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Abstract
Violence is a serious problem that can have a devastating impact on individuals and communities. In some
cases, the virtual world is prone to aggressive expressions and insults, among other violent expressions.
Also, social media platforms provide a valuable source of information for detecting and monitoring
violent events, as people often share posts about them in real time. This information can be used to
improve responses to violence in the world and to design better crime prevention policies. In this sense,
the DA-VINCIS task at IberLEF 2023 is a competition to develop multimodal models to detect violent
incidents on Twitter. The task has two tracks: i) violent event identification and ii) violent event category
recognition. This manuscript describes our solution system for the (i) track using only text-based features.
More particularly, we used EvoMSA, our multilingual text classification framework based on stacked
generalization, to develop competitive models against more complex approaches achieving an F1 score
of 0.89, just 3 hundredths behind the best model in the final ranking.
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1. Introduction

Physical and psychological violence victims can suffer depression, anxiety, and post-traumatic
stress disorder. Social media platforms provide a valuable source of information for detecting
and monitoring violent events, as people often share posts about them in real-time. It is possible
to create models to detect automatically violent incidents in social media for better responses in
the real world and improve the design of crime prevention policies. This problem is particularly
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difficult since, in some cases, even human beings disagree about what is and what is not an
insult or violent message in text [1].

As an effort to attend this problem, the DA-VINCIS task [2] at IberLEF 2023 asks for models to
detect violent incidents on Twitter using images and text. It asks for methods that classify tweets
as mentioning a violent event. The shared task has two tracks: i) violent event identification
and ii) violent event category recognition. Our solution focuses on the first sub-task using the
provided text, i.e., we provide a model using natural language processing features.

Arellano et al. [3] presented the previous edition of the challenge focusing on Twitter messages
with two sub-tasks: binary and multi-label classification tasks. DA-VINCIS 2022 solutions were
all Transformer-based.

Nevertheless, there is more extensive literature related to violence detection on Twitter; for
instance, in [4] is proposed a model based on natural language processing to identify intimate
partner violence (IPV) on Twitter where achieved scores of F1-score of 0.76 on IPV class and 0.97
on the non-IPV class. This issue is not tackled in either English or Spanish languages; it has been
addressed in other languages such as Arabic; in [5] sentiment analysis is used based on lexicon
to classify violence on social networks. They used two social media platforms, Facebook and
Twitter, to acquire messages to be classified. The results get a performance metric of F1-score
between 0.75 and 0.8 values.

This manuscript describes our system solution to the DA-VINCIS 2023, which is based on our
EvoMSA framework (evomsa.readthedocs.io) [6]. EvoMSA is a multilingual text classification
framework built on stacked generalization [7], which effectively combines the output of multiple
models into a single prediction. Our approach uses lexical and semantic features, all computed
as bags of words. Compared to more complex deep learning approaches, the resulting system is
competitive for violent event identification, even only using features from pure text messages.

This manuscript is organized as follows, Section 2 details our proposed system sent to the DA-
VINCIS challenge. Section 3 presents our results, and some conclusions are given in Section 4.
Finally, the appendix has the EvoMSA code to use our models.

2. System description

Since we focus on text messages, violent event identification can be seen as a text classification
task - in fact, many of the tasks encountered at IberLEF2023 [8] can be posed as text catego-
rization problems. Given the content of a tweet written in natural language, our model must
identify whenever a violent event is mentioned.

A standard approach to tackle text classification problems is to pose it as a supervised learning
problem. In supervised learning, everything starts with a dataset composed of pairs of inputs
and outputs; in this case, the inputs are texts, and the outputs correspond to the associated
labels or categories. The aim is that the developed algorithm can automatically assign a label to
any given text independently, whether it was in the original dataset. The feasible categories are
only those found on the original dataset. In some circumstances, the method can also inform
the confidence it has in its prediction so the user can decide whether to use or discard it.

