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Abstract
The emergence of large Pre-trained Language Models (PLMs) has revolutionized the generation of human-
like text, with implications spanning various domains. However, this progress also brings challenges,
including the proliferation of machine-generated text that can be misleading or malicious. To address this,
the detection of machine-generated text has become crucial. In this paper, we participate in the IberLEF
2023 AuTexTification shared task, focusing on binary classification of machine-generated versus human
text and authorship attribution across English and Spanish. We employ a deep learning approach using
transformer-based PLMs and data augmentation techniques in an attempt to enhance model performance.
Our results for the shared task yield an average macro F1-score of 63.02 for Subtask 1 and 58.39 for
Subtask 2, showcasing our competitive performance with best run ranks of 11 out of 52 and 10 out of 38,
respectively.
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1. Introduction

Publicly available large Pre-trained Language Models (PLMs) such as ChatGPT [1], LLaMA [2],
and Bard [3], possess the remarkable ability to generate text that closely resembles human-
created content in terms of coherence, style, and grammar [4]. This remarkable capability
has led to the emergence of various beneficial applications across diverse domains, including
healthcare [5, 6, 7], legal [8, 9] and finance [10, 11, 12]. However, alongside the positive
applications, it is essential to acknowledge the potentially darker side associated with PLM
exploitation. PLMs have been used to disseminate fabricated news stories [13, 14, 15], manipulate
public opinion [16, 17, 18], and carry out academic fraud [19, 20, 21]. Furthermore, it has been
utilised to generate content that is discriminatory or otherwise offensive [22, 23, 17], with the
potential to harm individuals or communities.
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The generation of malicious or influential content, pervasive across the internet [24] and at
scale, represents a significant concern in this era of advanced language models. Therefore, it is
imperative to address the ethical implications associated with it and implement appropriate
safeguards to mitigate the risks arising from the misuse of these models. Developing technology
that can automatically detect machine-generated text becomes crucial in tackling these chal-
lenges. Such advancements would serve as a valuable tool in safeguarding against the negative
impacts of misleading or harmful content. These automated detection systems could aid in
content moderation and support protective measures aimed at maintaining the integrity and
safety of online platforms.

The field of detecting machine-generated text has seen significant advancements with the
use of deep learning models such as BERT [25], GROVER [15], and RoBERTa [26]. These
models have shown promising results and have become state-of-the-art (SOTA) approaches
in this domain [27, 28, 29, 30]. As the interest in AI-generated text detection grows, so too
does the activity in "AI-generated" text detection with organisations offering API based zero-
shot machine-generated text detectors such as Turnitin [31], GPTZero [32], ZeroGPT [33],
OpenAI [34], and GPTRadar [35]. In more complex detection scenarios, such as authorship
attribution, PLMs have demonstrated their potential effectiveness. They outperform traditional
stylometric classifiers and have become the go-to choice for this task [36, 37]. However, it is
important to note that PLMs face challenges in multi-class classification tasks compared to
binary classification tasks [27, 37]. Neural authorship attribution, which involves identifying
the specific generative model used, can be particularly difficult for PLMs. Moreover, older
PLMs that performed well in earlier classification tasks [27, 38, 39] may struggle to detect text
generated from more recent models [40, 37]. The evolving nature of generative models and their
capabilities require continuous adaptation and improvement of detection techniques. Overall,
the field of detecting machine-generated text is evolving rapidly, with ongoing research and
development focused on enhancing the performance and robustness of detection models to
keep up with the advancements in AI-generated content.

In this paper, we participate in the IberLEF 2023[41] AuTexTification shared task[42], which
focuses on automated text identification. The task consists of two subtasks: (i) detecting machine-
generated text by classifying samples as either "generated" or "human," and (ii) authorship
attribution, where the goal is to identify the source of a sample among six different options.
These subtasks are available in both English and Spanish. To tackle these challenges, we adopt
a deep learning approach and leverage various PLMs in a controlled training environment. We
aim to improve model performance by exploring data augmentation techniques. Specifically,
we investigate the impact of dataset length subsetting, where we create subsets of shorter
and longer samples, as well as dataset translation concatenation, where we translate samples
between languages and merge them with the original dataset. Through systematic training and
evaluation, we rank the performance of different models based on the macro-F1 score obtained
during validation. By participating in the shared task and conducting these experiments, we
aim to contribute to the advancement of automated text identification techniques and provide
valuable insights into the performance of different models and data augmentation strategies.

