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Abstract
The improvements in natural language generation have led to the development of sophisticated language
models capable of generating long and short texts that are incredibly difficult to distinguish from human-
written ones. This remarkable generative capability has spread concerns about the potential misuse of
such language models, such as the spread of misinformation, plagiarism, and causing disruption in the
education system. Therefore, it is important to have automatic systems to distinguish generated texts
from human-authored ones (deepfake text detection), as well as recognise the language model which
produced a certain text for legal and security issues (generative language model attribution). The aim
of the AuTexTification challenge was to address those two tasks on texts generated by state-of-the-art
language models like text-davinci-003, being one of the first versions of the powerful ChatGPT. We
proposed two detection models for both tasks: fine-tuned BERTweet and TriFuseNet, a three-branched
network working on stylistic and contextual features. We achieved an F1 score of 0.616 (0.565) with
fine-tuned BERTweet and 0.715 (0.499) with TriFuseNet on the deepfake text detection (generative
language model attribution) task. Our results emphasize the significance of leveraging style, semantics,
and context to distinguish machine-generated from human-written texts and identify the generative
language model source.
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1. Introduction

Advancements in Natural Language Generation have greatly enhanced the quality, diversity, and
control of texts produced by ever more powerful language models, ranging from GPT [1], GPT-2
[2], GPT-3 [3], PaLM [4], BLOOM [5] to ChatGPT [6] and BARD [7] to name a few. Despite
being valuable instruments to enhance education [8] and business sectors [9], their remarkable
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and efficient capacity to generate human-like texts serves as an additional means to manipulate
public opinion by propagating false information, deceptive reviews, or untruthful opinions on
the internet [10, 11], increasing phishing activities [12, 13], and undermine academic honesty
[14]. Therefore, it is crucial to advance technology to automatically detect generated text and
thus prevent unauthorized use. Moreover, in legal and security domains, it is insufficient to
merely identify a text as machine-generated. The game-changer lies in Authorship Attribution,
which involves determining the specific generative language model (among many) responsible
for producing a given text [15].

Many research works addressed the detection of generated text and the attribution of the
generative language model over the first released Transformer-based language models, such
as GPT-2 [2], GROVER [16], XLM [17] and BART [18], usually obtaining good detection and
transfer-learning performances both on long texts (such as news articles) [19, 20, 16, 21] and
social media posts (e.g., tweets, reviews) [22, 23, 24, 25, 15]. However, the new generation of
large language models (e.g. Google FLAN, Facebook OPT, BLOOM, ChatGPT, LLaMA) is less
explored due to the recent releases [26, 27, 28]. The aim of the AuTexTification challenge [29, 30]
was to enhance the development of automated detection systems to recognize text automatically
generated by cutting-edge large language models, such as the Big Science’s BLOOM [5] and the
OpenAI Babbage, Curie and DaVinci [31]. For both English and Spanish language, the organizers
provided human-written samples and texts generated on five different writing domains. Two
subtasks were provided for each language: a) (subtask_1) distinguishing machine-generated
texts from human-written ones, focusing on the transfer-learning capabilities of the detector,
and b) (subtask_2) determining which language model generated a text. This paper describes
the participation of the blade-runner team in this challenge, focusing on the English subtasks.
We proposed two detectors used for both tasks: i) the jointly fine-tuned BERTweet [32] with a
classification layer on top of it, and ii) TriFuseNet, a neural network consisting of three branches:
one based on stylistic and textual features, another based on a language model’s embeddings,
and a third based on char-CNN. Our contribution was to leverage the fine-tuning effectiveness
of pre-trained language models [28], as well as leveraging semantic information and contextual
understanding [26]. Fine-tuned BERTweet achieved an F1 score of 0.62 (0.57), while TriFuseNet
reached an F1 score of 0.72 (0.5) on subtask_1 (subtask_2). Our results encourage leveraging
stylistic, semantic and contextual information to recognize machine-generated texts from
human-written ones while pushing on the usage of (fine-tuned) pre-trained language models to
detect the generative LM of a generated text.

