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Abstract
The present work resumes the participation of the UMSNH Team at RestMex 2023. Our approach aims
to categorize tourist destination reviews in Cuba, Colombia, and Mexico in three different aspects: the
country to which the attraction belongs, the type of attraction, and the level of tourist satisfaction. For
this purpose, a variety of different Word-Embeddings (FastText, 𝜇-TC, BERT) will be used to generate a
baseline, after which combinations of these will be assembled using XGBoost to try to improve on their
individual results.
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1. Introduction

Text categorization is a natural language processing task that determines whether a language
expression belongs to a class of interest. For instance, Sentiment Analysis consists in determining
if an expression is positive, negative, or neutral. This task is commonly performed on written
documents or voice data. The data can describe the public perception of a politician/product, a
review for a movie, or a post on a social network (e.g., Facebook, Reddit, Twitter). It is possible
to categorize texts/audio in different scales like humorousness, offensiveness, polarity, etc. This
task is usually solved by a supervised learning method known as classification. A Classifier
requires as an input a labeled corpus used to fit a function; the learned function will be capable
of categorizing unseen samples.

Diffently to others editions [1, 2], in the RestMex 2023, the organizers ask to analyze
textual data; the task is stated by the organizer as "Given an opinion about a Mexican tourist
place, the goal is to determine the polarity, between 1 and 5, of the text, the type of opinion
(hotel, restaurant or attraction) and, the country of the place of which the opinion is being given
(Mexico, Cuba, Colombia)". In broad terms, a text classification pipeline starts from a text corpus,
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which was previously labeled according to a predefined set of categories (training set). Then a
prepossessing step is performed; the latter implies normalizing (case normalization, removing
stop works, steaming, strategies to deal with links, usernames, hashtags, etc). From normalized
documents, a vocabulary is produced through tokenization. A numerical representation for
each model can be built and used from the vocabulary to fit a machine-learning algorithm [3, 4].
Transforming documents into a set of numerical vectors (often called Vector Space Model or
VSM) is a challenging task. Fortunately, there is a vast collection of methodologies and research
that deals exclusively with the topic.

Undoubtedly, the representation used directly impacts the performance of the classification
algorithm; in other words, the quality of the model will depend on the VSM. For our approach,
an ensemble of multiple of light and fast pre-trained models is used to produce VSMs, which
are used to train a Multi-Layer Perceptron (MLP) to build and stacked VSM, which is finally
ensembled through XGBoost classifier.

2. Task Description

The challenge we took for the RestMex 2023 was the Sentiment Analysis Task. For this assign-
ment, the objective was to develop a system capable of classifying the polarity of an opinion
given by tourists on different types of establishments in Mexico, Cuba, and Colombia. The
system also had to determine the type of establishment the opinion was given on between three
classes (Attractive, Hotel, and Restaurant) and the country in which it is located. Detailed task
and dataset descriptions may be found in the overview document [5].

2.1. Data set

The training data set and the test data set were given by the organizers of RestMex 2023. The
training data set consisted of an xlsx file with 251,702 sample reviews. Each sample has its
corresponding Title column, Review column, Polarity label column, Country label column, and
Type label column. The Polarity column represents the sentiment expressed in the review on a
numeric scale ranging from 1 to 5, where 1 indicates a highly negative sentiment and a value of
5 represents a highly positive sentiment. There were no missing values for any columns in the
training data set.

The test data set was also an xlsx file that contained 107,863 samples. Unlike the training
data set, each sample only had an ID column (from 0 to 107862), a Title column, and a Review
column.

The reviews were collected from TripAdvisor submissions by tourists between 2002 and 2022.
Table 1 shows the distribution of classes for each feature in the training data set. The

distribution of classes for the test data set is unknown.

2.2. Evaluation

The organizers proposed the following equations to evaluate the sentiment score of a system 𝑘.



Table 1
Distribution of Classes in Training Data Set

Polarity Country Type

Class Count Class Count Class Count

5 157095 Mexico 118776 Attractive 111188
4 60227 Colombia 66703 Restaurant 76042
3 21656 Cuba 66223 Hotel 64472
2 6952
1 5772

𝑅𝑒𝑠𝑝(𝑘) =

∑︀|𝐶|
𝑖=1((1−

𝑇𝐶𝑖
𝑇𝐶

) * 𝐹𝑖(𝑘))∑︀|𝐶|
𝑖=1((1−

𝑇𝐶𝑖
𝑇𝐶

)
(1)

.