For Subtask 1, our average macro-F1 score is 63.02, and the best run achieves a rank of 11 out
of 52 for the Spanish portion. In Subtask 2, our average macro-F1 score is 58.39, and the best run
attains a rank of 10 out of 38 for the English portion. These results indicate the performance



of our models in the task, with higher scores indicating better performance. We compare our
performance against other participants in terms of rank, showcasing our relative standing in
the competition.

2. Related Work

Text classification, which involves extracting features from raw text data and predicting the
categories of text based on these features, has been a topic of extensive research. Over the past
few decades, various models have been proposed to address this task.

Among the traditional models, the Naive Bayes model [43] stands out as one of the earliest
approaches used for text classification. Subsequently, other generic classification models such
as Logistic Regression [44], Support Vector Machines [45], Random Forest [46], and K-Nearest
Neighbours [47] have been widely assessed [48, 49] as classifiers in text classification tasks.

Over time, more advanced machine learning boosting techniques have emerged as powerful
tools for text classification. Models such as Extreme Gradient Boosting [50] and Adaptive
Boosting [51] have gained attention due to their potential to deliver excellent performance.
These boosting algorithms have been successfully applied to text classification problems [52,
53, 54, 55, 56], demonstrating their effectiveness.

The use of deep learning models marks a turn in the approach to the text classification task.
Classification models based on Convolutional Neural Networks [57] and Recurrent Neural
Networks (RNN) [58] have been shown to outperform more traditional methods [59, 60, 61]
and have garnered substantial attention in the context of text classification.

More recently, Transformer-based language models have become a popular choice in develop-
ing text classification models due to their remarkable performance on various text classification
datasets. Since the introduction of the Transformer architecture, Transformer-based models
have emerged as the SOTA in text classification. These models have revolutionized the way
we approach text classification by harnessing the power of self-attention mechanisms [62] and
offering increased parallelization capabilities [63] compared to traditional models like RNNs.

Transformer-based models, such as GPT-2 (Generative Pre-trained Transformer) [64], BERT
(Bidirectional Encoder Representation from Transformers) [25], GROVER (Generating aRti-
cles by Only Viewing mEtadata Records) [15], and RoBERTa (Robustly Optimized BERT Ap-
proach) [26], have achieved remarkable performance across a wide range of NLP benchmarks,
including text classification [65, 39, 66, 67]. These models have demonstrated their ability to
capture nuanced contextual information, resulting in improved accuracy and robustness in
classifying text data.

The surge of interest in Transformer-based models has sparked the development of various
model variants that aim to enhance the state-of-the-art performance in Natural Language
Processing tasks. DistillBERT [68], a derivative of BERT, utilises knowledge distillation during
pre-training to compress the size of the BERT model while preserving its original capabili-
ties. ERNIE 2.0 [69] incorporates domain-specific knowledge from external knowledge bases,
such as named entities, into the model’s pre-training process. XLNet [70] adopts a unique
permutation-based training approach, enabling it to capture dependencies between all positions
in a sequence, leading to an improved understanding of language context. XLM-RoBERTa, built



upon the RoBERTa architecture, is a cross-lingual language model that is designed to effec-
tively model multilingual text by pre-training on large-scale datasets from multiple languages.
BLOOM [71] is a specialized decoder-only Transformer language model that has been trained
on a diverse dataset encompassing 46 natural languages and 13 programming languages. These
advancements highlight the continuous innovation in Transformer-based models, pushing
the boundaries of NLP performance. Based on these identified models, in this paper, we aim
to compare the effectiveness of these models and explore the impact of data augmentation
techniques on improving their performance.

3. Methodology

We adopted a strategy that revolved around leveraging PLMs for the AuTextification shared
task. We explored various approaches such as data augmentation techniques to improve model
performance and a systematic evaluation of a select number of PLMs.

