
A Framework for Identifying Depression on Social
Media: MentalRiskES@IberLEF 2023
Simón Sánchez Viloria1,*, Daniel Peix del Río1,†, Rubén Bermúdez Cabo1,†,
Guillermo Arturo Arrojo Fuentes1,† and Isabel Segura-Bedmar1

1Universidad Carlos III de Madrid (UC3M), Av. Universidad, 30 (edificio Sabatini), 28911 Leganés (Madrid), Spain

Abstract
This paper describes our participation in the MentalRiskES task at IberLEF 2023. The task involved
predicting the likelihood of an individual experiencing depression based on their social media activity.
The dataset consisted of conversations from 175 Telegram users, each labeled according to their evidence
of suffering from the disorder. We used a combination of traditional machine learning and deep learning
techniques to solve four predictive subtasks: binary classification, simple regression, multiclass classifi-
cation, and multi-output regression. We approached this by training a model to solve the multi-output
regression case and then transforming the predictions to work for the other three subtasks. We compare
the performance of two modeling approaches: fine-tuning a BERT-based model directly for the task or
using its embeddings as inputs to a linear regressor, with the latter yielding better results. The code to
reproduce our results can be found at: https://github.com/simonsanvil/EarlyDepression-MentalRiskES

Keywords
Mental Health, Natural Language Processing, Depression, Social Media, Machine Learning, Deep Learn-
ing, Transformers, Sentence Embeddings

1. Introduction

Mental health is a growing concern in our society. According to the World Health Organization
(WHO), 1 in 4 people will be affected by mental disorders at some point in their lives [1]. In
addition, the COVID-19 pandemic has had a negative impact on the mental health of the general
population, with an increase in the number of people suffering from mental disorders [2]. Thus,
it is becoming increasingly important to evaluate the use of new technologies to assess the risk
of mental illness and the healthcare needs of the population [3].

At the same time, social media platforms such as Telegram have become a popular way
for people to express their feeling and emotions. Telegram is a free, end-to-end encrypted
messaging service that allows users to send and receive messages and media files in private
chats or groups that can be focused on particular topics and allow any user to observe or actively
participate. These characteristics make Telegram a suitable source for text-mining [4].

IberLEF 2023, September 2023, Jaén, Spain
*Corresponding author.
†
These authors contributed equally.
$ simsanch@inf.uc3m.es (S. S. Viloria); dpeix@pa.uc3m.es (D. P. d. Río); 100384003@alumnos.uc3m.es (R. B. Cabo);
100501115@alumnos.uc3m.es (G. A. A. Fuentes); isegura@inf.uc3m.es (I. Segura-Bedmar)
� https://researchportal.uc3m.es/display/inv25506 (I. Segura-Bedmar)
� 0000-0002-7810-2360 (I. Segura-Bedmar)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://github.com/simonsanvil/EarlyDepression-MentalRiskEs/tree/main
mailto:simsanch@inf.uc3m.es
mailto:dpeix@pa.uc3m.es
mailto:100384003@alumnos.uc3m.es
mailto:100501115@alumnos.uc3m.es
mailto:isegura@inf.uc3m.es
https://researchportal.uc3m.es/display/inv25506
https://orcid.org/0000-0002-7810-2360
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


With this context, an interesting approach is to use Natural Language Processing (NLP)
techniques to analyze the language used by people who suffer from mental illness and discover
patterns that can be used to identify them and provide the necessary support. The MentalRiskES
task at IberLEF 2023 [5] aims to promote the development of NLP solutions specifically for
Spanish-speaking social media. They propose three main areas of focus for early-risk detection:
eating disorders (Task 1), depression (Task 2), and non-defined disorders (Task 3).

In this work, we present our proposed solution to Task 2 of the 2023 edition of MentalRiskES.
This task involves evaluating the likelihood of a Telegram user experiencing depression based
on their comments within mental-health-focused groups. The task is split into four predictive
subtasks (2a, 2b, 2c, 2d) according to the type of output required. Our main contributions and
findings can be then summarized threefold:

1. We conducted experiments using various language models based on BERT [6] to solve
the task. We found that a RoBERTa model [7] that had been previously fine-tuned on a
Spanish corpus to identify suicide behavior [8] tended to yield the most accurate results.
This suggests that fine-tuning for an intermediate task can improve results for related
tasks, which is supported by existing literature [9, 10].

2. Our approach to solving the task consisted of training only with the labels of the regression
subtasks (2b, 2d), as we deemed them the most informative. Additionally, we show that
you can use the labels of 2d to recover the labels of the other three subtasks. The models
trained to target task 2d achieved the best results across all subtasks, even outperforming
those that targeted 2b in the simple regression metrics.

3. We attempted two different predictive modeling approaches to solve the task using the
language model (LM) mentioned above. The first one involved extracting the sentence
embeddings of the messages of each user and using them as features to train and evaluate
classic linear and non-linear machine-learning regressors. In the second one, we fine-
tuned the LM directly for the subtask. The first approach proved advantageous in terms
of allowing for quicker, more comprehensive experimentation and resulted in models
that achieved the best overall performance when evaluated on the test set.

The rest of the paper is organized as follows: In the next section, we analyze the dataset used
for the task (Section 2). Then, we describe in detail our methodology for training and evaluating
the models (Section 3). Finally, we discuss the results obtained (Section 4) and present our
conclusions and future lines of work (Section 5).

