. can be represented by consonant belief functions
where elements with positive mass are nested), the FH-
conditioning was then adapted to the possibility theory
framework as follows [6]:

Π(𝜑 |𝐹𝐻 𝜓) =
Π(𝜑 ∧ 𝜓)

Π(𝜑 ∧ 𝜓) +𝑁(¬𝜑 ∧ 𝜓) (4)

Where 𝑁(𝜑) = 1−Π(¬𝜑).
For justifications of FH-conditioning and a discussion

of its various interpretations see for example [11, 12, 13].
When we restrict the definitions Π(. |𝐹𝐻 𝜓) to in-

terpretations, we get the definition of FH-conditioning
defined on possibility distributions:

𝜋(𝜔 |𝐹𝐻 𝜓) =

{︃
max

(︁
𝜋(𝜔), 𝜋(𝜔)

𝜋(𝜔)+𝑁(𝜓)

)︁
𝑖𝑓𝜔 |= 𝜓

0 𝑖𝑓𝜔 ̸|= 𝜓
(5)

The interesting question is how to compute the FH-
conditioning, in an equivalent way, from the weighted
knowledge bases. More specifically, given the initial
weighted knowledge baseΣ and the fully certain informa-
tion (𝜓, 1), how to compute a novel weighted knowledge
base, denoted by Σ𝐹𝐻 , such that:

∀𝜔 ∈ Ω, 𝜋Σ𝐹𝐻 (𝜔) = 𝜋Σ(𝜔 |𝐹𝐻 𝜓). (6)

where 𝜋Σ𝐹𝐻 (resp. 𝜋Σ) is the possibility distribution
associated with Σ𝐹𝐻 (resp. Σ) as defined by Equation 1.

In [7], a positive answer was obtained to this question.
To compute the knowledge base Σ𝐹𝐻 , a reformulation of
the semantic definition of FH-conditioning, as a sequence
of three transformation operations of possibility distribu-
tions, has been first proposed. For each of these semantic
transformation operations, an equivalent characteriza-
tion on the weighted belief bases has been defined. At the
end of the third operation, the following final weighted
knowledge base was obtained (see [7] for more details):

Σ𝐹𝐻 = {(𝜓, 1)} ∪ Σ2. (7)

with,
Σ2 = {(𝜑𝑖,min(𝛼𝑖, 1− 1−𝛼𝑖

1−𝛼𝑖+𝑁(𝜓)
)), (𝜑𝑖, 𝛼𝑖) ∈ Σ}.
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Example 1. Let
Σ = {(¬𝑞 ∨ 𝑠, 0.72), (𝑞 ∨ ¬𝑠, 0.65),

(¬𝑞 ∨ ¬𝑟, 0.03), (𝑞 ∨ 𝑠, 0.41)}
be a weighted knowledge base. Assume that the new

piece of information is:
𝜓 = 𝑞 ∨ 𝑟 ∨ 𝑠.

Table 1 gives the possibility distribution 𝜋Σ(𝜔) obtained
from Σ using Equation 1. Table 1 also gives the result of
FH-conditioning (𝜋(𝜔 |𝐹𝐻 𝜓)) of 𝜋Σ(𝜔) with 𝜓:

Table 1
Example of a possibility distribution 𝜋Σ(𝜔) and the result of
its conditioning 𝜋(𝜔 |𝐹𝐻 𝜓)

𝑞 𝑟 𝑠 𝜋Σ(𝜔) 𝜋(𝜔 |𝐹𝐻 𝜓)(𝜔)
1 1 1 0.97 0.97
1 1 0 0.28 0.406
1 0 1 1 1
1 0 0 0.28 0.406
0 1 1 0.35 0.460
0 1 0 0.59 0.59
0 0 1 0.35 0.460
0 0 0 0.59 0

In the possibility distribution 𝜋Σ(𝜔), the interpretation
𝑞¬𝑟𝑠 is the most preferred one since it is the only one
which is consistent with Σ. Hence, their possibility degree
is 𝜋Σ(𝑞¬𝑟𝑠) = 1. The interpretation 𝑞𝑟𝑠 gets the possibil-
ity degree 𝜋Σ(𝑞¬𝑟𝑠) = 0.97 because it falsifies the least
certain belief in Σ; namely (¬𝑞 ∨ ¬𝑟, 0.03).