3.1. Constraints

The task allows the use of publicly pre-trained language models. Only the text derived from the
training data is allowed to be used. No external data can be used for further model pre-training.
Usage of data from one subtask in the other subtask is not allowed.

3.2. Dataset

3.2.1. Data Description

Subtask 1 is a binary classification problem with target labels ‘human’ and ‘generated’. The
text style for this subtask covers five different domains, where three domains (legal documents,
how-to articles, and social media) will be used in the training set and two hidden domains (news,
reviews) will be used in making up the test set.

Subtask 2 is a multi-class classification problem with target labels ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, and ‘F’,
indicating the generation model used. Generative models range in size from 2 billion parameters
to 175 billion parameters and correlate to these labels: {"A": "bloom-1b7", "B": "bloom-3b", "C":
"bloom-7b1", "D": "babbage", "E": "curie", "F": "text-davinci-003"}.

The identity of hidden domains and generation models was only revealed after the task
submission deadline.

3.2.2. Data Distribution

To assess the distribution of the training samples, we calculate the character length and token
length of each sample in the provided training datasets. We tokenize the data using a space
separation method. We average these lengths, per task, as shown in Table 1.

Comparing the statistics of the training datasets, we observe that the distribution of samples
and average lengths are similar within subtasks. It is worth noting that, on average, Subtask
1 has a smaller number of samples compared to Subtask 2, with 32,954 and 22,176 samples,
respectively. Target labels are approximately even across all tasks.



Table 1
General statistics of training datasets. (EN): English, (ES): Spanish, Char: Character.

Task Samples Char Average Token Average
Subtask 1 (EN) 33845 305 54
Subtask 1 (ES) 32062 307 52
Subtask 2 (EN) 22416 335 60
Subtask 2 (ES) 21935 340 58

Average 27564 322 56

The range of sample token lengths for both subtasks is 1 to 131 tokens long. For Subtask 1,
35.8% and 45.76% of samples are between 15 to 30 tokens and 65 to 85 tokens long, respectively.
This distribution suggests the presence of two primary sample formats within the data. We
hypothesise that samples from the social media domain fall into the shorter length category,
while samples from legal documents or how-to articles domains would fall into the longer
length category. For Subtask 2, we see a similar bimodal distribution with 21.09% and 51.12% of
samples being found between 20 to 25 tokens and 70 to 90 tokens in length, respectively. This
could identify a similar domain split as highlighted in Subtask 1.

3.3. Data Pre-processing

For each subtask, the training data is split into training and validation sets, divided into 80%
and 20% respectively of the original data. Dataset splitting is stratified on the target labels. The
DataCollatorWithPadding function from the Transformers package is used to pad all batches to
the same length. We use the following label encodings: {"generated": 0, "human": 1} and {"A": 0,
"B": 1, "C": 2, "D": 3, "E": 4, "F": 5}.

3.4. Training Scenario

To gain an understanding of the capabilities and shortcomings of current SOTA PLMs, we
utilised a large variety of models for both subtasks. To ensure results were comparable, the same
training parameters were used for each model and experiment. The training was conducted
across eight Tesla V100 GPUs. The batch size was set to 16 for both training and validation.
AdamW[72] was used as the optimiser. Both optimiser and unspecified training parameters
were left as default [73]. We ran model training for 5 epochs on Subtask 1. We increased this to
15 epochs for Subtask 2, due to the limited number of samples and increased task complexity.

The models used are as follows: BERT (Base uncased, Large uncased), BERTIN-RoBERTa,
BLOOM, DistilBERT (Base uncased, Base cased, Multilingual cased, Spanish uncased), ERNIE
2.0, GPT-2 (Small, Medium), RoBERTa (Small, Large), XLM-RoBERTa, and XLNet. All models,
along with model cards and parameter sizes can be found on Hugging Face [74].

3.5. Evaluation Scheme

The macro-F1 score is the metric used for shared task evaluation and ranking. For consistency,
we conduct all experiment evaluations using the macro-F1 as our metric.