The rest of the paper is organized as follows. Section 2 reviews previous works for both
subtasks, that is deepfake text detection and generative language model attribution. Section 3
describes the two subtasks and the provided dataset. In Section 4, the architectures for both
developed detectors are presented. Finally, Section 5 illustrates and discuss the results.

2. Related Work

During the last few years, especially with the development of the GPT language model series,
the deepfake text detection research field has surged [33, 34], providing techniques to both
recognize texts generated by Transformer-based language models (LM) from those written by



humans and to attribute a generated text to a specific generative LM.

Deepfake Text Detection The detection of machine-generated texts has been addressed
encompassing different feature engineering and classification methods. As most generative
LM exhibit statistical differences in word choice with respect to humans [35, 36], several
works leveraged features like perplexity [27], per-token model probability [37], and TF-IDF
over n-grams [19]. Moreover, generated texts tend to have different linguistic patterns with
respect to human-written ones [38], such as a lack of syntactic and lexical diversity [37, 16, 39],
repetitiveness [35, 36], lack of coherence and purpose [36, 3]; Frohling et al. (2021) [21] exploited
this gap and successfully trained a simple machine learning classifier using crafted linguistic
features. Additionally, Zhong et al. (2020)[20] held on the generative LM’s flaw of producing
nonsensical or inconsistent text to train a graph-based model that leverages the factual structure
of a document, emphasizing the importance of fact-verification as a critical component in
deepfake text detection.

Typically, deepfake text detection is approached as a binary classification problem: standard
machine learning algorithms (such as linear regression, SVM, Decision Trees and Naive Bayes)
are widely used together with crafted statistical and stylistic features [19, 21], as well as with
semantic textual features [40] or embeddings [22] extracted from pre-trained LMs. The machine
learning algorithms can also be substituted with (deep) neural networks such as CNN, LSTM
or RNN [22, 41, 42]. Furthermore, techniques that utilize LMs as a foundation are also being
investigated: the concept involves jointly fine-tuning a LM with a neural network classifier on a
combination of human-written and LM-generated texts, allowing to capture the implicit textual
nuances [16, 19, 35, 22, 23, 26, 28].

The aim AuTextification challenge was to promote the development of models able to learn
features that generalize to unseen writing styles. Closely related to this goal, Solaiman et al.
(2019) [19] probed the OpenAI RoBERTa detector on texts generated by different versions of
GPT-2. They discovered that the RoBERTa detector trained on top-p sampling performs well
across various sampling methods, demonstrating transferability. Also, fine-tuning RoBERTa
achieves higher accuracy compared to GPT-2, potentially due to superior bidirectional repre-
sentations. This is in contrast with Zellers et al. (2019) [16]’s work, which suggested using the
generative LM itself for detection. Furthermore, Stiff et al. (2021) [43] found that GROVER [16]
and OpenAI RoBERTa detectors struggle to generalize effectively, especially for social media
posts. Additionally, Crothers et al. (2022) observed that smaller LMs can effectively detect text
generated by larger models, while Gambini et al. (2022) [23] proved that fine-tuning XLNET on
tweets written by humans, GPT-2 and older generative techniques (Markov Chain, RNN) can
effectively recognize GPT-3 tweets as machine-generated with an accuracy of 82.1%. Last but
not least, Li et al. (2023) [28]’s work is close to the AuTexTification challenge since they tested
the detection of deepfake texts across several writing styles (including opinion statements,
scientific writing and stories) experimenting with out-domain and out-model settings; they
found out that jointly fine-tuning a pre-trained language model (e.g., Longformer [44]) with
classification layer obtains the best performance (with an average recall over 90%) across all
testbeds. Considering these findings and aiming to develop a generalizable model, we pursued
two approaches: firstly, we fine-tuned a language model and assessed its generalization ca-



pabilities over similar writing domains (e.g., tweets and reviews); secondly, we developed a
neural network with three branches based on linguistic features, BERTweet embeddings, and
char-CNN respectively. These branches can capture statistical, stylistic, semantic, and structural
differences between human-written and generated text, providing robust and comprehensive
detection capabilities [40, 26].