2. Dataset Analysis

The dataset given for the task consisted of a total of 6,248 individual messages from 175 Telegram
users, each with a variable number of messages (see figure 1). The annotation process consisted
of labeling each user based on the evidence from their conversation history of suffering from
depression. Thus, a total of 10 annotators were used for the tasks. Each was asked to assign one
of the following four labels to each user:



• suffer+in favour: Indicates evidence (from text messages) of the user suffering from
depression but is also receptive/willing to help and overcome it.

• suffer+against: Indicates evidence of the user suffering from depression but is against
receiving or providing help to overcome it.

• suffer+other: Indicates evidence of the user suffering from depression, but there’s not
enough information to assign them to any further category (against or in favour)

• control: Indicates no evidence of the user suffering from depression.

Figure 1: Plot of the count of users by the number of messages in the training set and their assigned
label. x-axis: number of messages per user. y-axis: count of users with that amount of messages.

Furthermore, these labels were represented differently to support each of the four subtasks of
MentalRiskES: simple classification (task 2a), binary regression (task 2b), multiclass classification
(task 2c), and multi-output regression (task 2d).

In the classification tasks (2a, 2c), the label assigned to each user was the class that obtained
the majority vote from the annotators, with the labels being "1" for the "suffer" classes and "0"
for the control in the case of task 2a. For the regression tasks (2b, 2d), the values of the labels
were presented as numeric probabilities in [0, 1] representing the confidence of the respective
class. They were calculated by adding the number of annotators who gave the classification and
dividing by 10 (the total number of annotators). For task 2b, this was presented as one number
representing the probability of suffering from depression, while for task 2d, each subject label
was presented with four numbers representing the probability of each class. Appendix A shows
examples of how this data was given.

The following figure displays the label distribution for each task in the training set. We can
see how over 94 (∼54%) of users were classified as having depression. Furthermore, there is an
imbalance in the labels for the classification tasks due to the "suffer" label being divided into
different categories (leading to an over-representation of the "control" label). Additionally, the
"suffer+other" category is underrepresented when compared to the other three.



Figure 2. Distribution of labels assigned to the users for each task. In tasks a and d: 1 = evidence
of suffering from depression. Task d: The sum of the four labels adds up to 1.

3. Methodology

We proceeded to evaluate different techniques to solve each of the four subtasks. Two main
predictive-modeling approaches were explored: The first one involved fine-tuning a pre-trained
language model on each subtask and the second was about training a standard ML regressor
using sentence embeddings encoded from the user’s messages as features. The following section
describes the steps taken for each approach, first describing how the data was pre-processed
and later explaining the training and evaluation process done for each subtask.

3.1. Data Processing and Augmentation

Independent of the approach taken to train the models, the data was pre-processed and aug-
mented in the same way. The first thing we did was group all the messages by the user they
belonged to and concatenated them into a single string, obtaining a total of 175 messages (one
per user). This was done to obtain a single representation of each user’s conversation history
(from which the labels were assigned) to be able to use it as input for the models.

To prepare for training, the data was split into training and validation sets, leaving a random
26 (15%) users in the latter for stratified cross-validation, where each set receives the same
proportion of samples of each class [11]. The stratification was done using the labels of task c
to ensure equal representation of the classes in both sets.

To increase the amount of data available for training and, at the same time, attempt to model
early detection (obtaining predictions early on in the lifetime of the message history), we
augmented the training set by adding observations that only contained half of their messages.



This was done by first sorting the messages of each user in the training set by its date and then
only taking the first half, the resulting dataset was then appended to the original training set to
obtain a new one with twice the number of observations to be used for training.

3.2. Solving all substaks by solving for regression

By the discussion in section 2, it should be clear to see that not all labels of the subtasks give the
same amount of information about the condition of the subject and the likelihood of predicting
it based on the available data. Indeed, it’s clear that the probability values of task 2b give more
information about confidence in predicting depression than the simple binary labels of task 2a.
For the same reasons, the labels of task 2d are more informative than those of task 2c as they
give the full probability distribution across the four classes.

Furthermore, we can show that it’s possible to use the multi-output regression labels (2d) to
recover the labels of the other three subtasks. To illustrate, the multiclass classification labels of
task 2c can be recovered by selecting the class in the distribution that has the highest probability.
Moreover, we can obtain the labels of task 2a by simply converting these classes into binary
(1 for the "suffer" classes and 0 for all others). Lastly, the labels of task 2b can be obtained by
summing the probabilities of the "suffer" classes in the distribution. We have confirmed this by
applying these modifications to the labels of the training set for task 2d and comparing them to
the original labels of the other three tasks.

This observation led us to consider using models that solve for more than one subtask by
only training it with the labels of task 2b or 2d. This allowed us to reduce the number of models
that had to be trained and focus on solving for a single data modality (regression on [0, 1]).

We approached simple regression in a standard way training models, training models to
minimize the Mean Squared Error between the output values and the real ones. Additionally,
we included the post-processing step of clipping the output predictions of models of this type
to the [0,1] range to ensure that they were valid probabilities.

Multi-output regression using standard machine learning regression, on the other hand,
wasn’t as trivial as in the simple regression case. The models we worked on didn’t support
multi-output regression out of the box. The approach we did involve training four regressors for
each model, one for each class, and then combining the predictions. We explored two methods
for this: training independent regressors or training them in a chain as explained by figure 3.
The full details of the process are described in appendix D.

