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Abstract
Modern large language models (LLMs), such as GPT-4 or ChatGPT, are capable of producing fluent
text in natural languages, making their output hard to manually differentiate from human-written
text. However, there are many real-world scenarios where this distinction needs to be made, raising
the need for automatic solutions. Here we present our approach to the problem, implemented with
the ’AuTexTification: Automated Text Identification’ shared task. The core of our model is aimed at
measuring ’predictability’, i.e. how likely given text is according to several LLMs. This information,
supplemented with features describing grammatical correctness, word frequency, linguistic patterns and
combined with fine-tuned LLM representation is used to train a neural network on the provided datasets.
The resulting model achieves the best performance among the submissions in subtask 1 (differentiating
between human- and machine-generated text), both for English and Spanish. We also provide the results
of our internal topic-based evaluation to show strengths and weaknesses of different variants of our
contribution.
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1. Introduction

Modern large language models (LLMs) can generate increasingly natural-sounding text: re-
markably fluent, grammatically correct and difficult to distinguish from human-written content
[1, 2, 3]. Especially the most recent models, including GPT-4, BLOOM, PaLM and ChatGPT, pro-
duce more coherent and creative text than previously [4], demonstrate astonishing capabilities
in writing realistic short and long documents [5] and are able to answer complex questions
involved in various types of exams intended for humans [6]. Studies have shown that while
human participants are able to differentiate the real text and GPT-2 generations, they fail in
case of GPT-3 [7].
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The dangers brought by proliferation of automatically-generated content have been recog-
nised in the Natural Language Processing (NLP) community for some time [8], but they have
become a topic of wider discussion following the release of ChatGPT. Some of the most concern-
ing applications include generating fake news [9], impersonating real people in social media by
bots [10], preparing massive numbers of fake reviews [11] or disrupting text-based evaluation
in education [12]. However, much of the negative impact in these domains could be avoided
with high-accuracy tools for detecting automatically-generated text.

Due to this motivation, the problem of detecting automatically-generated text has been
attracting attention in recent years (see section 3). Here we present our solution to the problem,
prepared in the framework of the shared task AuTexTification: Automated Text Identification
[13], a part of 5th Workshop on Iberian Languages Evaluation Forum (IberLEF 2023) [14].

At the core of our solution is the notion of predictability, expressing how likely or believable
a given text is according to a language model. We assume that an LLM will assign higher
probability to automatically-generated text, especially when the generator and detector have
similar architecture. The text written by humans, on the other hand, is likely to be surprising
or less likely to LLMs. This intuition is expressed as features and supplemented with measures
of grammatical correctness, word frequency and language patterns. The final solution, trained
on the data made available within the shared task, achieves the best performance from all
submitted solutions in subtask 1 (differentiating human- and automatically-generated text),
both in English and Spanish. We also provide classifiers for subtask 2, aimed at predicting a
particular model that was used to generate a given document. The code for the best of our
solutions is openly available (https://github.com/piotrmp/autext).

2. Task

The AuTexTification: Automated Text Identification shared task [13] aims to address the detection
of content created by text generation models in English and Spanish. Several different text
genres are included, which include legal or administrative documents, how-to articles and social
media.

The shared task is divided in two subtasks:

• Subtask 1 - Human or Generated: a binary classification problem where participants
have to build systems able to distinguish between machine- or human-generated text. For
each language, Spanish and English, a balanced dataset is provided.

• Subtask 2 - Model Attribution: a multi-class classification problem where participants
build systems able to attribute authorship to 6 generative models, with sizes ranging from
2B to 175B. Authorship is labelled with six classes (A, B, C, D, E, and F), but participants
do not know, which generated model is behind the classes. For each language, Spanish
and English, a balanced dataset is provided.