4. Experiments

We carry out three experiments to examine the performance of PLMs on the shared task. These
experiments aim to investigate the impact of data augmentation techniques and the effectiveness
of different PLMs on overall model performance. Specifically, the first two experiments focus
on data augmentation. We manipulate the training dataset to assess its influence on model
performance. By varying the composition of the dataset, we aim to understand how these
changes affect the models’ ability to perform well on the task. In the third experiment, we
systematically evaluate the performance of multiple PLMs across different subtasks of the shared
task. By comparing the performance of various PLMs, we can identify which models are more
effective in handling the specific challenges posed by the shared task.

4.1. Importance of Text Length Variation on Model Performance

In this first experiment, we aim to investigate the impact of text length on classification perfor-
mance. Previous studies have shown that models tend to classify longer texts more accurately
compared to shorter texts [75, 76, 77]. Based on this observation, we hypothesised that the
presence of shorter samples in our training set might introduce noise during the training process
and potentially hinder overall performance.

To test this hypothesis, we divided the Subtask 1 (EN) training set into two subsets based
on token length. The first subset, referred to as Short subset, consisted of samples with a total
token length shorter than the sample average of 55. The remaining samples were included in
the Long subset. The original dataset is denoted as All.

To evaluate the performance of the subsets, we trained a GPT-2 (Medium) model on each
dataset. We extract the highest macro-F1 score on the validation set across epochs as a measure
of performance. The validation set contains both short and long samples. Results can be seen in
Table 2.

Table 2
Validation macro-F1 scores for GPT-2 (Medium) trained on All, Short, and Long subsets.

Dataset Macro-F1
All 0.895
Long 0.849
Short 0.684

The performance of the Short subset (Table 2) demonstrates that training solely on short
samples does not generalize well to longer samples that are unseen during training. In contrast,
the performance of the Long subset remains relatively good. This suggests that learning from
long samples alone can still yield reasonable results.

The best performance is achieved when the model is trained on both short and long samples,
as demonstrated by the All dataset (Table 2). The variation in sample lengths helps the language
model to develop a more diverse and robust pattern recognition capability. Overall, the findings
strongly indicate that including a mixture of short and long samples in the training dataset is
ideal for maximizing the performance of the language model.



4.2. Data Augmentation through Machine Translation

In this experiment, we aim to explore the effectiveness of data augmentation through translation.
Given that Subtask 2 has a smaller training set sample size and increased task complexity
compared to Subtask 1, we hypothesised that increasing the sample size would lead to improved
overall model performance during training. To increase the sample size while staying within
the constraints of the shared task, we employed PLMs to translate our Spanish dataset into
English and vice versa. Considering all samples in Subtask 2 are authored by machines, the
translation done by another machine would not compromise the source as it would in Subtask
1, therefore we only utilise Subtask 2 for this experiment.

The translation of samples was performed using two translation PLMs. We select the opus-
mt-en-es [78] model for translating from English to Spanish, and the opus-mt-es-en [79] model
for translating from Spanish to English. These translated datasets were then concatenated
with their respective target language datasets. We named the original datasets as Base and the
translated datasets as Trans.

To assess the impact of these crafted datasets, we trained three different PLMs (DistilBERT
(Multilingual cased), DistilBERT (Base uncased), and RoBERTA (Small)) on each dataset and
calculated the average macro-F1 score across the models on the validation set. The validation
set consisted solely of samples from the respective Base samples. Results are listed in Table 3.

Table 3
Averaged validation macro-F1 scores for models trained on Base and Trans datasets.

Dataset Macro-F1
English Base 0.571
English Trans 0.556
Spanish Base 0.587
Spanish Trans 0.564

Analysis of model performance reveals that including translated samples in the training
dataset hinders overall performance (Table 2). The English Trans and Spanish Trans datasets
performed 0.015 and 0.023 worse, respectively, compared to their Base counterparts. One possible
reason for this outcome is the introduction of noisy samples through the translation process.
Translated samples may contain improper translations in terms of grammar or coherency, which
can negatively impact the model’s ability to learn and generalize effectively to cleaner test
samples. Further, the translation conducted by a single model may remove original model
artifacts and induce its own artifacts, causing model performance degradation.