Generative Language Model Attribution Recognizing the LM which generated a text is a
less explored research field, but not less important. Tay et al. (2020) [41] investigated the extent
to which generated texts can be assigned to the correct generative LM’s configuration (decoding
method, model size and prompt length). Their findings reveal that even a simple classifier
like Bag-of-words followed by a Multilayer Perceptron Network can predict the modeling
configuration with accuracy (55.2%) higher than chance. The fact that a bag-of-words detector
performs similarly to a more complex encoder-based detector (e.g., based on the transformer
[45]) means that word order is less important. They also found that detecting the generative LM’s
configuration is harder than discriminating between human-written and machine-generated
texts. These findings support Uchendu et al.’s (2020) [15] study, which shows that basic models
(linguistic and psychological features inputted into traditional machine learning models or
simple neural networks like CNN and RNN) perform effectively in three contexts: i) deciding
whether two articles are written by the same generative LM (F1 score of 0.98), ii) distinguishing
human-written from machine-generated articles (F1 score of 0.92), and iii) identifying the
generative LM used to generate a given article (F1 score of 0.90). Furthermore, Munir et al.
(2021) [46] explored generative LM attribution across four tasks: attributing pre-trained LMs,
attributing fine-tuned LMs to parent pre-trained LMs, attributing pre-trained or fine-tuned LMs
with different sampling parameters, attributing fine-tuned variants of a pre-trained LM. The
probed detectors made use of stylometric features (Writeprint) as well as static (leveraging
Glove) and dynamic embeddings (leveraging the last hidden state of XLNET and/or GPT-2).
They showed that the attributor based on fine-tuned XLNet embeddings outperformed the other
approaches with an accuracy higher than 90% over all tasks.

These previous works were conducted among the first Transformer-based language models
available from 2019, that is GPT [1], GPT-2 [2], CTRL [47], GROVER [16], XLM [17], XLNet [48],
BART [18], PPLM [49] and FAIR [50]. On the other hand, the second task of the AuTextification
challenge targeted more recent language models like ChatGPT (a previous version was based on
text-davinci-003). We contributed with the same approaches used for the deepfake text detection
subtask but trained on a multi-class classification task: fine-tuning a language model could
achieve good results, as Munir et al. (2021) [46] showed in training the XLNet embeddings
followed by a softmax layer. Moreover, with the three-branched network on stylistic features,
language model embeddings and a character-based CNN we combined Uchendu et al.’s (2020)
[15] and Munir et al. (2021) [46] findings.

3. Tasks and Dataset

The AuTextification challenge involved five different domains to cover a wide variety of writing
styles, from more structured and formal to less structured and informal: legal documents (legal),



how-to articles (wiki), news articles (news), and social media (tweets, reviews). We focused
solely on the English subtasks:

• subtask_1 - Determine whether the text is automatically generated or not. To promote
generalization across new writing styles, the train set involves three domains (wiki, legal,
tweets), while the test set comprises two different domains (reviews, news).

• subtask_2 - Identify the specific text generation model among six options (bloom-1b7,
bloom-3b, bloom-7b1, babbage, curie, text-davinci-003) [5, 31] that produced a given gener-
ated text. Each class corresponds to a text generation model, with the models varying in
the number of neural parameters from 2B to 175B. All five writing styles are involved in
both train and test sets.

Table 1 shows the dataset’s details for each subtask.

Table 1
Dataset details for both (English) subtasks. The H and G labels for subtask_1 stand for Human and
Generated. The A, B, C, D, E, F labels for subtask_2 represent the bloom-1b7, bloom-3b, bloom-7b1,
babbage, curie, text-davinci-003 generation models respectively.

Subtask
Writing Train Test
Style H G total H G total

subtask_1

wiki 5,918 5,862 11,780 - - -
tweets 5,884 5,813 11,697 - - -
legal 5,244 5,124 10,368 - - -
reviews - - - 5,178 5,726 10,904
news - - - 5,464 5,464 10,928

total 17,046 16,799 33,845 10,642 11,190 21,832

Train Test
A B C D E F total A B C D E F total

subtask_2

wiki 775 781 766 798 791 749 4,660 187 195 216 195 202 214 1,209
tweets 782 769 799 747 780 768 4,645 205 199 181 204 183 201 1,173
legal 650 626 667 744 689 761 4,137 159 153 165 146 198 166 987
reviews 750 791 736 806 768 777 4,628 194 155 203 171 206 195 1,124
news 605 681 719 775 794 772 4,346 142 173 187 208 190 212 1,112

total 3,562 3,648 3,687 3,870 3,822 3,827 22,416 887 875 952 924 979 988 5,605

Every methodology decision was based on the exploration of both train and test sets, as
detailed in the Methods section. The complete train and test sets include info about the writing
domain, the generative LM and the used prompt to generate texts for all provided texts.