Table 1 includes examples from different genres, comparing text generated by machine and
humans for both English and Spanish. Table 2 shows corpus statistics, including data size and
text length. For subtask 1, the size of test size is relatively large compared to training data,
which makes the evaluation more challenging. In subtask 2, test represents a 25% of training

https://github.com/piotrmp/autext


Machine Human
English – legal text
Article 1 This Regulation lays down detailed rules for the imple-
mentation of Council Regulation (EC) No. 1234/2007 as regards
the import of milk and milk products from third countries. Arti-
cle 2 1. Imports of milk and milk products from third countries
shall be subject to the following conditions: (a) The product shall
be accompanied by a health certificate issued by the competent
authority of the exporting country and by a certificate of origin;
(b

Article 4a (c) of Regulation (EEC) No 1336/86 is hereby replaced
by the following: (c) except for applications submitted before 31
January 1991, Germany shall be authorized, by way of deroga-
tion from the first subparagraph of Article 1 (1), to grant such
compensation for an equal reduction in the relevant part of
the production of each party concerned in relation to previous
production. Article 2 This Regulation shall enter into force on
the day of its publication in the Official

English – social media
@swfacts LOL! Thats too funny. @swfacts We know! We cant
help but laugh.

@drellbee when are we going lens shopping? I want a macro
now i will research

English – how-to
Cut off the ends of the carrots and discard them. Peel the carrots
with a vegetable peeler or a sharp knife. Slice or chop the carrots
as desired.

Add the egg yolks and cornstarch to the same bowl and whisk
well. Continue whisking until the mixture seems smooth and
the contents are evenly distributed. Pour the remaining milk in
a medium saucepan. Add the lemon zest,

Spanish – legal text
Artículo 1 Modificación de los importes aplicables Los importes
aplicables a los productos agrícolas objeto de la aplicación de
los Reglamentos (CE) n°s 1442/95, 1443/95, 1444/95, 1445/95,
1446/95 y 1447/95, según se establece en los anexos I, II, III, IV,
V y VI de los citados Reglamentos, se modifican de conformidad
con los importes que figuran en el anexo I del presente Reg

Artículo 1. Se modifica el Anexo del Reglamento ( CEE ) n
º 3800/81 de acuerdo con las indicaciones comprendidas en
el Anexo del presente Reglamento. Artículo 2. El presente
Reglamento entrará en vigor el día de su publicación en el Diario
Oficial de las Comunidades Europeas. El presente Reglamento
será obligatorio en todos sus elementos y directamente aplicable
en cada Estado miembro. Hecho en Bruselas, el 19 de diciembre
de 1983.

Spanish – social media
@ElDatoDelDia: Un pescador chino se ha convertido en mil-
lonario tras vender un pez de 1,8 millones de yuanes o US$230

@SantiContreras: Las fotos de tu iPhone podrían ser tu nueva
contraseña para todo: http://t.co/0nxCAkeMUr

Spanish – how-to
Cuando el agua esté hirviendo, agrega la pasta de tomate y
cocina durante 5 minutos o hasta que espese. Si es necesario,
puedes agregar un poco más de agua a la sartén para evitar
que se queme. Coloca una rebanada de masa en una placa
para hornear ligeramente engrasada. Deja enfriar por unos
30 segundos antes de cortarlos en cubitos grandes. Una vez
cortados, coloca los tomates en una fuente apta para horno.
Calienta aceite

Córtala en dos para formar las masas de dos pizzas pequeñas.
Así será más fácil manipularlas y entrarán en un horno casero.
Trabaja las bolas por separado cuando sigas las instrucciones
que se presentan a

Table 1
Examples of machine and human generated texts in training data of AuTexTification shared task.

data size. Class distribution in training datasets is balanced, and the average number in each
example is around 60, with a lower number in training data for subtask 1, probably because of
the contribution of social media samples, which are shorter.

3. Related work

Automatic analysis of AI-generated content has mainly revolved around the tasks of (1) binary
classification of human- and machine-generated text, which is called machine vs. human problem
[3, 5]; and the (2) multi-class problem of authorship attribution for different generative models
[5, 15].

The methods proposed for detecting machine-generated text can be split into two main types.
On the one hand, feature-based [3] or metric-based approaches [16] consist of creating feature



Train data Test data
Subtask #Instances Avg. length #Instances Avg. length

Substask 1 - EN 33,845 53.7 21,832 62.6
Substask 1 - ES 32,062 52.1 20,129 62.8
Substask 2 - EN 22,416 60.0 5,605 59.8
Substask 2 - ES 21,935 57.8 5,482 57.9

Table 2
Dataset description for the two subtasks in English and Spanish.

vectors from input sequences, then used to train a classification model. On the other hand,
model-based approaches [3, 16] leverage the potential of pre-trained language models. There
have also been proposed hybrid approaches which combine strengths of both strategies [17].