Following a supervised learning approach requires that the input is in amenable representation
for the learning algorithm; usually, this could be a vector. One of the most common methods to
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represent a text into a vector is to use a Bag of Words (BoW) model, which works by having
a fixed vocabulary where each component represents an element in the vocabulary and the
presence of it in the text is given by a non-zero value.

The core idea of a BoW is that after the text is normalized and tokenized, each token 𝑡 is
associated with a vector vt ∈ R𝑑 where the 𝑖-th component, i.e., vt𝑖, contains the Inverse-
Document-Frequency (IDF) value of the token 𝑡 and ∀𝑗 ̸=𝑖vt𝑗 = 0. The set of vectors v cor-
responds to the vocabulary, there are 𝑑 different tokens in the vocabulary, and by definition
∀𝑖 ̸=𝑗vi · vj = 0, where vi ∈ R𝑑, vj ∈ R𝑑, and (·) is the dot product. It is worth mentioning that
any token outside the vocabulary is discarded.

Using this notation, a text 𝑥 is represented by the sequence of its tokens, i.e., (𝑡1, 𝑡2, . . .);
the sequence can have repeated tokens, e.g., 𝑡𝑗 = 𝑡𝑘. Then each token is associated with its
respective vector v (keeping the repetitions), i.e., (vt1 ,vt2 , . . .). Finally, the text 𝑥 is represented
as:

x =

∑︀
𝑡 vt

‖
∑︀

𝑡 vt‖
, (1)

where the sum goes for all the elements of the sequence, x ∈ R𝑑, and ‖w‖ is the Euclidean
norm of vector w. The term frequency is implicitly computed in the sum because the process
allows token repetitions.

The second representation developed relies on using a dense representation based on BoW.
The idea is to represent a text in a vector space where the components have a more complex
meaning than the BoW model. In BoW, each component’s meaning corresponds to the associated
token, and the IDF value gives its importance. The complex behavior comes from associating
each component to the decision value of a text classifier (e.g., BoW) trained on a labeled dataset
that is different from the task at hand, albeit nothing forbids to be related to it. The datasets
from which these decision functions come can be built using a self-supervised approach or
annotating texts.

Without loss of generality, it is assumed that there are 𝑀 labeled datasets, each one contains
a binary text classification problem; noting that if a dataset has 𝐾 labels, then this dataset can
be represented as 𝐾 binary classification problems following the one versus the rest approach,
i.e., it is transformed to 𝐾 datasets.

For each of these 𝑀 binary text classification problems, a BoW classifier is built using the
default parameters (a pre-trained BoW representation and a linear Support Vector Machine
(SVM) as the classifier). Consequently, there are 𝑀 binary text classifiers, i.e., (𝑐1, 𝑐2, . . . , 𝑐𝑀 ).
Additionally, the decision function of 𝑐𝑖 is a value where the sign indicates the class. The
text representation is the vector obtained by concatenating the decision functions of the 𝑀
classifiers and then normalizing the vector to have length 1.

A text 𝑥 is represented with vector x
′ ∈ R𝑀 where the value x

′
𝑖 corresponds to the decision

function of 𝑐𝑖. Given that the classifier 𝑐𝑖 is a linear SVM, the decision function corresponds to
the dot product between the input vector and the weight vector w𝑖 plus the bias w𝑖0 , where the
weight vector and the bias are the parameters of the classifier. That is, the value x

′
𝑖 corresponds

to



x
′
𝑖 = w𝑖 ·

∑︀
𝑡 vt

‖
∑︀

𝑘 vk‖
+w𝑖0 , (2)

where vt is the IDF vector associated to the token 𝑡 of the text 𝑥. In matrix notation, vector x′ is

x
′
= W ·

∑︀
𝑡 vt

‖
∑︀

𝑘 vk‖
+w0, (3)

where matrix W ∈ R𝑀×𝑑 contains the weights, and w0 ∈ R𝑀 is the bias. Another way to
see the previous formulation is by defining a vector ut =

1
‖
∑︀

𝑘 vk‖Wvt. Consequently, x′ is
defined as:

x′ =
∑︁
𝑡

ut +w0, (4)

vectors u ∈ R𝑀 correspond to the tokens; this is the reason we refer to this model as a dense

BoW. Finally, the vector representing the text 𝑥 is the normalized x
′
, i.e., x = x

′

‖x′‖ .