At the syntactic level, using Equation 7, we get:
Σ𝐹𝐻 = {(𝑞 ∨ 𝑟 ∨ 𝑠, 1)} ∪ {(¬𝑞 ∨ 𝑠, 0.594), (𝑞 ∨

¬𝑠, 0.540), (¬𝑞 ∨ ¬𝑟, 0.03), (𝑞 ∨ 𝑠, 0.41)}.
Finally, one can check that computing the possibility

distribution 𝜋Σ𝐹𝐻 associated with the weighted knowl-
edge base Σ𝐹𝐻 , using Equation 1, gives exactly the same
distribution 𝜋(𝜔 |𝐹𝐻 𝜓) given in the table above when
applying the semantic FH-conditioning with 𝜓 = 𝑞∨𝑟∨𝑠.

4. Min-based and Product-based
Conditioning vs
FH-conditioning

This section compares FH-conditioning with the two
standard forms of possibilistic conditioning: min-based
conditioning and product-based conditioning.
At the semantic level, FH-conditioning shares the follow-
ing four properties with min-based and product-based
conditioning (where |◇ stands for possibilitic condition-
ing operator):

• 𝜋(. |◇ 𝜓) is normalized (or consistent).

• ∀𝜔 ∈ Ω, if 𝜔 ̸|= 𝜓 then 𝜋(𝜔 |◇ 𝜓) = 0.
This property confirms that the new information 𝜓
is completely certain and therefore any countermodel

of 𝜓 is considered impossible after the conditioning
operation.

• ∀𝜔 ∈ Ω, ∀𝜔′ ∈ Ω such that 𝜔 |= 𝜓, 𝜔′ |= 𝜓, we have:
𝜋(𝜔) > 𝜋(𝜔′) iff 𝜋(𝜔 |◇ 𝜓) > 𝜋(𝜔′ |◇ 𝜓).
This property means that the conditioning does not
alter the relative order between the models of the new
information 𝜓

• ∀𝜔 ∈ Ω if 𝜋(𝜔) = 0 then 𝜋(𝜔 |◇ 𝜓) = 0
This property means that a priori impossible condi-
tional interpretations will remain so after condition-
ing.

The three possibilistic conditioning (min-based
conditioning, product-based conditioning and FH-
conditioning) satisfy the above four properties.

There remains however the following property which
is satisfied by two standard possibilistic conditioning
(min-based and product-based conditioning) but which
is not satisfied by the FH-conditioning

• if 𝑁(𝜓) > 0 then ∀𝜔 ∈ Ω such that 𝜔 |= 𝜓, we have:
𝜋(𝜔) = 𝜋(𝜔 |◇ 𝜓).

This property means that if 𝜓 is a priori accepted
(expressed by 𝑁(𝜓) > 0 or by Π(𝜓) > Π(¬𝜓)) then
the degrees of possibilities on the models remain un-
changed. This property is not satisfied with possibilistic
FH-conditioning where the possibility degree of a model
of 𝜓 can be modified, depending on the a priori degree
of beliefs of 𝜓.
Moreover, it is easy to see in the equation 7 that
when 𝑁(𝜓) = 0 then the revised base is simply equal
to the new information {(𝜓, 1)}. This behavior is
different with min-based conditioning and product-based
conditioning which retains part of the initial information
even if the new information was not initially accepted.

At the syntactic level, the computational complexity
of performing the FH-conditioning of a weighted knowl-
edge base is the same as that of the standard possibilistic
conditioning (min-based and product-based possibilistic
conditioning) given in [14]. For the three possibilistic
conditioning operators, the spatial complexity is linear
in with respect to the size of the initial base Σ. As for the
time complexity, the difficult task when performing the
FH conditioning is to compute the necessity degree of
𝑁(𝜓) from the initial weighted knowledge base. With
min-based and product-based possibilistic conditioning,
the most difficult task concerns the computation of incon-
sistency degrees of a weighted knowledge base. These
two tasks (computing the degree of necessity of 𝜓 or
computing the degree of inconsistency of a weighted
knowledge base) have the same level of computational
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complexity. Both tasks need log2(𝑛) calls to the proposi-
tional logic satisfiability test, where 𝑛 is the number of
different degrees in the weighted knowledge base Σ.

5. Conclusions
In this paper, we presented the computation of the FH-
conditioning when it is defined on the weighted knowl-
edge bases. This syntactic computation is in full agree-
ment with the semantics of FH-conditioning defined at
the level of possibility distributions.
Possibilistic FH-conditioning shares several properties
with the two standard forms of possibilistic conditioning.
They also differ on the revision to adopt if the new in-
formation is already accepted or not. The combination
of product-based conditioning with FH-conditioning, to
take into account the a priori status of the new informa-
tion, will be studied in a future work. We also plan to
apply different forms of conditioning for the revision of
geographic information systems associated with wastew-
ater networks.
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