4. Methods

Two different architectures were explored to tackle both tasks: fine-tuning BERTweet and
training a neural network incorporating stylistics, sentence embeddings, and character features.



A language model pre-trained or fine-tuned on tweets was employed for both approaches.
This decision was based on a random examination of the train and test sets, revealing that the
maximum character length is 669 and the presence of language patterns specific to social media
posts, such as abbreviations, mentions, hashtags, and informal language. Consequently, these
distinctive features led us to select a language model suitable for analyzing social media texts.
To the best of our knowledge, the most effective advanced language models for handling social
media posts are those tailored for tweets.

To optimize the hyper-parameters, we used a 5-fold cross-validation approach on the training
set. With the selected hyper-parameters we then trained the model under analysis on the
complete training set. Python (3.9.15) and the NVIDIA Tesla V100 (16GB) GPU were used for all
experiments.

4.1. Fine-tuning BERTweet

Jointly fine-tuning a Transformer-based language model followed by a fully connected neural
network for classification purposes is one of the most affirmed techniques for deepfake text
detection [28], especially on social media texts [22, 24, 23]. As its high performance for the
detection of deepfake social media texts [24, 23] shows, BERTweet [32] (pre-trained on English
tweets using the RoBERTa [51] pre-training procedure) is the optimal language model candidate.
Figure 1 shows the designed architecture for both tasks. We used the same architecture for
subtask_2 as well to understand its potential in attributing the correct author (language model)
to the generated texts.

Firstly, a text is tokenized through BERTweet’s tokenizer inserting the special classification
token <s> at the beginning and pad tokens to reach the maximum sequence length allowed (128
tokens). Then, the tokens are fed to BERTweet, generating a 768-dimensional vector for each of
the 128 tokens. The classification network takes the vector associated with the <s> token as
input. It consists of a fully connected dense layer with 768 units and a tanh activation function,
directly connected to a linear layer with a softmax activation. This generates probability scores
for each class, and the class with the highest score is selected as the output. Dropout is applied
after BERTweet and the fully connected dense layer to mitigate overfitting.

We leveraged the Python SimpleTransformers (0.63.9) and Wandb library (0.14.2) [52] to
fine-tune and optimize the hyper-parameters of the described architecture. The used hyper-
parameters are listed in Table 2. We tuned the highlighted hyper-parameters using the Bayesian
Optimization [53] and maximizing the F1-macro score. The number of training epochs is fixed
to reduce the time of the optimization phase; it was set to five as it was the best value for similar
experiments with deepfake tweets [23].

4.2. TriFuseNet: Stylistic Features, Embeddings and Chars

Both determining whether a text has been automatically generated or not and detecting the
generative source are authorship attribution tasks. Methods leveraging combinations of stylistic
features, contextualized word embeddings from Transformer-based language models, and char-
base deep neural networks are widely used for these kinds of challenges [54, 55]. Stylistic
features capture the unique writing style of an author, such as sentence structure, punctuation
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Figure 1: BERTweet followed by a fully connected neural network for classification purposes. <s> is
the classification token, which is a 768-dimensional vector representing the meaning of the entire
sentence.

Table 2
Setting of the hyper-parameters used to fine-tune BERTweet. The tuned parameters are highlighted
in bold. Not mentioned hyper-parameter are the default ones from HuggingFace.