Finally, similar to the simple regression case, the predictions of the multi-output models
were post-processed by dividing each of the four values by their sum to obtain a vector whose
values add up to one. That is, 𝑦𝑖 =

𝑦𝑖∑︀
𝑖 𝑦𝑖

for each 𝑖-th class. This was done to ensure that the
predictions were valid probability distributions over the classes.



Figure 3: Graphical representation of the two methods used to implement multi-output regression
taken from [12]. In (a), the regressors are trained independently with the same input, while in (b) they
are trained in a chain with the predictions of the previous ones being passed as features to the next.

3.3. Modeling Approaches

3.3.1. Training a regressor with sentence embeddings

A sentence embedding is a semantically meaningful real-valued vector representation of a
sentence, obtained from the outputs of the hidden layers of a language model. The properties of
this representation are so that sentences that express similar meanings are mapped (encoded)
closer to each other in the vector space [13].

In this way, the process of encoding text as numeric vectors can be used directly to extract
features for a classifier or regressor, which will try to learn from the semantic information of
these encodings to predict the label of their corresponding messages. Note, however, that this
approach requires the need to have a pre-trained model to perform this encoding. Furthermore,
it assumes that the model will be good enough at capturing the semantic information of the
texts given as input, enough for the classifier/regressor to learn from it.

Assuming that this is the case, this approach has the advantage that it is much faster to
train these kinds of regressors with regular CPUs, with the most time-consuming part being
obtaining the embeddings of the training/evaluation messages, which only has to be done once.
However, it is necessary to evaluate different encoding models and different classifiers/regressors
(prediction models) to find the best combination for the task at hand.

As such, we conducted experiments using different language models to find the best encoding
model. Particularly, we tested three different versions of BERT [6] trained with different corpora
in Spanish. These versions are described in table 1. Additionally, we experimented with over
10 different regressors, including Least Squares Linear regression [14], Random Forest [15],
and Gradient Boosting [16], among others. These models were chosen due to their ease of
implementation and the fact that they are commonly used in the literature [17].

The process of training and evaluating these models proceeded then as follows: First, the
training set was encoded using the language model and the resulting embeddings were used as
features for a regressor. The regressor was then trained using the labels of task 2d (the most
informative ones) and the resulting model was used to predict the labels of the validation set.
The predictions were then evaluated with the root mean squared error (RMSE). This process
was repeated for each combination of language model and regressor.

Appendix B contains the results of this experiment. Based on that, roberta-suicide-es
was deemed to be the best model for encoding the texts. Additionally, appendix C shows a
detailed report of the evaluation of the best regression model with these embeddings.



Model Description

RoBERTa-base-bne [7] RoBERTa model [18] trained with data from Spain’s National Library.
RoBERTa-suicide-es [8] RoBERTa-base-bne fine-tuned for suicide detection.

BETO [19] Variant of BERT [6] trained with Spanish corpora.

Table 1
Pre-trained BERT-based models used in our experiments.

3.3.2. Fine-tuning a Language Model for Regression

Apart from the approach mentioned above, we also experimented with the pure Deep Learning
(DL) approach of taking a language model and fine-tuning it with the labels of the corresponding
subtask. The model we fine-tuned was a version of RoBERTa pre-trained for detecting suicidal
behavior from texts in Spanish [8]. We chose this model due to the fact of having been trained
previously for a task that shares similar characteristics to ours. Intermediate fine-tuning has
been proven to improve the results of downstream tasks by prior literature [9, 10].

The HuggingFace Transformers [20] and Pytorch [21] libraries in Python were utilized for
loading the model weights and implementing the training loop. We changed the head of the
pre-trained model to a linear layer consisting of output dimension 1 for simple regression or
dimension 4 for multi-output regression. The models were trained using an NVIDIA T4 GPU
for a total of 30 epochs, where the weights of the pre-trained model remained fully frozen for
the first half and then were progressively unfrozen each epoch after that as in [22].

Hyperparameters Value

Optimizer AdamW
Learning rate 1𝑒−5

Max Tokens 1024
Num Epochs 30
Batch Size 1

Table 2
Hyperparameters for fine-tuning a RoBERTa model for regression tasks.

We used an Adam Optimizer with Mean-Squared Error (MSE) for the simple regression
models and a Cross-Entropy loss function for multi-regression (since the labels consisted of
numeric probabilities). Furthermore, since the output for task 2d consisted of a probability
distribution over the four classes, we experimented with a custom loss function that adds a
term to the standard cross-entropy loss to penalize outputs whose sum is different from one.
However, this did not improve the results empirically as compared with simply normalizing
the outputs of the predictions after inference. The formula of this loss is shown in equation 1.
Other hyperparameters are shown in table 2.

ℒcustom = ℒ𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 𝜖(1−
∑︁

𝑖∈[1,4]

𝑦𝑖)
2 (1)

In the equation above, 𝑦 is the output of the model, 𝑦 is the target label, 𝜖 is a hyperparameter
that controls the weight of the penalty term, and 𝑦𝑖 is the 𝑖-th element of the target label.

https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne
https://huggingface.co/hackathon-somos-nlp-2023/roberta-base-bne-finetuned-suicide-es
https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased


4. Results

Using the approaches mentioned in the prior section, we came up with different models to solve
the four subtasks of Task 2 of MentalRiskES. The results in this section are obtained from select-
ing the best-performing models after evaluating the different approaches and hyperparameters
on the validation set. The final predictions were obtained from a test set of messages from 149
subjects never observed during the training process and evaluated against the task’s true labels.