Feature-based approaches are more computationally efficient, but less transferable between
different architectures [3, 18]. The generated features are based on word frequency, output of
LLMs, fluency or reliability, or linguistic patterns detected by auxiliary models [3]. Among the
token-wise contextual features leveraging LLMs are: log-probability, rank or entropy of words
[16]. Approaches used for classification include SVMs, random forests, or neural networks [3].

Model-based approaches using Transformer LLMs are more extensively used in recent re-
search, and they seem to perform better than feature-based solutions [16, 15]. The fine-tuning
of a RoBERTa model [19] on a dataset of human- and machine-generated text is a particularly
popular strategy in literature[20, 5, 15, 17], which outperforms other classifiers in different do-
mains, like biomedical and technical documents [20] or tweets [17]. There have also been more
elaborate approaches, including concatenation of outputs from a fine-tuned and unchanged
RoBERTa model, fed to a feed-forward neural network [17]. Other recent methods rely on the
use of dependency trees for identifying factual inconsistencies in a conversational setting [21].

Fewer researchers have focused on the authorship attribution variant [22, 23, 5, 15]. Some
have shown that n-grams and POS-tags are not enough for solving the problem, requiring
word embeddings [22]. Others have noticed that random forests based on linguistic features
obtain the highest score, beating models combining word embeddings, CNN and LSTM, and
comparable to fine-tuned RoBERTa [5]. However, in a more recent research, a fine-tuned
RoBERTa outperforms feature-based methods [15].

Training and evaluation data collection is key, because the class distribution [3] and the
genre distribution [2] of the dataset used should resemble real-world applications. In the case
of neural-network-based methods, there is a tendency to overfit to topics present in the data a
detection system was trained on [24]. Most research has focused on English texts, but as the
multilingual capacity of LLMs increases, the challenge of addressing other languages arises as
well [3].

Significant effort has also been put in understanding how humans can differentiate between
machine- and human-generated texts, focusing on generators’ errors that can be used [1, 2],
differences in task difficulty between genres [2], and versions of LLM used for generation
[7]. It appears that humans are increasingly likely to be fooled by more powerful generative
models, but automated detection methods can have more opportunities to improve [3]. However,
prediction models that cover aspects relevant to humans could be the best approach [25].
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Figure 1: An architectural template used to build different variants of classifiers for detecting machine-
generated text.

4. Methods

In this section, we describe the design and implementation of our automatic text identification
solution – see figure 1 for a broad architectural overview. The basic building blocks are described
in section 4.1, while section 4.2 enumerates the classifier variants that are evaluated within this
work. Section 4.3 outlines the training process and implementation details.

The common core of most variants is a set of features measuring predictability, expressing
how likely the given input text is according to several generative language models (section 4.1.1).
These might by supplemented with additional features, checking the grammatical correctness
and frequency of words (section 4.1.2). All token-level features are fed to a bidirectional LSTM
network [26] with a hidden size of 64 to convert these sequences into representation of fixed
length of 128 (concatenated from both directions).

The LSTM representation can be concatenated with an output from a fine-tuned language
model (section 4.1.3) and transformed by a dense linear layer, followed by softmax, to return
output probabilities. Alternatively, some text-level linguistic features could be collected directly



from text (section 4.1.4). To combine them with predictability measurement, we train a small
network based on BiLSTM, followed by dense linear layer and softmax to output probabilities.
These can then be added to the linguistic features and processed by a random forest classifier
[27], returning final class probabilities.

Note that the design remain exactly the same for both languages and subtasks, differing only
in dimensionality of some data elements due to various language models used and required
number of output classes.

4.1. Building blocks

4.1.1. Predictability measurement

The goal of the core features of our approach is to express how likely a given sequence of tokens
is according to a generative language model. We expect machine-generated content to be less
surprising and more predictable than text from human authors, especially if the models used
for generation and predictability are similar or the same. This strategy has previously been
applied to differentiating between social media bots and real users [28]. The fact that language
models assign high probability to repetitive, low-diversity generated sequences and lower to
text from human authors is a major weakness of the popular sampling strategies [29].