Parameter
Subtask_1 Subtask_2 Tuned Range/

Value Value Set

Max Sequence Length 128 128 -

Batch Size 4 4 -

No. of Training Epochs 5 5 -

num_labels 2 6 -

Optimizer AdamW AdamW -

Scheduler linear with warmup linear with warmup -

Dropout 0.1 0.1 -

Learning Rate 0.000031651428939296644 0.00004138122463373879 [0.0 - 1.1e-4]

Weight Decay 0.0881751204354182 0.0893495773266548 [0.0 - 0.1]

Warmup Ratio 0.0266509952435599 0.0400680159083322 [0.0 - 0.1]

usage, and vocabulary choice. Contextualized word/sentence embeddings from Transformer-
based models enhance the network’s understanding of the semantics and syntax of the text,
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Figure 2: The TriFuseNet’s architecture. The hyper-parameters to tune are highlighted in bold.

allowing it to capture fine-grained linguistic nuances. Additionally, a char-CNN, which operates
on character-level representations, can capture information about spelling patterns, typos, and
other text-level characteristics that are independent of word choice or sentence structure. By
combining these various features, a neural network can leverage high-level and low-level cues
to distinguish genuine text from deepfake text. Figure 2 illustrates TriFuseNet, the implemented
neural network architecture featuring a Stylistic-based, a Contextualized Sentence Embedding-
based, and a Char-CNN branch.

Firstly, inputs for each of the three branch are extracted from the input text:

• Stylistic Features - Table 3 shows the 51 extracted features.

• Contextualized Sentence Embedding - As a sentence embedding generator we adopted
TwHIN-BERT-base [56], a multilingual language model for tweet representations that
could have been used for the Spanish subtasks as well. The TwHIN-BERT-base tokenizer
prepares the input for the TwHIN-BERT-base model by tokenizing the text and padding



the tokens to match the maximum sequence length of 128 tokens. Then, the TwHIN-BERT-
base’s last hidden state is averaged on the sequence length, obtaining a 768-dimensional
features vector for the input text.

• Tokenized Chars - We tokenized the input text at the character level using the Keras
Tokenizer and padding to the maximum number of characters (669) among the train and
test sets.

Table 3
The 51 stylistic features are divided into five groups. The Python spacy and textstat packages have
been used.

Type Features Name Normalized By

Lexical
avg_word_length -
num_unique_words, num_stop_words,
num_upper_case_words, num_lower_case_words,
num_title_case_words, num_proper_nouns,
num_nouns, num_verbs, num_adjectives,
num_adverbs, num_pronouns, num_named_entities,
num_noun_chunks

num_words

Syntactical
avg_num_words_per_sentence -
num_noun_phrases, num_verb_phrases,
num_adj_phrases, num_adv_phrases,
num_prep_phrases, num_coord_conj, num_subord_conj,
num_coord_clauses, num_subord_clauses

num_sentences

Semantic num_personal_pronouns, num_possessive_pronouns,
num_reflexive_pronouns, num_reciprocal_pronouns,
num_quantifiers, num_determiners, num_prepositions,
num_aux_verbs, num_modal_verbs, num_negations

num_words

Structural avg_sentence_length, avg_noun_phrases_per_sentence,
avg_verbs_per_sentence, proper_noun_ratio

-

Subject Specific
(Readability Scores)

text_length, flesch_reading_ease, smog_index,
flesch_kincaid_grade, coleman_liau_index, auto-
mated_readability_index, dale_chall_readability_score,
difficult_words, linsear_write_formula, gunning_fog

-

To reduce the number of features, the Stylistic and Contextualized Sentence Embedding
branches are followed by a dense layer. Instead, the Char-CNN branch consists of an embedding
layer followed by a simple CNN involving convolutional and max pooling layers; the outputs
of the CNN layers are concatenated in one vector. The latter is then concatenated with the
outputs of the Stylistic and Contextualized Sentence Embedding branches. This intermediate
vector is given in input to a classification network consisting of two dense layers with the final
one having softmax activation. The latter generates probability scores for each class, and the
class with the highest score is selected as the output. Dropout is applied after the CNN layers
to mitigate overfitting.