In the tables below, we report the relevant metrics obtained for each subtask and compare them
against the ones obtained from baseline models provided by the organizers of the competition.
In particular, we report both absolute metrics, obtained after observing all the messages of each
subject, and early detection metrics, obtained after incrementally observing the messages across
several rounds. Additionally, table 11 displays the inference-time CO2 emissions and energy
consumption of each model, based on computing their absolute predictions on the test set. These
values were estimated using the codecarbon python library [23].

For the absolute metrics, we show the accuracy, precision, recall, and F1 scores for the
classification tasks (2a and 2c) and the root mean squared error (RMSE) and coefficient of
determination (𝑅2) for the regression tasks (2b and 2d). The early detection metrics include the
early-risk detection metric (erde) computed after observing different rounds of messages as well
as other metrics (more details are provided in the competition guidelines [5]).

The metrics are shown along with the name of the model used to obtain them. The models
are named as follows: [task name]_[model name]_[approach]. For example, task2b_roberta-
suicide-es_fine-tuning refers to the model trained with the task 2b (binary classification) labels
by fine-tuning the Roberta model pre-trained for suicide detection. The "approach" can be either
embeddings or fine-tuning for the two approaches described in section 3.

Furthermore, all ML regressors trained with embeddings as features were Ridge regressors,
and all embeddings were obtained using roberta-suicide-es encodings as this combination
yielded the best results in the evaluation set. The embeddings approaches for task 2d also include
the multi-regression method used (ind indicating that independent regressors were used and
chain for chained regressors).

4.1. Results for task 2a: binary classification

Table 3
Task A absolute Metric Results
Ranked by Macro F1.

accuracy macro_precision macro_recall macro_f1

2d_roberta_embeddings_ind 0.705 0.717 0.727 0.703
BaseLine - Roberta Large 0.698 0.759 0.718 0.690
2d_roberta_embeddings_chain 0.691 0.711 0.755 0.682
2b_roberta_embeddings 0.691 0.713 0.764 0.681
2d_roberta-suicide-es_fine-tuning 0.671 0.695 0.764 0.655
BaseLine - Deberta 0.664 0.788 0.691 0.642
2b_roberta-suicide-es_fine-tuning 0.638 0.663 0.735 0.616
BaseLine - Roberta Base 0.631 0.744 0.658 0.605



Table 4
Task A early-detection Metric Results
Ranked by ERDE30.

erde30 erde5 latency_tp latency_weighted_f1 speed

2d_roberta-suicide-es_fine-tuning 0.013 0.284 3.000 0.716 0.982
2b_roberta_embeddings 0.020 0.286 3.000 0.725 0.982
2b_roberta-suicide-es_fine-tuning 0.020 0.208 2.000 0.700 0.991
2d_roberta_embeddings_chain 0.027 0.283 3.000 0.722 0.982
2d_roberta_embeddings_ind 0.067 0.296 3.000 0.712 0.982
BaseLine - Deberta 0.153 0.303 2.000 0.719 0.984
BaseLine - Roberta Large 0.159 0.290 4.000 0.704 0.951
BaseLine - Roberta Base 0.176 0.342 4.000 0.671 0.951

4.2. Results for task 2b: Simple Regression

Table 5
Task B absolute Metric Results
Ranked by RMSE.

RMSE r2

2d_roberta_embeddings_chain 0.241 0.591
2b_roberta_embeddings 0.244 0.581
2d_roberta_embeddings_ind 0.259 0.526
BaseLine - Roberta Base 0.277 0.770
2d_roberta-suicide-es_fine-tuning 0.304 0.349
2b_roberta-suicide-es_fine-tuning 0.311 0.317
BaseLine - Deberta 0.339 0.683
BaseLine - Roberta Large 0.390 0.503

Table 6
Task B Ranking-based Results: Ranked by the p@30 metric

p@10 p@20 p@30 p@5

BaseLine - Roberta Base 0.800 0.700 0.567 0.600
BaseLine - Deberta 0.600 0.550 0.567 0.800
BaseLine - Roberta Large 0.500 0.550 0.567 0.400
2b_roberta-suicide-es_fine-tuning 0.700 0.700 0.533 1.000
2b_roberta_embeddings 0.800 0.450 0.367 0.800
2d_roberta_embeddings_ind 0.700 0.350 0.233 0.600
2d_roberta_embeddings_chain 0.200 0.150 0.133 0.000
2d_roberta-suicide-es_fine-tuning 0.200 0.100 0.100 0.200



4.3. Results for task 2c: Multiclass Classification

Table 7
Task C absolute Metric Results
Ranked by Macro F1.

accuracy macro_precision macro_recall macro_f1

2d_roberta-suicide-es_fine-tuning 0.517 0.446 0.435 0.395
2d_roberta_embeddings_ind 0.557 0.429 0.395 0.394
2d_roberta_embeddings_chain 0.530 0.437 0.418 0.392
BaseLine - Roberta Large 0.483 0.389 0.378 0.360
BaseLine - Deberta 0.456 0.395 0.344 0.293
BaseLine - Roberta Base 0.356 0.380 0.335 0.274

Table 8
Task C early-detection Metric Results:
Ranked by ERDE30.

erde30* erde5 latency_tp latency_weighted_f1 speed

2d_roberta_embeddings_chain 0.157 0.284 3.000 0.718 0.982
2d_roberta-suicide-es_fine-tuning 0.159 0.285 3.000 0.712 0.982
2d_roberta_embeddings_ind 0.172 0.297 3.000 0.708 0.982
BaseLine - Deberta 0.190 0.330 2.000 0.695 0.984
BaseLine - Roberta Base 0.206 0.307 2.000 0.659 0.984
BaseLine - Roberta Large 0.232 0.283 2.000 0.652 0.984