2.1. BoW parameters

Different BoW representations were created and implemented following the approach described
in [9]. The first step was to set all the characters to lowercase and remove diacritics and
punctuation symbols. Additionally, the users and the URLs were removed from the text. Once the
text is normalized, it is split into bigrams, words, and q-grams of characters with 𝑞 = {2, 3, 4}.

The pre-trained BoW is estimated from 4,194,304 (222) tweets randomly selected in a larger
collection of messages. The IDF values were estimated from the collections, and some tokens
were selected from all the available ones found in the collection. Two procedures were used to
select the tokens; the first corresponds to selecting the 𝑑 tokens with the highest frequency,
and the other to normalize the frequency w.r.t. their type, i.e., bigrams, words, and q-grams
of characters. Once the frequency is normalized, one selects the 𝑑 tokens with the highest
normalized frequency. The value of 𝑑 is 217; however, one can also find in the library models
for 213, 214, . . . , 217.

It is also possible to train the BoW model using the training set; in this case, we used the
default parameters. The only difference is that vocabulary size 𝑑 is unlimited, containing all the
tokens as found in the training set.

2.2. Dense representation parameters

The dense representations start by defining the labeled datasets used to create them. These
datasets are organized in three groups. The first one is composed of human-annotated datasets;
we refer to them as dataset. The second groups contain a set of self-supervised dataset where the
objective is to predict the presence of an emoji as expected; these models are referred to as emoji.
The final group is also a set of self-supervised datasets where the task is to predict the presence
of a particular word, namely keyword. This final group includes a set of dense representations
where the words are selected from the training set; we refer to these representations as tailored,



given that these were designed based on the problem at hand. The words were the most
discriminative based on the BoW classifier; these were the ones with the highest absolute value
between the product of the coefficient computed by the linear SVM and the IDF coefficient.

Following an equivalent approach used in the development of the pre-trained BoW, different
dense representations were created; these correspond to varying the size of the vocabulary
and the two procedures used to select the tokens. The vector space create by the dataset
representation is R57, for the emoji models is R567, and, finally, for the keyword is R2048.

2.3. Configurations

We tested 13 different algorithms for each task. The configuration having the best performance
was submitted to the contest. The best performance was computed using k-fold cross-validation
(𝑘 = 5).

The different configurations tested in this competition are described below. These configura-
tions include BoW and a combination of BoW with dense representations. Stack generalization
combines the different text classifiers, and the top classifier was a Naive Bayes algorithm. The
specific implementation of this configuration can be seen in EvoMSA’s documentation, par-
ticularly in the Section Competition. The implementation of the best configuration for each
problem is also described in the appendix.

bow Pre-trained BoW where the tokens are selected based on a normalized frequency w.r.t. its
type, i.e., bigrams, words, and q-grams of characters.

bow_voc_selection Pre-trained BoW where the tokens correspond to the most frequent ones.

bow_training_set BoW trained with the training set; the number of tokens corresponds to
all the tokens in the set.

stack_bow_keywords_emojis Stack generalization approach where the base classifiers are
the BoW, the emojis, and the keywords dense BoW.

stack_bow_keywords_emojis_voc_selection Stack generalization approach where the
base classifiers are the BoW, the emojis, and the keywords dense BoW. The tokens in
these models were selected based on a normalized frequency w.r.t. its type, i.e., bigrams,
words, and q-grams of characters.

stack_bows Stack generalization approach where the base classifiers are BoW with the two
token selection procedures described previously (i.e., bow and bow_voc_selection).