For a given token sequence 𝑡0..𝑛−1 of length 𝑛, we use a generative language model 𝑔𝑙𝑚 to
obtain the probability of producing a token 𝑤𝑗 (from dictionary 𝐷) at 𝑖-th position:

𝑝(𝑖, 𝑤𝑗) = 𝑃𝑔𝑙𝑚(𝑡𝑖 = 𝑤𝑗 |𝑡0..𝑖−1)

We use this quantity to obtain the following three types of features:

• Log-probability of the observed token 𝑡*𝑖 , measuring how likely it is given the model:

𝑙𝑡𝑖 = log 𝑝(𝑖, 𝑡*𝑖 )

• Log-probability of the most likely token according to the model, measuring the confidence
of the model’s top prediction:

𝑙𝑚𝑖 = max
𝑗∈𝐷

log 𝑝(𝑖, 𝑤𝑗)

• Entropy of the token probability distribution at a given position, measuring the uncertainty
of choosing the next token according to the model:

𝐻𝑖 = −
∑︁
𝑗∈𝐷

𝑝(𝑖, 𝑤𝑗) log 𝑝(𝑖, 𝑤𝑗)

These features are computed for each token position, except the first one, for a length up to
128. Additionally, a binary mask feature is added to account for different lengths of the input
text.

Notice that the generative model used to compute predictability, denoted by 𝑔𝑙𝑚, does not
have to be identical to the one used to generate the considered text. However, their similarity
is helpful in improving performance and can be expected, since virtually all of the LLMs are
based on the same architecture, namely Transformer. We use the following generative language
models of different sizes:



• For English: DistilGPT2 [30], GPT-2, GPT-2 Medium and GPT-2 Large [31].
• For Spanish: GPT2-base-bne and GPT2-large-bne [32].

As a result, each token is represented by 3 × 4 + 1 (for English) or 3 × 2 + 1 (for Spanish)
predictability features.

Note that the negated average of 𝑙𝑡𝑖 over the whole text is equivalent to perplexity. However,
instead of using averaging or similar aggregation function, we choose to keep the whole
sequence of features and let a recurrent neural network learn to find patterns resulting from
the sampling strategy.

4.1.2. Additional word-level features

We employ two types of additional word-level features: word frequency and grammatical
correctness.

Frequency features can play a role, since the distribution of token frequency in machine-
generated text has been shown to not correspond to that of human-written text [3]. Moreover,
from a wide range of errors produced by generative models that humans recognise [1], such as
related to common sense, grammar, fluency, redundancy or self-contradiction, we choose to
recognise grammar errors.

Word frequency is obtained from the version 3 of Google Book Corpus Ngrams dataset [33]
(obtained from https://storage.googleapis.com/books/ngrams/books/datasetsv3.html), which
is available for English and Spanish, among many other languages. Google Books includes
over 200 billion words in 40 million documents, providing a good approximation for likelihood
of encountering a word in print, even a very rare one. We assume frequency of 1 for those
words that do not appear in the dataset and apply logarithm to the number of occurrences. To
coordinate the frequencies with the predictability features described above, the tokenisation
used to distinguish words (space-based) needs to be aligned with the tokenisation used by
language models (wordpiece-based). In the typical case of a single long word corresponding to
multiple subword tokens, we assign the frequency of the full word to all its tokens. However,
more complicated situations are also possible, all of which are handle in a way guaranteeing
the same length of feature vector coming from both sources.

We apply grammar check by open-source LanguageTool (https://github.com/
languagetool-org/languagetool), using the Python wrapper (https://github.com/jxmorris12/
language_tool_python). The tool is available for both Spanish and English as API service,
which we use through a caching mechanism to avoid repeated queries. The system returns a
sentence without grammar errors, which we compare to the original, assigning value 1 to the
preserved words and 0 when the tool made modifications to fix errors. The resulting vector is
aligned to the LLM tokenisation, as with frequency features.

4.1.3. Fine-tuned language model

Given the limited size of the training data, we hope to improve performance in the transfer
learning schema by including a text representation from a fine-tuned large language model. We
employ the RoBERTa [19] models: the Base variant for English and Base BNE [19] for Spanish.

https://storage.googleapis.com/books/ngrams/books/datasetsv3.html
https://github.com/languagetool-org/languagetool
https://github.com/languagetool-org/languagetool
https://github.com/jxmorris12/language_tool_python
https://github.com/jxmorris12/language_tool_python


The pooler output based on [CLS] token representation of length 768 is used, and the model is
fine-tuned with the whole network (see 4.3 for details).