4.3. Systematical Comparison of SOTA PLMs

In the absence of data augmentation techniques yielding improved performance scores, our
focus shifts to comparing different models under the same training confines. Each experiment
involves training models on a specific subtask, where the highest macro-F1 score is recorded.
The experimental results presented in Table 4 demonstrate results for each model and its
performance within that respective subtask.



Table 4
Validation macro-F1 scores.
Bold: Best Macro-F1, Underline: 2nd Best Macro-F1, *: 3rd Best Macro-F1, ST: Subtask, EN: English, ES:
Spanish.

Model ST1 (EN) ST1 (ES) ST2 (EN) ST2 (ES)
bert-base-uncased 0.928 0.897 0.575 0.579
bert-large-uncased 0.928 0.894 - 0.589

bertin-roberta - - - 0.586
bloom 0.917 0.890 - -

distilbert-base-cased 0.919 0.886 0.576 0.567
distilbert-base-multilingual-cased 0.924 0.920 0.570 0.600
distilbert-base-spanish-uncased - - - 0.592

distilbert-base-uncased 0.923 0.894 0.563 0.574
ernie-2.0-large-en 0.943 0.922 0.597 0.577

gpt2-medium 0.936* 0.898 - -
gpt2-small 0.902 0.879 - -

roberta-large 0.933 0.337 0.588* 0.588
roberta-small 0.937 0.916* 0.578 0.592*

xlm-roberta-large 0.335 0.337 0.595 -
xlnet-large-cased 0.923 - - -

Findings (table 4) indicate that the ERNIE 2.0 model achieved the highest average macro-F1
score across both languages for Subtask 1 and the English version of Subtask 2 with 0.943, 0.922,
and 0.597 macro-F1 scores, respectively. For Subtask 2 (ES), the Multilingual DistilBERT (Base
cased) model exhibited the best performance, achieving the highest macro-F1 score of 0.6.

The lower scores achieved in Subtask 2, compared to Subtask 1, indicate an increase in
task difficulty from binary to multi-class classification. Most models, even after numerous
epochs, only marginally outperform chance-level performance (0.5). This further highlights
the complexity and challenges associated with multi-class classification tasks. It is also worth
noting that all models achieved similarly low macro-F1 scores for Subtask 2, suggesting that the
model performance in this experimental setup may be more influenced by the initial seeding and
optimiser biases [80], rather than the underlying model architecture and training. Therefore,
re-running the experiments for both languages in Subtask 2 might yield similar scores but
different rankings amongst the models.

Interestingly, the XLM-RoBERTa model exhibited substantially lower performance across
Subtask 1, which could be attributed to a potential training error rather than inherent difficulty
with the task. Additionally, it seems the RoBERTa (Large) model also experienced a similar issue
with Subtask 1 (ES). Due to time constraints, the BERTIN-RoBERTa and Spanish DistilBERT
models were only used for Subtask 2 (ES). We do not assess BLOOM, and either GPT-2 models
on Subtask 2. XLNet’s missing performance for all but one subtask was due to resource issues.



5. AuTexTification Shared Task Submission

Participants are allowed to submit three runs per language for each subtask. To generate
predictions on the test samples, we select the top three models based on their macro-F1 scores
from our experiments (Section 4.3). From this selection, we retrain the models and save the top
three checkpoints for each model, based on the macro-F1. As a result, we end up with a total of
nine checkpoints per task.

5.1. Run Composition

For each run in our submission, we employed different strategies to leverage the available model
checkpoints. Run strategy is conducted for each subtask.

Run 1: The checkpoint with the highest recorded macro-F1 score and associated model is
used to generate predictions.

Run 2: The top three checkpoints with the highest recorded macro-F1 score and associated
models are chosen to produce classification logits. We then summed these logits and selected
the index with the highest logit value as the prediction label. By including multiple models in
this way, we aimed to induce some variation in the predictions.

Run 3: From the nine model checkpoints available, we randomly selected three checkpoints.
After producing and summing the classification logits from these checkpoints, we extracted the
index with the highest logit value as the prediction label. This method was chosen to introduce
even more variation in the predictions compared to the previous run methods.

