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Abstract

Text generation models can pose a challenge for the legitimacy and authenticity of texts. Large pre-
trained models have reached a high level of quality already. This paper presents experiments on
classifying whether a text was written by a human or generated by a language model. The paper
describes experiments within shared task AuTexTification: Automated Text Identification 2023. The
approach is based on a pre-trained model. We selected the DeBERTaV2 model. Our run reached an
Macro-F1 score of 67.2 and was ranked on position 15 out of 76 submissions for subtask 1. The paper also
presents an analysis of both text classes based on text metrics. The observation of various readability
metrics shows that the generated texts tend to show less diversity than human texts.
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1. Introduction

Text generation tools have become extremely powerful and there is a great need for the identi-
fication of generated text. Therefore, classifiers for making the distinction between text that
was written by humans and text which was generated by machines need to be developed and
evaluated. The shared task AuTexTification provides a testbed for such research [1, 2]. In an
experiment with this task, we developed a classifier based on a large pre-trained model in
order to analyze the capabilities of current large and geenrative language models. This paper
also intends to analyze the training dataset by quantifying the quality of the text based on
readability metrics [3] as well as other lexical metrics. A transparent analysis could be useful
for the explainability of text classifiers and for supporting the task of detecting unethical use of
language generation.

2. State of the Art

Large language models in NLP like BERT [4] and GPT-3 [5] have reached an elevated level
of quality in text analysis and text generation [6]. Algorithms succeed in writing not only
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sentences, but whole articles, including modifying the writing style. The best-performing
systems are currently based on transformers which process a sentence as a sequence of words
which can consider context between all words simultaneously [7]. Systems like BERT and
GPT-3 complement this basic idea by more complex techniques. BERT is trained to reconstruct
masked tokens within a sentence [4]. It can be applied to generate a sentence embedding which
can be used for next sentence prediction.

These powerful tools will have consequences for several domains including literature [8],
scientific writing [9] and many other professional activities [10]. Online tools e.g., https:
//quillbot.com/, https://transformer.huggingface.co, https://philosopherai.com enable citizens
to work with and experiment Al technology, but also illustrate the limits of even the most
up-to-date systems. Thus, these systems succeed in producing grammatically well-formed texts,
but display weaknesses when it comes to coherence [11].

Writing is a fundamental component of academic success in educational contexts. Writing
is central to our social identities and we are often evaluated by our control of it. The release
of ChatGPT (https://openai.com/blog/chatgpt) marks a turn in writing processes in its diverse
forms, as Al now influences writing to a considerably higher extent than previous technolo-
gies. This will dramatically change our cultural practice(s) of writing [12]. Consequently, the
understanding of what it means to write, revise and post-edit is challenged. The use of Al
writing to augment human writing skills will have procedural, ethical and pedagogical ramifica-
tions that are currently being debated in the media and in various contexts [13]. Particularly
within higher education, concerns have been raised about the potential impact of Al-based
writing on academic integrity, authorship recognition and critical source analysis. There is also
raising concern that Al writing tools could cause societal issues [14] e.g. due to the spread of
misinformation [15].

Although there are great opportunities for a proper didactic use of language models [16, 17]
there are worries about inappropriate use in academia [18].

The identification of authorship became an important topic. Can text classification technology
or can humans reliably detect machine-generated content? Since tools have become very
powerful and widely used, the identification of computer-generated text is more and more
relevant. Researchers have observed an increase in automatically generated content even in
scientific venues [19].

Text classification experiments for distinguishing between human an machine generated
content have been promoted for several years [20]. E.g. within the Bot Profiling task in 2019 a F1
score of 0.96 was obtained [21]. Similar values above 0.9 were obtained for several architecture
on another collection, however, the authors admit that the systems are vulnerable for adversarial
attacks [22]. It has also been pointed out that the level of performance drops below 0.9 when
the texts are shorter than 64 characters [23]. Some first collections exist. Some are specific for
domains like misinformation [22] and scientific publications [24].

Also OpenAl itself published a classifier which should identify generated text, however, the
company admits that it does not work perfectly well [25]. In an experiment with humans,
automatically generated reviews were perceived to be as fluent as human-written ones [26].
The cues which humans and computers might be quite different [27]. There are suggestions on
how to pursue a test for humans because the methodological setup can influence the outcome
[28]. For example, in one study, humans were asked to detect the boundary between human
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Table 1
Frequency of the classes in the training set

Class Percentage Number of texts
Human 50.36% 17046
Generated  49.64% 16799

and generated text within a document and performed badly [29].