4.1.4. Text-level linguistic features

Another line we explored is using linguistic features, like Part-Of-Speech (POS) or Word-
Dependency (WD) labels, to solve both sub-tasks. These features are aggregated at the level of
the whole document, providing a more high-level view of the text.

We expect automatic text generation models might imperfectly mimic the natural human
writing, i.e. repeat words and punctuation, produce grammatical and morphological errors
uncommon for humans and alter or ’invent’ words. These situations can by captured thanks to
the available linguistic resources for English and Spanish. For example, annotating morpho-
logical categories can give information about errors in producing words from subwords. The
subword tokenisation used in LLMs can generate words sharing the root of an actual word, but
altering its meaning when an incoherent prefixes and suffixes are erroneously concatenated.
Additionally, altering suffixes and prefixes in a word might also change its linguistic function in
the whole sentence.

With this motivation, we annotated every sentence with morphological, word-dependency,
part-of-speech and name-entity features. We also incorporated word frequency indicators (using
Google Books dataset as described in section 4.1.2) to identify words that are so uncommon
they might have been ’invented’ by text generation models. As a result, we generated per-word
sequences of linguistic categories representing all those features.

Finally, we trained a Random Forest (RF) classifier [27] to exploit the linguistic information
and augment the performances of our system. As it is not feasible to input sequences in RF, we
processed the linguistic sequences to compute statistics on each linguistic category, for instance
the percentage of adverbs and the percentage of zero-frequency words appearing in a sentence.

4.2. Classifiers

Based on the overall architecture outlined above, we selected the following variants for evalua-
tion:

• Pred: only the LSTM network using predictability features,
• FLM: only the fine-tuned language model (baseline),
• Pred+FLM: a linear classifier using the representation from fine-tuned language model

and LSTM (submitted to shared task as Hybrid),
• Pred+FLM+Add: as above, but including also the additional token-level features (sub-

mitted to shared task as Hybrid+),
• LingRF: a random forest using linguistic features.
• LingRF+PredOut: a random forest using linguistic features and probabilities returned

by an LSTM operating on the predictability features (submitted to shared task as
LinguisticRF).



4.3. Implementation and training process

The neural network component is implemented in PyTorch [34], while the language models
are loaded through Huggingface Transformers [35]. We use the Adam optimiser [36] with a
learning rate of 10−3 (for training BiLSTM) and 2× 10−5 (for fine-tuning a language model).
In case of variants combining both components, we use the larger learning rate while keeping
the weights of the language model frozen for the first 5 epochs, and then continue training the
whole network with the smaller learning rate.

In topic-based experiments (see section 5) we always train for 10 epochs. However, for
preparing the final submission, we randomly split the available data into 20% development
subset and the training subset. The model is trained for 20 epochs, and the F-score on the
held-out dataset is used to choose the best configuration. To further reduce overfitting, we
implement early stopping by choosing the first epoch, when at least an F-score of (𝑓𝑚𝑎𝑥− 0.01)
is reached, where 𝑓𝑚𝑎𝑥 denotes the best observed performance on the development set. The
test predictions made by a model selected in that way are submitted to the shared task.

Regarding the linguistic RF models, we used scikit-learn [37] and applied model selection
to tune the number of trees and their depth. As variants using 200 trees and the maximum tree
depth of 60 obtained the best or close-to-the-best scores, we decided to choose this setting for all
subtasks and languages. We use the models implemented in spaCy [38] library for annotating
the linguistic features. Namely, we employ en_core_web_sm and es_core_news_sm to tag
the English and Spanish datasets, respectively. Afterwards, we aggregate the different categories
in counts. In the case of word-frequency attributes, we use the Google Books N-grams to count
the number of words not appearing in the resource and the number of words having very high
and medium-low frequencies. For English, we obtain 165 and 163 predictors in the subtask 1
and 2, respectively. For Spanish, we generate 299 predictors for subtask 1 and 288 for subtask 2.

5. Evaluation

In an initial experimental stage, we fit a RF with default parameters to verify the importance of
linguistic features for the English subtask 1. Interestingly, the top 5 features with the highest
importance scores are: VERY_FREQ_W (number of very frequent words), NO_FREQ_W (number
of words not appearing in the unigram list), MEDIUM_LOW_FREQ_W (number of words with
an average frequency), empty NER label (no entity) and DATE (NER category to represent
dates).