𝑅𝑒𝑠𝐴(𝑘) =
𝐹𝐴(𝑘) + 𝐹𝐻(𝑘) + 𝐹𝑅(𝑘)

3
(2)

𝑅𝑒𝑠𝐶(𝑘) =
𝐹𝑀𝑒𝑥(𝑘) + 𝐹𝐶𝑢𝑏(𝑘) + 𝐹𝐶𝑜𝑙(𝑘)

3
(3)

𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡(𝑘) =
2 *𝑅𝑒𝑠𝑝(𝑘) +𝑅𝑒𝑠𝐴(𝑘) +𝑅𝑒𝑠𝐶(𝑘)

4
(4)

The evaluation of the Polarity classification is given by equation 1, and it was designed to give
more weight to minority classes, being these the ones with more negative polarities. For Type
and Country classification, the proposed equations 2 and 3, respectively, obtain the average of
the Macro-F measures of each class. Equation 4 is the average of the previous equations, giving
more weight to polarity.

3. Vector Space Models

The first step to transforming text into vectors involves building a vocabulary. The goal is
to convert text sequences into minimal meaningful writing units (tokens); for example, split
a sentence into words. As we deal with written language, obtaining the tokens requires the
manipulation of character strings. It is required to identify punctuation, diacritics (dieresis,
accents). In the case of English, you may want to divide the contractions (You’re −→ you are).
From the vocabulary, it is possible to build a vector representation.

Note that tokenization could be at the suffix/prefix level, syllables, or even letters. It is also
possible to build units made up of 2,3 or 𝑛 words; these tokens are known as 𝑛-grams and allow
us to include concepts of more than one unit, for example, in English terms like ice cream or
New York.



Table 2
Binary one-hot encoding for a simple text document

𝑑1/vocabulary rain may fall and storms come

rain 1 0 0 0 0 0
may 0 1 0 0 0 0
fall 0 0 1 0 0 0
and 0 0 0 1 0 0

storms 0 0 0 0 1 0
may 0 1 0 0 0 0
come 0 0 0 0 0 1

3.1. Tokenizing and vectorizing

The tokenization process is a document segmentation process. The segmentation is dividing
the text (unstructured information) into smaller units that can be accounted for discreetly. The
result of counting the occurrences of each term, known as bag of words, can be used directly as
a vector representation of the document. Information retrieval and search are the most common
application of this type of vector (bag of words) for document retrieval or search.

As an example, consider the following sentence 𝑑1 "Rain may fall, and storms may come"
(the sentence was taken from the lyrics of the song ’Bob Lennon’ in the English version of the
manga ’20th Century Boys’ by Urasawa, N. (2000-2006), published by VIZ Media). By tokenizing
𝑑1 by words, lower-casing, and removing punctuation, a simple way of obtaining a numerical
representation of a text sequence is employing a binary representation of each token that
exists in the vocabulary; this representation is known as one-hot vectors. Each word may be
represented as a one-hot vector, where each one-hot binary vector will be the vocabulary size
and will have only a 1 in the position that corresponds to the word it represents. Therefore,
each document vector(matrix) is comprised of the list of the tokens in the document (see Table
2).

In Table 2, each row is the one-hot vector for one word in 𝑑1, for instance the token fall is
represented by the vector {0, 0, 1, 0, 0, 0}.

For our example, a 7× 6 matrix since the vocabulary is only made up of a single sentence.
In a matrix document, one indicates that the token is part of the document, and zero indicates
that that term is not. This type of representation is often used in neural networks and language
modeling. The importance of any vector representation is that it allows transforming sentences
written in natural language into a space where it is possible to perform mathematical operations
to apply classification models.

One of the disadvantages of having a matrix representation of one-hot vectors is that they
are highly dispersed; their storage can be inefficient if done in a matrix way, while if we do
it through lists or some other dispersed structure, there is an increase in the complexity of
the operations. For instance, in the Spanish language, it is considered that there are around
100000 words [6]. As a result, a one-hot vector for a word will be a 100000-dimensional vector
with only a few elements different from 0. Even with the previous disadvantage, this vector
would preserve the concepts that appear in the document; it would be similar to an index of



terms in a book. Moreover, a binary vector is enough to determine whether or not the word
appears in the document due to it is frequently used in search and information retrieval. A
simple "improvement" for binary one-hot encoding is counting how many times each token
appears in the sentence. The latter can be seen as assigning a weight based on per document
word frequency.

3.2. Frequency Vector Spaces

Even though identifying and counting terms in the vocabulary is helpful for simple problems,
such as computing usage statistics or performing keyword searches, for more complex cases
we might also want to perform tasks in which the importance within the document or the
collection of the words is relevant. For example, it is not desirable for an email to be classified
as spam if it only contains a common term in that type of message.