6. AuTexTification Shared Task Results and Discussion

Displayed in Table 5 are the official results of our best runs per task along with their associated
macro-F1 scores, overall run rank, and overall team rank.

Table 5
Team OD-21 best run results for AuTexTification shared task. EN: English, ES: Spanish, *: Includes
baselines in ranking.

Task Best Run # Macro-F1 Score Run Rank* Team Rank*
Subtask 1 (EN) Run 2 60.33 34/76 21/41
Subtask 1 (ES) Run 2 65.71 11/52 9/28
Subtask 2 (EN) Run 1 58.38 10/38 6/24
Subtask 2 (ES) Run 3 58.39 14/29 6/19

The macro-F1 scores for Subtask 1 exhibited a notable decline in comparison to the experiment
scores, which can be attributed to the presence of out-of-distribution samples caused by domain
shift. Specifically, the domains of the test set (news and reviews) differed from those encountered
during training (legal documents, how-to articles, and social media). This domain shift causes
a distributional difference which compounded by the limited size of the training sample, has
been shown to restrict transformer-based models’ capacity to effectively capture generalisable
features [81] of out-of-distribution samples.



The macro-F1 scores for Subtask 2 were on par with our experiment results. However, this
may be attributed more to chance rather than actual model performance, as both experiment and
test scores remained relatively low and are typical indications of under-fitting. This observation
is exemplified by our Subtask 2 (ES) best run, as this run had the most induced prediction
variation among the different run methods.

7. Conclusion

In this paper, we participated in the IberLEF 2023 AuTexTification shared task, focusing on
automated text identification and authorship attribution in English and Spanish. Through the
use of deep learning and pre-trained models, we aimed to enhance model performance. Our
experimental results demonstrated competitive performance, with average macro-F1 scores of
63.02 and 58.39 for Subtasks 1 and 2, respectively. We found that the ERNIE 2.0 model achieved
the highest scores for Subtask 1 and Subtask 2 in English, while the Multilingual DistilBERT
model performed best for Subtask 2 in Spanish.

Official task results reveal a decline in macro-F1 scores for Subtask 1 compared to our
experimental setup. This could be attributed to the presence of out-of-distribution samples
caused by domain shift. The test set domains differed from those encountered during training,
leading to limitations in capturing generalizable features due to the small training sample size.

Moreover, the challenging nature of Subtask 2, involving multi-class classification, resulted in
most models only marginally surpassing chance-level performance, highlighting the complexity
associated with this task.

Overall, our participation in the shared task contributed to the advancement of automated
text identification techniques. It also sheds light on the performance of different models and
data augmentation strategies.

8. Future Work

Future research can concentrate on model fine-tuning, addressing domain shift challenges, and
utilising ensemble methods.

Due to the constraints imposed by our experiments and the timeline of the task, we were
unable to explore model hyperparameter tuning [82, 83, 28]. We strongly believe that incor-
porating hyperparameter tuning would enhance the overall performance of the models and
should be a key aspect to be explored in future tasks. Furthermore, we recommend the adoption
of more advanced learning approaches in future tasks to enhance the reliability and robustness
of the results obtained.

Deep neural networks have demonstrated remarkable success in learning from labelled
data and achieving state-of-the-art performance in various Natural Language Processing tasks.
However, learning from unlabelled data, particularly in the presence of domain shift, continues
to pose challenges. To overcome this limitation, it is crucial to explore and employ unsupervised
domain generalisation techniques [84, 85].

The task of Authorship Attribution, which involves multi-class classification, poses significant
challenges, especially for transformer-based models when the ratio of authors to samples is



limited. Previous research has demonstrated that traditional methods, such as logistic regression
combined with statistical feature extraction [86, 81], can outperform transformers in this context.
A potential future direction is to investigate the ensemble of deep learning approaches with
traditional methods to create a more robust and effective solution for the authorship attribution
problem. By combining the strengths of both approaches, it may be possible to improve
performance and overcome the limitations faced by transformers in this particular task.
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