Our main evaluation has two components: internal and external. The training-test split and
data collection procedures for external evaluation are provided by the shared task organisers
[13].

The purpose of the internal evaluation is to assess the performance of different variants of our
solution and understand which one performs the best on previously unseen data. The challenge
here is that the properties of automatically-generated text will strongly depend on the prompt
used to generate it, which remains hidden from us. Performing evaluation on a random split of
existing data may favour solutions that overfit to the particular types or domains of observed
text and underperform on truly new and out-of-domain data.

Thus, we have decided to conduct evaluation in cross-validation over topically-split data.



Subtask 1 Subtask 2
English Spanish English Spanish

Variant F1 SD F1 SD F1 SD F1 SD
FLM (baseline) 0.84 0.0598 0.87 0.0762 0.52 0.0399 0.57 0.0168

Pred 0.85 0.0269 0.81 0.0637 0.43 0.0552 0.45 0.0180
Pred+FLM 0.93 0.0114 0.90 0.0495 0.54 0.0275 0.56 0.0288

Pred+FLM+Add 0.93 0.0221 0.91 0.0170 0.54 0.0262 0.56 0.0227
LingRF 0.74 0.0440 0.64 0.1706 0.38 0.0177 0.40 0.0173

LingRF+PredOut 0.89 0.0122 0.81 0.0900 0.47 0.0404 0.49 0.0217

Table 3
Internal evaluation: the overall F1-score and its standard deviation (SD) over CV folds achieved by the
tested variants of our solution in both subtasks and languages. The best value in each column (highest
F1, lowest SD) is highlighted by boldface.

This fact implies that each model is evaluated on data from different topics (genres, types,
domains. . . ) than the sample seen by the models during the training, which is likely to resemble
the real-world usecases.

This procedure is carried out by fitting Latent Dirichlet Allocation topic modelling imple-
mented in scikit-learn [37] to detect 10 document topics. Therefore, each document is
linked to its most likely topic and the 10 topics are paired into 5 folds for cross-validation. For
merging topics, we order topics by number of documents and then merged each topic with its
inverse position in the list in order to create folds of similar size.

The performance metrics used in the evaluation stages is macro-averaged F1-score. As the
data are relatively balanced with respect to class labels (see details in section 2), we do not use
other metrics, more sensitive to unbalanced data distributions (such as AUC-ROC or G-mean).

6. Results

Table 3 shows the results of our internal cross-validation experiments. We use the different
topic folds to report the overall F1 score (calculated using aggregated predictions from all folds)
and the standard deviations (of F1 results from different folds) to quantify the performance
variations due to topic diversity.

We can see that the Pred+FLM+Add achieves overall best results, but the performance of
Pred+FLM is within 1% margin, making it hard to assess the contribution of the grammar- and
frequency-based features. Subtask 2 in Spanish is the only configuration, where our solutions
appear unable to beat the baseline.

Table 4 shows the external evaluation results, including the top 10 submissions for each
subtask-language combination. The Pred+FLM+Add obtains the best performance in subtask 1,
in line with internal evaluation. However, it is interesting to notice that the improvement made
thanks to the additional features is much larger here, reaching 0.05 in F1-score.



Subtask 1 Subtask 2
English Spanish English Spanish

No Name F1 Name F1 Name F1 Name F1
1 Pred+FLM+Add 0.81 Pred+FLM+Add 0.71 Drocks-3 0.62 Drocks-2 0.65
2 Pred+FLM 0.74 Linguistica_F-P_et_al-1 0.71 Drocks-1 0.61 Drocks-3 0.65
3 CIC-IPN-CsCog-2 0.74 RoBERTa-baseline 0.69 Drocks-2 0.61 Drocks-1 0.64
4 LastMinute-2 0.74 Pred+FLM 0.68 ViDA-1 0.61 Pred+FLM 0.62
5 Drocks-2 0.73 KInIT_team_Macko-1 0.68 DeBERTa-baseline 0.60 ELiRF-VRAIN-2 0.62
6 GPLSI_TEAM-1 0.73 andreipreda-3 0.67 BERT4Ever-3 0.60 ELiRF-VRAIN-3 0.62
7 Drocks-1 0.72 andreipreda-2 0.67 LingRF+PredOut 0.60 Pred+FLM+Add 0.61
8 CIC-IPN-CsCog-3 0.72 GPLSI_TEAM-2 0.67 BERT4Ever-1 0.60 RoBERTa-baseline 0.61
9 blade-runner-3 0.71 turing_testers-2 0.66 BERT4Ever-2 0.59 ELiRF-VRAIN-1 0.61

10 GPLSI_TEAM-3 0.71 PFMP_PoliMi-1 0.66 OD-21-1 0.58 LingRF+PredOut 0.61
(66 more) (42 more) (28 more) (19 more)

Table 4
External evaluation: the top 10 submissions evaluated in the shared task with the F1-scores. The
solutions described here are highlighted, for information on the others see the overview publication
[13].