stack_2_bow_keywords Stack generalization approach where with four base classifiers.
These correspond to two BoW and two dense BoW (emojis and keywords), where the
difference in each is the procedure used to select the tokens, i.e., the most frequent or
normalized frequency.

stack_2_bow_tailored_keywords Stack generalization approach with four base classifiers.
These correspond to two BoW and two dense BoW (emojis and keywords), where the
difference in each is the procedure used to select the tokens, i.e., the most frequent



or normalized frequency. The second difference is that the dense representation with
normalized frequency also includes models for the most discriminant words selected by
a BoW classifier in the training set. We refer to these latter representations as tailored
keywords.

stack_2_bow_all_keywords Stack generalization approach with four base classifiers equiv-
alent to stack_2_bow_keywords where the difference is that the dense representations
include the models created with the human-annotated datasets.

stack_2_bow_tailored_all_keywords Stack generalization approach with four base classi-
fiers equivalent to stack_2_bow_all_keywords, where the difference is that the dense
representation with normalized frequency also includes the tailored keywords.

stack_3_bows Stack generalization approach with three base classifiers. All of them are
BoW; the first two correspond pre-trained BoW with the two token selection procedures
described previously (i.e., bow and bow_voc_selection), and the latest is a BoW trained
on the training set (i.e., bow_training_set).

stack_3_bows_tailored_keywords Stack generalization approach with five base classifiers.
The first corresponds to a BoW trained on the training set, and the rest are used in
stack_2_bow_tailored_keywords.

stack_3_bow_tailored_all_keywords Stack generalization approach with five base classi-
fiers. It is comparable to stack_3_bows_tailored_keywords being the difference in the use
of the tailored keywords.

3. Results

Table 1 presents the performance, in terms of F1, of the different configurations in the k-fold
cross-validation (𝑘 = 5). It also includes the performance of our submission in the competition
and the competition’s winner. The table includes two columns Tailored and Dense; these provide
an overview of the systems. The tailored column indicates whether the training set was used to
define the words in the self-supervised datasets or the BoW vocabulary was obtained from it.
The dense column indicates the use of a dense representation.

It can be observed that, for edition 2023, the best configuration is a stack generalization
algorithm with four base classifiers; two BoW and two dense representations. One of the
dense models also includes tailored keywords. The best configuration for edition 2022 is quite
similar to the one for 2023; the difference is that the 2022 configuration does not use tailored
keywords. The configuration used in 2023 is the second-best configuration of 2022, according
to the performance obtained in the k-fold cross-validation approach.

Another comparison that one can make with the Table’s data is computing the difference
between the best performance in k-fold cross-validation and the worst; it can be observed that
for the 2023 edition, the difference is 1.4%, and for 2022 is 13.3%. The difference of 1.4% indicates
that following this approach will be complicated to improve. On the other hand, for the edition
2022, there might be room for improvement following the presented approach.



Table 1
Performance, in terms of F1, of different configurations on a k-fold cross-validation. The second block
shows the performance of our submission (INGEOTEC) and the competition’s winner in each edition.
The best performance is in boldface.

Configuration Tailored Dense DAVINCIS 2023 DAVINCIS 2022

stack_2_bow_tailored_all_keywords X X 0.8984 0.8361
stack_2_bow_all_keywords X 0.8951 0.8447

stack_3_bows_tailored_keywords X X 0.8971 0.7555
stack_3_bow_tailored_all_keywords X X 0.8968 0.8219

stack_2_bow_tailored_keywords X X 0.8966 0.7572
stack_2_bow_keywords X 0.8955 0.7525

stack_3_bows X 0.8931 0.7329
bow_voc_selection 0.8907 0.7342

bow 0.8894 0.7324
bow_training_set X 0.8892 0.7337

stack_bows 0.8879 0.7329
stack_bow_keywords_emojis X 0.8863 0.7595

stack_bow_keywords_emojis_voc_selection X 0.8859 0.7588

Competition

Winner 0.9264 0.7817
INGEOTEC 0.8903 0.7510
Difference 4.1% 4.1%

The second block in the table presents the performance of our participation as INGEOTEC
in the competition and the performance of the competition’s winner. The last row shows the
difference in percentage between these two values. As can be seen, the difference in both
competitions is 4.1%, indicating that the approach presented is competitive with the winner.
However, there is more viability in the 2022 competition than in 2023, as seen in the difference
of performance on the different configurations tested.