Despite the research available, more studies are necessary to analyse the differences between
human-written and machine-generated text if there are any. For example, it is claimed that auto-
matically generated text uses common phrases more often [30]. The shared task AuTexTification
[1] contributes to finding the best technologies which can classify successfully. Furthermore,
for assessing the features of texts and the quality of language generation, there is a need for
further metrics [31].

In our study, we dedicate some effort to obtaining text metrics for both classes in the given
dataset. Such an analysis could reveal differences between the two text classes.

3. System Overview and Experiment

Within the shared task AuTexTification, we submitted one run (team Stiftungsuni_Hildesheim)
for subtask 1 in English. We intended to solve the task with a pre-trained model in order to
judge its quality for such a classification task. For our experiment, we applied the DeBERTaV2
model. For fine-tuning purposes with the traning set, we used the AUTOTRAIN service by
Hugging Face to load the models and run training and evaluation sets. The best performance
was achieved by the DeBERTaV2 model on a text classification task.

The system was fine-tuned with 3000 randomly chosen texts from the AuTEXTification train
dataset. We applied a reduced set in order to keep the computational load low.

On the training set, we obtained the following performance values:

» Accuracy: 0.936
« Precision: 0.922
« Recall: 0.952

« AUC: 0.982

« F1: 0.937

In the result ranking on the test data, the approach reached a Macro-F1 score of 67.2. This
drop suggests that the training adopted the system too strongly to the training set features. It is
likely, that our model did not perform well for the cross-domain generalization which was the
objective of the task [1].

4. Analysis and Discussion

This section reports on our analysis of the text features of the training set. We included several
text metrics like readability metrics [32].
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Figure 1: Comparison of the probability distributions of words for the two classes in the training set
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The length of the texts in the training dataset ranges from 1 to 115 words. The size in texts
and the distribution over the classes is shown in table 1.

The probability distribution of words follow Zipf’s Law in large corpora. There is no deviation
in the collection of generated texts which could indicate that the generative model does not
create language like humans. Figure 1 shows that the generated texts represent a perfect Zipf
distribution. Previous work confirmed this finding [33].

Lexical diversity has also been considered as a key indicator of text quality [34]. It is often
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used as a synonym to lexical richness or diversity. It is also used to assess human writing
[35]. For evaluating the text complexity, a measurement often used is lexical density, which is
measured by measures such as Type-Token Ratio (TTR) [36].

We measured the ratio between types and tokens. It can be observed that the generated texts
cover a wider range whereas the human texts exhibit much higher values in the distribution
around the median value. This is illustrated by the boxplot for the distributions in Figure 2 as
well as the histogram in Figure 3.

The same is the case for further metrics. We show the lexical diversity in Figure 4 and in
Figure 5. Figure 7 shows the lexical richness in both classes and Figure 6 shows the lexical
density. A boxplot of these metrics is given in Figure 8.
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Figure 8: Boxplot of lexical metrics

5. Readability Metrics

Lexical metrics do not provide a full complexity analysis of the text. Readability metrics, like
Flesch Reading Ease [37] or Gunning Fox Index [38], are well-known in the US system and some
have been used for nearly a century to assess the difficulty of texts in schools. For example, the
Flesch Reading Ease measures the complexity of a text and returns values between between 1
and 100. 100 is considered very easy, while 1 is considered very difficult. It was developed by
Rudolf Flesch in the 1940s. These metrics focus on the length of texts and the length of words.
Recommendations for achieving good scores can be found online (e.g. at http://readable.com).

Figure 9 and Figure 10 show that the generated text in the AuTexTification task does not
exhibit different values for the readability metrics. The models generate a range of sentences
with varying complexity. However, for some metrics, there seems to be a higher number of
texts with a score close to the average. These distributions show a higher peak for values close
to the medium when compared to the human generated texts.
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Figure 9: Comparison of several readability metrics for the two classes in the training set
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Figure 10: Histogram for several readability metrics for the two classes in the training set



6. Future Work

As future work, we envision to improve our classification system. In addition, further text
metrics should be explored. Furthermore, we intend to conduct experiments with humans
[28] in order to find out how well humans perform for the domain and the texts selected for
AuTexTification.
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