7. Discussion

The results indicate the predictability-based methods perform quite well, with Pred+FLM+Add
achieving the best performance in subtask 1 among all submitted approaches. However, it is
interesting to notice that none of the simpler approaches reaches the same performance in
the external evaluation, showing all three of the feature types included (predictability, LLM
representation, additional features) play an important role. This indicates that detecting machine-
generated text is a multifaceted problem and requires taking into account different properties
of the content. In particular, the additional token-level features delivered marginal gains in
internal evaluation, but yielded large improvement in the external one, suggesting they could
be helpful in avoiding overfitting to data available during training.

Regarding LingRF, we observe that it performs relatively well in subtask 1 in spite of its
simplicity. This fact reveals that mining linguistic feature can uncover informative patterns to
classify human/machine texts. On subtask 2, the F1-score dropped notably due to the higher task
complexity. In the case of LingRF+PredOut, it is apparent how combining linguistic information
with predictability injects extra knowledge to the classifier. For all tasks, except for Spanish
subtask 1, the F1 improved comparing to using only Pred or LingRF. Observing 4, we see that
LingRF+PredOut is in the top-10 algorithms for subtask-2 obtaining a F1 only 2 and 4 points
lesser than the winner for English and Spanish, respectively. In the instance of subtask-1, it
obtained the position 12 with a F1 of 70 for English and 64.7 for Spanish.

Despite promising results, our work has several limitations. Firstly, our solution combines
numerous feature types defined at different levels: whole document, words or wordpiece tokens.
While we have managed to explore some variants of combining them, we believe further
performance gains are possible through deeper integration, e.g. by linking predictability and
linguistic information and processing the resulting sequence through a recurrent neural network
or a Transformer.

Secondly, we have only explored the simplest training-test framework, imposed by the shared
task schema. However, the automatic text identification differs from other text classification



problem in that it is very easy to obtain additional labelled data – by using extensive corpora
with human-written content, as well as generating additional text from LLMs. This makes
possible evaluating more sophisticated frameworks, including contrastive learning or adversarial
training.

Thirdly, our evaluation was necessarily limited by the fact we do not know the details of the
text generation techniques used to prepare the shared task input, especially the LLM generators
and prompts that were employed. Having access to this information would allow answering
questions important for practical applications, such as (1) how the detection accuracy depends
on the generator strength, (2) whether using the same LLM for preparing the generator and
detector is a prerequisite to good performance or (3) how well our solution performs on text
from a domain unseen in training. We have also been able to evaluate our approach only on
two languages, showing very different results.

Finally, our methods rely on surface-level features and do not attempt to involve any kind
of deep understanding of the text meaning. However, the inspection of machine-generated
content reveals factual and common-sense errors that could be used as well. For example, in
table 1 we can notice a redundant repetition of a user name (second row), incorrect conversion
between currencies (fifth row) and inconsistent culinary procedure (sixth row). We hope that
more sophisticated methods for detecting machine-generated text could leverage such errors.

8. Conclusions

In this paper, we described the solutions we explored for automatic detection of machine-
generated text and authorship attribution to generative models, proposed in the “AuTexTifica-
tion: Automated Text Identification” shared task. Our system combines feature and model-based
approaches. Specifically, we propose a method for measuring ’predictability’ of a text sequence
according to several LLMs, combined with complementary measures of grammatical correctness,
word frequency, and language patterns. The evaluation performed through the shared task
shows good performance of our solutions.

We hope that both our contribution and the shared task in general will encourage further
research on this area. A lot of exploration is needed before such methods become useful in
practice, including the performance of detection on other languages, sensitivity to unseen
genres and generators or usefulness of more sophisticated and robust training frameworks.
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