4. Conclusions

We have presented our system solution and results for detecting violent incidents on Twitter
using only text-based features in the context of the DA-VINCIS 2023 challenge. Our system is
based on the ensemble of multiple models using stacked generalization, more precisely with
our EvoMSA framework. Our approach uses lexical and semantic features, all computed as bags
of words. We achieved an F1 score of 0.89, just 3 hundredths behind the best model in the final
ranking.

Our results show that developing competitive models for violent event identification is
possible using only text-based features and, even more, bag-of-words-based models. This is
important because it means that we can use similar methodologies for languages without large
language models or when it is impossible to afford the prediction costs of transformer-based
solutions.
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A more general approach to installing EvoMSA is through the use of the command pip, as
illustrated in the following instruction.

pip install EvoMSA

Once EvoMSA is installed, one must load a few libraries; the libraries used in the best
configurations are the following.

from EvoMSA import BoW, DenseBoW
from EvoMSA import StackGeneralization as Stack
from EvoMSA.utils import Linear
from microtc.utils import tweet_iterator

The best configuration found for DAVINCIS 2023 corresponds to a stack generalization with
four base classifiers, two BoW, and two dense BoW, where one dense BoW contains models
identified in the training set. The following function implements it. It can be observed that the
second and eighth lines create instances of BoW. The third line creates the instance of one of
the dense BoW; the fifth line has the name of the tailored keywords, which are downloaded and
loaded on line sixth line. The ninth line initializes the second dense BoW corresponding to the
vocabulary with the most frequent tokens. The thirteenth line creates the stack generalization,
and the last line performs the predictions.

def stack_2_bow_tailored_all_keywords(lang, tr, vs):
bow = BoW(lang=lang)
keywords = DenseBoW(lang=lang, n_jobs=-1,

skip_dataset=set([’davincis2022_1’]))
tailored = ’IberLEF2022_DAVINCIS_task1_Es.json.gz’
keywords.text_representations_extend(tailored)
keywords.select(D=tr)
bow2 = BoW(lang=lang, voc_selection=’most_common’)
keywords2 = DenseBoW(lang=lang, n_jobs=-1,

skip_dataset=set([’davincis2022_1’]),
voc_selection=’most_common’)

keywords2.select(D=tr)
stack = Stack(decision_function_models=[bow, bow2, keywords,

keywords2]).fit(tr)
return stack.predict(vs)

DAVINCIS 2022 best configuration is almost equivalent to the 2023 best configura-
tion. The only difference is that the former edition did not use the tailored keywords.
The following function implements the 2022 configuration; the absence of the line key-
words.text_representations_extend can be observed, which is responsible for incorporating the
tailored keywords.

def stack_2_bow_all_keywords(lang, tr, vs):
bow = BoW(lang=lang)
keywords = DenseBoW(lang=lang, n_jobs=-1,

skip_dataset=set([’davincis2022_1’]))
keywords.select(D=tr)
bow2 = BoW(lang=lang, voc_selection=’most_common’)
keywords2 = DenseBoW(lang=lang, n_jobs=-1,

skip_dataset=set([’davincis2022_1’]),



voc_selection=’most_common’)
keywords2.select(D=tr)
stack = Stack(decision_function_models=[bow, bow2, keywords,

keywords2]).fit(tr)
return stack.predict(vs)
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