4.4. Results for task 2d: Multi-output Regression.

Table 9
Task D absolute Metric Results.
Ranked by mean RMSE. Labels are shortened as: sf = suffer+in favour, sa = suffer+against, so = suffer+other, c =control

rmse mean* rmse sf rmse sa rmse so rmse c r2 mean r2 sf r2 sa r2 so r2 c

2d_roberta_embeddings_chain 0.180 0.179 0.191 0.111 0.241 0.355 0.544 0.217 0.069 0.590
2d_roberta_embeddings_ind 0.187 0.181 0.192 0.114 0.259 0.320 0.532 0.208 0.012 0.526
2d_roberta-suicide-es_fine-tuning 0.222 0.212 0.230 0.143 0.304 0.006 0.358 -0.144 -0.538 0.349
BaseLine - Deberta 0.232 0.246 0.250 0.125 0.306 0.484 0.661 0.295 0.260 0.721
BaseLine - Roberta Base 0.410 0.547 0.272 0.235 0.585 -0.145 -0.496 0.355 0.185 -0.624
BaseLine - Roberta Large 0.437 0.682 0.312 0.158 0.598 -0.209 -0.678 0.890 0.059 -0.306



Table 10
Task D ranking Metric Results: Ranked by p@30

p@10 p@20 p@30 p@5 p@50

BaseLine - Deberta 0.300 0.338 0.350 0.250 0.250
2d_roberta_embeddings_ind 0.300 0.300 0.292 0.600 0.280
BaseLine - Roberta Large 0.275 0.263 0.275 0.350 0.350
2d_roberta_embeddings_chain 0.275 0.275 0.250 0.550 0.240
BaseLine - Roberta Base 0.300 0.225 0.192 0.250 0.250
2d_roberta-suicide-es_fine-tuning 0.075 0.113 0.167 0.150 0.145

4.5. Carbon Emissions

Table 11
Estimated CO2 emissions of each model from predicting all messages on the test set (absolute).
Estimations were obtained with the codecarbon python library [23] using a Macbook Pro (2021) w/ M1 Pro and
16GB of RAM for inference. The models with the lowest emissions are highlighted in bold.

duration (secs) emissions (kgCO2eq) cpu_energy ram_energy
model

2b_roberta-suicide-es_fine-tuning 5.74 1.56e-06 7.97e-06 2.53e-07
2d_roberta-suicide-es_fine-tuning 7.393 2.00e-06 1.03e-05 2.58e-07
2b_roberta_embeddings 23.287 6.70e-06 3.23e-05 2.94e-06
2d_roberta_embeddings_ind 23.976 6.94e-06 3.33e-05 3.25e-06
2d_roberta_embeddings_chain 23.721 7.14e-06 3.29e-05 4.63e-06

5. Conclusions

The results show that the approaches considered in this work were successful at modeling each
of the predictive subtasks, with at least one of our models outperforming the baselines in most
cases. We can make the following observations:

• The best-performing approach across all tasks seems to be the one that uses the embed-
dings of the messages as input to a multi-output regression model (task 2d). At least one
model trained with this approach reached the top ranking for tasks 2a, 2b, and 2d absolute
ranking metrics and outperformed the baseline absolute metrics across all tasks.

• Most notably, the regression method that uses multi-output chained regressors obtained
the best metrics for task 2d across all models, outperforming the fine-tuning approach by
over 20% in the absolute metrics and reaching the second highest spot in the early-risk
metrics for this task.

• Models trained for multi-output regression perform very well for binary classification
and simple regression tasks, even outperforming the models trained for simple regression
targets in their own subtask. This suggests that using one model to solve for multiple
targets was indeed a good approach to this problem.



• The models obtained with a pure DL approach from fine-tuning a RoBERTa model are
estimated to produce over 3-4x less emissions at inference time than the hybrid approach
from training linear regressors on sentence embeddings. This gap is likely because
the fine-tuning approach requires less computation at inference time than the hybrid
approach, which requires the computation of the sentence embeddings before feeding
them to multiple regressors, while the fine-tuning approach is made in one forward pass.

Another finding we can conclude from these insights is that while our models achieve great
results in the absolute ranking metrics, they do not perform as well for the metrics that assess
early-risk performance. In our work, we did not model explicitly for an early detection scenario;
we only added information about prior messages through data augmentation. This limitation
means our models may not perform as well in real-world situations where we aim to detect
signs of depression in a conversation early on.

Thus, it may be important to explore different training approaches to improve the perfor-
mance of early-risk detection. This might include directly employing online learning to predict
and update the model as new messages come in or incorporating an ensemble of models to
make independent decisions about a message’s risk level and combining them for a final de-
cision (as seen in [23]). Additionally, we may also look into more efficient implementations
of the hybrid approach to minimize the disparity in emissions compared to pure DL models.
These improvements are crucial when considering the deployment of our models in real-world
situations and will be the focus of future work.

References

[1] World Health Organization, The World Health Report 2001: Mental Disor-
ders affect one in four people, 2001. URL: https://www.who.int/news/item/
28-09-2001-the-world-health-report-2001-mental-disorders-affect-one-in-four-people.