We leveraged Tensorflow (2.10.1), Keras (2.10.0) and Hyperopt (0.2.7) Python packages to
optimize the hyper-parameters of the described architecture and train the final model. The used
hyper-parameters are listed in Table 4. We tuned the highlighted hyper-parameters using the
Bayesian Optimization [53] and maximizing the F1-macro score. We also employed the Early
Stopping strategy to stop training when the loss does not improve by 0.01 during 6 consecutive
epochs. Therefore, the number of training epochs for optimizing the hyper-parameters is
decided by the Early Stopping technique. To train the final model on the whole training set we
chose the number of training epochs resulting in the best F1_macro score among the 5-folds of
the optimal setting.

Table 4
Setting of the hyper-parameters used to train TriFuseNet. The tuned parameters are highlighted in
bold. We used the optimizers with their default values. FilterSizes controls two aspects: the number
of layers in the char-CNN and the kernel size ks for each of those layers.

Parameter
Subtask_1 Subtask_2 Tuned Range/

Value Value Set

Max Sequence Length
128 128 -

(TwHIN-BERT-base)

Batch Size 4 4 -

No. of Training Epochs 13 17 -

num_labels 2 6 -

Dense1Size 16 16 [8,16,32]

Dense2Size 64 16 [8,15,32,64]

Dense3Size 51 8 [8,16,32,51,64]a

NumFilters 8 8 [8,16,32,64]

FilterSizes (3, 4, 5) (4,)
[(3,), (4,), (5,), (6,), (2,3),

(2,3,4), (3,4), (3,4,5), (2,4), (3,5)]

Dropout 0.6865683153299412 0.632083776587503 [0.1-0.7]

Activation relu tanh [selu, relu, tanh, elu]

Optimizer adam rmsprop [adadelta, adam, rmsprop, sgd]

aWe erroneously fixed Dense3Size to 51. After the publication of the challenge’s results we optimized TriFuseNet
again using these values.

5. Results and Discussion

The AuTexTification organizers provided the results of five baselines: Logistic Regression with
bag of n–grams at word and character levels, fine-tuned DeBERTa V3 [57] with default hyper-
parameters, Symanto Brain [58] (Few and Zero-Shot), and a Random baseline. Table 5 shows
the results for both subtasks. The F1_macro metric was adopted as the main evaluation metric



for the AuTexTification challenge.

Table 5
Macro-averaged performance scores for English subtask_1 and subtask_2. The averaged 5-cross
validation scores are the ones from the optimal setting of the model. The 95% confidence intervals
are shown in brackets.

subtask model
Averaged 5-cross

Test set
validation

F1 P R F1 P R

subtask_1

fine-tuned BERTweet 0.922 0.928 0.923
0.616 0.793 0.656

(0.610, 0.623) (0.788, 0.797) (0.651, 0.660)

TriFuseNet 0.872 0.874 0.873
0.715 0.743 0.719

(0.710, 0.722) (0.738, 0.749) (0.715, 0.725)
Logistic Regressiona - - - 0.658 - -
Symanto Brain (Few-Shot)𝑎 - - - 0.594 - -
DeBERTa V3𝑎 - - - 0.571 - -
Random𝑎 - - - 0.500 - -
Symanto Brain (Zero-Shot)𝑎 - - - 0.435 - -

subtask_2

fine-tuned BERTweet 0.566 0.582 0.567
0.565 0.580 0.565

(0.554, 0.576) (0.567, 0.593) (0.554, 0.575)

TriFuseNet 0.489 0.496 0.493
0.499 0.502 0.505

(0.486, 0.510) (0.488, 0.517) (0.495, 0.516)
Logistic Regression𝑎 - - - 0.400 - -
Symanto Brain (Few-Shot)𝑎 - - - 0.290 - -
DeBERTa V3𝑎 - - - 0.604 - -
Random𝑎 - - - 0.167 - -
Symanto Brain (Zero-Shot)𝑎 - - - 0.157 - -