[2] J. Xiong, O. Lipsitz, F. Nasri, L. M. W. Lui, H. Gill, L. Phan, D. Chen-Li, M. Iacobucci, R. Ho,
A. Majeed, R. S. McIntyre, Impact of COVID-19 pandemic on mental health in the general
population: A systematic review, Journal of Affective Disorders 277 (2020) 55–64. URL:
https://www.sciencedirect.com/science/article/pii/S0165032720325891. doi:10.1016/j.
jad.2020.08.001.

[3] D. E. Losada, F. Crestani, J. Parapar, erisk 2017: Clef lab on early risk prediction on the
internet: experimental foundations, in: Experimental IR Meets Multilinguality, Multi-
modality, and Interaction: 8th International Conference of the CLEF Association, CLEF
2017, Dublin, Ireland, September 11–14, 2017, Proceedings 8, Springer, 2017, pp. 346–360.

[4] A. Dargahi Nobari, N. Reshadatmand, M. Neshati, Analysis of Telegram, An Instant
Messaging Service, in: Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, CIKM ’17, Association for Computing Machinery, New
York, NY, USA, 2017, pp. 2035–2038. URL: https://dl.acm.org/doi/10.1145/3132847.3133132.
doi:10.1145/3132847.3133132.

[5] A. M. Mármol-Romero, A. Moreno-Muñoz, F. M. Plaza-del Arco, M. T. Martín-Valdivia,
L. A. Ureña-López, A. Montejo-Ráez, Overview of MentalriskES at IberLEF 2023: Early

https://www.who.int/news/item/28-09-2001-the-world-health-report-2001-mental-disorders-affect-one-in-four-people
https://www.who.int/news/item/28-09-2001-the-world-health-report-2001-mental-disorders-affect-one-in-four-people
https://www.sciencedirect.com/science/article/pii/S0165032720325891
http://dx.doi.org/10.1016/j.jad.2020.08.001
http://dx.doi.org/10.1016/j.jad.2020.08.001
https://dl.acm.org/doi/10.1145/3132847.3133132
http://dx.doi.org/10.1145/3132847.3133132


Detection of Mental Disorders Risk in Spanish, Procesamiento del Lenguaje Natural 71
(2023).

[6] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding, 2019. URL: http://arxiv.org/abs/1810.04805.
doi:10.48550/arXiv.1810.04805, arXiv:1810.04805 [cs].

[7] A. G. Fandiño, J. A. Estapé, M. Pàmies, J. L. Palao, J. S. Ocampo, C. P. Carrino, C. A. Oller,
C. R. Penagos, A. G. Agirre, M. Villegas, Maria: Spanish language models, Procesamiento
del Lenguaje Natural 68 (2022). URL: https://upcommons.upc.edu/handle/2117/367156#
.YyMTB4X9A-0.mendeley. doi:10.26342/2022-68-3.

[8] D. L. Padial, D. Gómez, hackathon-somos-nlp-2023 - roberta-base-bne-finetuned-
suicide-es· Hugging Face, 2023. URL: https://huggingface.co/hackathon-somos-nlp-2023/
roberta-base-bne-finetuned-suicide-es.

[9] J. Phang, T. Févry, S. R. Bowman, Sentence Encoders on STILTs: Supplementary Training
on Intermediate Labeled-data Tasks, 2019. URL: http://arxiv.org/abs/1811.01088. doi:10.
48550/arXiv.1811.01088, arXiv:1811.01088 [cs].

[10] T.-Y. Chang, C.-J. Lu, Rethinking Why Intermediate-Task Fine-Tuning Works, 2021. URL:
http://arxiv.org/abs/2108.11696, arXiv:2108.11696 [cs].

[11] R. Kohavi, A Study of Cross-Validation and Bootstrap for Accuracy Estimation and
Model Selection, in: IJCAI’95: Proceedings of the 14th international joint conference
on Artificial intelligence, 1995, pp. 1137–1143. URL: https://www.semanticscholar.
org/paper/A-Study-of-Cross-Validation-and-Bootstrap-for-and-Kohavi/
8c70a0a39a686bf80b76cb1b77f9eef156f6432d.

[12] E. Antonenko, J. Read, Multi-modal Ensembles of Regressor Chains for Multi-output
Prediction, in: T. Bouadi, E. Fromont, E. Hüllermeier (Eds.), Advances in Intelligent Data
Analysis XX, Lecture Notes in Computer Science, Springer International Publishing, Cham,
2022, pp. 1–13. doi:10.1007/978-3-031-01333-1_1.

[13] C. S. Perone, R. Silveira, T. S. Paula, Evaluation of sentence embeddings in downstream
and linguistic probing tasks, 2018. URL: http://arxiv.org/abs/1806.06259, arXiv:1806.06259
[cs] version: 1.

[14] A. E. Hoerl, R. W. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal
Problems, Technometrics 12 (1970) 55–67. URL: https://www.jstor.org/stable/1267351.
doi:10.2307/1267351, publisher: [Taylor & Francis, Ltd., American Statistical Associa-
tion, American Society for Quality].

[15] L. Breiman, Random Forests, Machine Learning 45 (2001) 5–32. URL: https://doi.org/10.
1023/A:1010933404324. doi:10.1023/A:1010933404324.

[16] J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals
of Statistics 29 (2000). doi:10.1214/aos/1013203451.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine
Learning Research 12 (2011) 2825–2830.

[18] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
V. Stoyanov, RoBERTa: A Robustly Optimized BERT Pretraining Approach, 2019. URL:
http://arxiv.org/abs/1907.11692. doi:10.48550/arXiv.1907.11692, arXiv:1907.11692

http://arxiv.org/abs/1810.04805
http://dx.doi.org/10.48550/arXiv.1810.04805
https://upcommons.upc.edu/handle/2117/367156#.YyMTB4X9A-0.mendeley
https://upcommons.upc.edu/handle/2117/367156#.YyMTB4X9A-0.mendeley
http://dx.doi.org/10.26342/2022-68-3
https://huggingface.co/hackathon-somos-nlp-2023/roberta-base-bne-finetuned-suicide-es
https://huggingface.co/hackathon-somos-nlp-2023/roberta-base-bne-finetuned-suicide-es
http://arxiv.org/abs/1811.01088
http://dx.doi.org/10.48550/arXiv.1811.01088
http://dx.doi.org/10.48550/arXiv.1811.01088
http://arxiv.org/abs/2108.11696
https://www.semanticscholar.org/paper/A-Study-of-Cross-Validation-and-Bootstrap-for-and-Kohavi/8c70a0a39a686bf80b76cb1b77f9eef156f6432d
https://www.semanticscholar.org/paper/A-Study-of-Cross-Validation-and-Bootstrap-for-and-Kohavi/8c70a0a39a686bf80b76cb1b77f9eef156f6432d
https://www.semanticscholar.org/paper/A-Study-of-Cross-Validation-and-Bootstrap-for-and-Kohavi/8c70a0a39a686bf80b76cb1b77f9eef156f6432d
http://dx.doi.org/10.1007/978-3-031-01333-1_1
http://arxiv.org/abs/1806.06259
https://www.jstor.org/stable/1267351
http://dx.doi.org/10.2307/1267351
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1214/aos/1013203451
http://arxiv.org/abs/1907.11692
http://dx.doi.org/10.48550/arXiv.1907.11692


[cs].
[19] J. Cañete, G. Chaperon, R. Fuentes, J.-H. Ho, H. Kang, J. Pérez, Spanish pre-trained bert

model and evaluation data, in: PML4DC at ICLR 2020, 2020, pp. 1–10.
[20] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,

M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao,
S. Gugger, M. Drame, Q. Lhoest, A. Rush, Transformers: State-of-the-Art Natural Lan-
guage Processing, in: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, Association for Computational
Linguistics, Online, 2020, pp. 38–45. URL: https://aclanthology.org/2020.emnlp-demos.6.
doi:10.18653/v1/2020.emnlp-demos.6.

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style,
high-performance deep learning library, in: Advances in Neural Information Processing
Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[22] C. C. Liu, J. Pfeiffer, I. Vulić, I. Gurevych, Improving Generalization of Adapter-Based Cross-
lingual Transfer with Scheduled Unfreezing, 2023. URL: http://arxiv.org/abs/2301.05487,
arXiv:2301.05487 [cs].

[23] V. Schmidt, K. Goyal, A. Joshi, B. Feld, L. Conell, N. Laskaris, D. Blank, J. Wilson, S. Friedler,
S. Luccioni, Codecarbon: estimate and track carbon emissions from machine learning
computing, Cited on (2021) 20.

A. Dataset Examples

The data was given in JSON format after requesting the server. The following examples are
meant to show the structure of how the data was given and later parsed.

[
{
"id_message": "1",
"message": "Me parece que es una buena idea, pero no estoy seguro",
"date": "2020-07-27 01:27:31"

},
{

"id_message": 2,
"message": "Buen dia a todos",
"date": "2020-07-27 02:03:28"

},
]

Example of the raw data describing the messages of one user. The original training set
(later split into training+validation) constituted 175 JSON files like this.

https://aclanthology.org/2020.emnlp-demos.6
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/2301.05487


To complement the files described in the example above, the labels of each subject were given
in CSV format, where each row corresponded to one subject. Four of these files were given, one
for each task. Table 12 below shows some examples of this.

a_label b_label c_label d_suffer_in_favour d_suffer_against d_suffer_other d_control
subject_id

subject101 1 0.9 suffer+in favour 0.7 0.1 0.1 0.1
subject104 1 0.7 suffer+in favour 0.4 0.0 0.3 0.3
subject106 1 1.0 suffer+in favour 0.5 0.5 0.0 0.0
subject108 1 0.5 suffer+in favour 0.4 0.1 0.0 0.5
subject109 0 0.1 control 0.0 0.0 0.1 0.9

Table 12
Example of user labels for each task. The letter in the prefix of the column name indicates the label
of the task (See section 2). For example, column a_label indicates the label of the users for task 2a.

B. Evaluation of Embedding Models for Regression

Table 13 shows the scores after evaluating with different encodings for task 2d. The sentence
embeddings were obtained after concatenating the messages of each user into a single string.
RMSE scores were calculated as the mean of the results of 10 regressors trained with the
respective encoding as features. The best-performing embeddings were the ones obtained with
the RoBERTa model fine-tuned for suicide detection.

suffer+in favour suffer+against suffer+other control mean
encoder

roberta-base-bne-suicide-es 0.228 0.198 0.113 0.249 0.204
roberta-base-bne 0.220 0.208 0.119 0.277 0.214
bert-base-spanish-wwm-cased (BETO) 0.233 0.214 0.132 0.273 0.221

Table 13
Mean RMSEs scores after training 10 regressors with embeddings from different transformers.