abaseline provided by AuTexTification organizers

Subtask_1 - Deepfake Text Detection The significant difference in results between valida-
tion and test is primarily due to the different nature of the data present in the training and test
sets and the ability of the models to effectively perform transfer learning. While the TriFuseNet
solution maintains an acceptable level of accuracy even in the test set thanks to the usage
of general high-level and low-level linguistic cues, the fine-tuned Bertweet solution shows
a drastic decrease in accuracy, which significantly affects the quality of the proposed model.
Regarding writing domain detection, both models better recognize the reviews than the news
(Figure 3); this is likely due to the training on tweets, which is a similar writing style domain
to the reviews. Further validating the generalization capabilities of TriFuseNet, it achieves a
significant F1_macro score of 0.7 in detecting generated news, surpassing the performance of
fine-tuned BERTweet, which only achieves an F1_macro score of 0.497. Overall, TriFuseNet
outperforms all AuTexTification’s baselines, while fine-tuned BERTweet is outperformed by
the Logistic Regression only. This proves that the usage of linguistic features, character-based
neural networks, bag of n-grams at the word and character levels, as well as the embeddings



from a LM capturing hidden linguistic cues is a good strategy for deepfake text detection across
unknown writing styles.
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Figure 3: F1_macro score across the writing domains in the test set. F1 scores for subtask_1 are
related to the binary classification of ’human’ and ’generated’ texts, while the scores for subtask_2
are related to the multi-class classification task attributing a generated text to its generative model
among six.

Subtask_2 - Generative LM Attribution Surprisingly, fine-tuning BERTweet is the best
strategy to recognize the size of the text generation model used. This suggests that the hidden
characteristics of texts generated by Transformer-based language models can only be revealed
by the models themselves, as the DeBERTa V3 baseline supports. This is apparently true
even if the fine-tuned language model does not belong to the set of generation models used.
Furthermore, the relatively lower performance of TriFuseNet compared to fine-tuning BERTweet
indicates that the employed generation models may not possess markedly distinct stylistic
writing patterns. However, Figure 4 reveals that our detection models have higher success in
identifying texts generated by the largest model (text-davinci-003), suggesting distinct hidden
and plain linguistic characteristics compared to the other models. Notably, the second model
accurately detected is the smallest one (bloom-1b7 ), hinting at a potential similarity in writing
style between text-davinci-003 and bloom-1b7. As for the detection of writing domains, both
our models excel in identifying the generative source LM of review texts (Figure 3). This can
be attributed to the use of BERTweet and TwHIN-BERT in our models, which are trained or
fine-tuned on tweets. These models demonstrate a better understanding of the writing style
exhibited in reviews, which bears a resemblance to tweets rather than sentences from sources
like Wikipedia, legal documents, or news articles. Despite being trained or fine-tuned on tweet
data, their performance on tweets is notably lower compared to reviews, as there still exists a
difficulty in recognizing the unique characteristics of short generated texts [35, 22, 23].

6. Conclusions

In this paper, we presented our participation in the AuTextification 2023 challenge, focusing on
deepfake text detection and generative language model attribution for English texts. Regarding
deepfake text detection, the TriFuseNet model demonstrated superior performance compared
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Figure 4: Recognition order of the generation models by true positive values. True positive values
were first normalized by the number of examples for that specific generative model.

to baseline models, effectively detecting deepfake texts across various writing styles with
an F1_macro score of 0.72. This indicates the importance of incorporating such linguistic
features, character-based neural networks, and language model embeddings to capture hidden
linguistic cues in deepfake text detection. Concerning generative language model attribution,
fine-tuning BERTweet proves to be a better strategy than TriFuseNet for recognizing the
size of the text generation model used with an F1_macro score of 0.57. This suggests that
Transformer-based language models reveal the hidden characteristics of their generated texts,
as the AuTexTification’s DeBERTa V3 baseline supports. However, TriFuseNet successfully
identifies distinct hidden and plain linguistic characteristics in texts generated by the largest
model, although with slightly lower performances. The main limitation of our detection models
is the usage of language models pre-trained or fine-tuned on tweets, a particular category of
writing style. By exploiting more general language models, such as Longform, the results may
be improved for both models and subtasks.

Overall, our findings contribute to the understanding of deepfake text detection and generative
language model attribution. They emphasize the significance of linguistic features and character-
based approaches in deepfake text detection and highlight the role of fine-tuning a pre-trained
language model for the accurate attribution of generative language models. These insights pave
the way for further advancements in fighting deepfake texts and enhancing our understanding
of generative language models.
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