The difference in performance between roberta-base-bne-suicide-es encodings and
the other embeddings can be justified by the fact that we are taking advantage of the information
gained from the prior fine-tuning for suicide detection of this model, which likely shares semantic
similarities with our data.

The implementation of the sentence embeddings was done using the HuggingFace library.
Before obtaining the encodings, the models were loaded from the HuggingFace Hub. The
reference and links to the models in Hugging Face is included in 1.

https://huggingface.co/models


C. Evaluation of Regression models trained with the Sentence
Embeddings Approach

Tables 14 and 15 report the regression metrics obtained on the validation set for various
estimators trained with the roberta-base-bne-suicide-es embeddings. The results were
obtained after evaluating over 10 estimators for the task, selecting the 4-6 best-performing
regressors, and doing grid-search hyperparameter-tuning on them.

By these results, the Ridge Regression model (ridge), which implements Least Squares Linear
Regression with L2 regularization, seems to be the best estimator for both tasks. The best-
performing models of each task were then trained with the entire data (train+validation sets) and
the prediction of the test set was obtained with them. These evaluations with these predictions
are the ones reported in section 4.

Table 14
Binary regression results in the evaluation set of various estimators trained with embeddings for task
2b.

rmse r2
estimator

ridge 0.254 0.489
ada 0.257 0.480
lgbm 0.259 0.471
svr 0.260 0.467
rf 0.264 0.448
mlp 0.319 0.198

Table 15
Multi-output regression results in the evaluation set of various estimators trained with embeddings for
task 2d. Labels are shortened as: sf = suffer+in favour, sa = suffer+against, so = suffer+other, c = control

RMSE mean RMSE sf RMSE sa RMSE so RMSE c R2 mean R2 sf R2 sa R2 so R2 c
estimator

ridge 0.183 0.172 0.193 0.108 0.260 0.271 0.410 0.287 -0.076 0.465
lr 0.193 0.202 0.197 0.108 0.267 0.201 0.183 0.256 -0.073 0.439
rf 0.206 0.195 0.220 0.106 0.305 0.133 0.240 0.071 -0.045 0.267
lgbm 0.288 0.285 0.262 0.181 0.424 -0.854 -0.631 -0.321 -2.043 -0.421

The estimators mentioned in the table above are implementations of common regressors
from Python’s Scikit-Learn library [17]. These include: Ordinary ("lr") and Ridge ("ridge")
Least Squares Regression, Ada-Boost regression ("ada"), Light Gradient Boosting Machine
("lgbm"), Support Vector Regression ("svr"), Random Forests ("rf"), and a Multi-Layer Perceptron
("mlp"). References of the implementations of these models can be found in the Scikit-Learn
documentation.

https://scikit-learn.org/stable/supervised_learning.html
https://scikit-learn.org/stable/supervised_learning.html


D. Multi-Output Regression with Independent Regressors and
Regressor Chains

For task 2d, we were required to obtain four values corresponding to a probability distribution
over the four classes (suffer+in favour, suffer+against, suffer+other, control). In section 3.2, we
explained how this multi-output regression problem can be solved for the sentence embeddings
approach by training four regressors and then combining their predictions using either the
Independent Regressors or Regressor Chain methods.

Here we explain how these methods work and were implemented. First of all, the two
methods can be summarized as follows, depending on how the regressors are trained to obtain
the probability distributions. Figure 3 shows a graphical representation of the two methods.

1. Independent Regressors: Each regressor is trained independently with the labels of its
corresponding class (e.g., the first regressor was trained with the labels of the suffer+in
favour class, the second with the labels of the suffer+against class, and so on). The
downside of this method is that it doesn’t take into account the information of the other
classes when training each regressor, which is important as we know the labels are not
independent of each other (they must all sum to 1).

2. Regressor Chain Method: The regressors are trained in a chain, where the first regressor
is trained to predict the first class, and its predictions are included in the features for the
second regressor, and so on. This method is useful when the labels of each class are not
independent of each other (like in our case), as it allows the regressors to learn from the
predictions of the previous ones. Since the order of the classes matters in this method,
we decided to put them in the order of most to least amount of users annotated with that
class: control, suffer+in favour, suffer+against, suffer+other (see section 2).

To the second method, we can additionally add the option of applying Principal Component
Analysis (PCA) to reduce the dimensionality of the input embeddings before training the models
in the chain. Because the embeddings might have a large dimensionality, this is done to make
these models more likely to use the information of the previous predictions. Both methods
were implemented with the Scikit-Learn library [17] using the MultiOutputRegressor and
RegressorChain classes. The number of components to keep for PCA was chosen using based
on the percent of variance explained. The number of components was fine-tuned and the best
results was obtained with 40 components (85% of variance).


	1 Introduction
	2 Dataset Analysis
	3 Methodology
	3.1 Data Processing and Augmentation
	3.2 Solving all substaks by solving for regression
	3.3 Modeling Approaches
	3.3.1 Training a regressor with sentence embeddings
	3.3.2 Fine-tuning a Language Model for Regression


	4 Results
	4.1 Results for task 2a: binary classification
	4.2 Results for task 2b: Simple Regression
	4.3 Results for task 2c: Multiclass Classification
	4.4 Results for task 2d: Multi-output Regression.
	4.5 Carbon Emissions

	5 Conclusions
	A Dataset Examples
	B Evaluation of Embedding Models for Regression
	C Evaluation of Regression models trained with the Sentence Embeddings Approach
	D Multi-Output Regression with Independent Regressors and Regressor Chains