There are plenty of weighted models; they aim to provide a representation that captures the
importance of each token. One of the most popular representations is frequency-based, like
TF and TF-IDF (Term Frequency Inverse Document Frequency). TF refers to the frequency of
a term in a document, while IDF implies that TF will be weighed based on the frequency of
that same term in the entire collection. Schemes like TF-IDF help to relate a token to a specific
document in a corpus, assigning a numerical value to the importance of that word in the given
document depending on its frequency within the entire corpus.

4. 𝜇-TC

The 𝜇-TC system works with frequency vector spaces. 𝜇-TC is a versatile and compact tool
created to handle various tasks related to text classification, regardless of the specific domain
or language involved. This is achieved by treating the creation of efficient text classifiers as
a problem of optimizing combinations of function parameters applied over a corpus of text.
The functions involved encompass text modifications that normalize a given text, tokenization
options for the text, and weighting techniques, followed by vectorizing the resulting vocabulary,
which is used to train a Support Vector Machine (SVM). For the approach evaluated in this work,
the output probabilities of the SVM are stacked as the input for an XGB Classifier to perform
new predictions. Even though 𝜇-TC is not a word embedding or deep learning approach, it is a
competitive scheme used successfully in multiple text classification contests (for instance [7, 8]).
For a detailed description of how 𝜇-TC works, the reader may consult [9].

5. Word-Embeddings

In the same way as the frequency-based techniques, word embeddings are used to transform
text into numeric vectors. The main difference is that word embeddings are dense vectors
usually learned by a deep neural network. Each word is assigned a unique vector so that similar
words must have vectors close to each other. Word embeddings are based on the idea that the
words around them influence a word’s meaning. In the following subsection, a brief review of
some of the embeddings we used is given.



5.1. FastText

FastText is a library developed by the Facebook AI Research lab for text classification and
representation. FastText is based in skipgram and cbow architectures introduced by Mikolov in
[10]. This tool transforms text into continuous vectors, enabling its application to supervised
and unsupervised training tasks. Like with 𝜇-TC, it is also essential to find the best combination
of function parameters available for building efficient models, although we used base parameters
for our work. The classification task is done using multinomial logistic regression, taking the
sentence or document vector obtained during the model-building phase as the features. An
interested reader in FastText will find a full description in [11].

5.2. BERT

Bidirectional Encoder Representations from Transformers (BERT), first introduced in [12] is a
deep learning approach tool capable of managing several NLP tasks, including text classification.
A transformer is a type of neural network architecture that employs a self-attention mechanism
that allows the model to weigh the importance of different words in a sentence to determine their
relationship. BERT processes text using a bidirectional approach. This means BERT can analyze
a word in the context of both preceding and following words, providing a better understanding
of the word’s meaning. It was pre-trained using text from the English Wikipedia and the Toronto
BookCorpus utilizing Masked Language Modeling (MLM) and Next Sentence Prediction (NSP).
In our case, the resulting model is then fine-tuned to a specific task, which is text classification.
Given that the BERT model used was pre-trained on an English database and the samples from
the RestMex data sets were in Spanish, it was necessary to use a multi-lingual model that
generates aligned vector spaces.[13]. You may be referred to [14] for a comprehensive survey
about BERT.

6. An ensemble word-embedding batched approach

For the proposed task consisting of a pretty massive data set, a modest computer (Intel(R) Xeon(R)
W-2125 CPU @ 4.00GH, with 32 GB ram) is not enough to process all data at the same time for
most of the pre-trained word-embeddings; Our team used a batched approach where the 251702
documents where divided into 𝑛 batches using 𝑛− 𝑘 as training set and the remaining 𝑘 for
model validation. Figure 1 depicts our approach. First, data is split into 𝑛 equal-size batches,
one 𝜇TC, and a FastText model is fitted for each batch; as BERT is not a complete classification
system (we only use the pre-trained model), documents in batches are transformed in BERT
sentences embeddings by averaging all words in each document. A Multi-Layer Perceptron
(MLP) is fitted. A new VSM is built by concatenating the probabilities classes output for each of
the fitted models; the new VSM is used to fit an XGB classifier. The XGB classifier performs
the final prediction. Please note that the input dimension of the data fed into XGBoost is given
by 𝐶 × 𝑛× 𝑛𝑚, where 𝐶 represents the number of classes, 𝑛 denotes the number of training
batches, and 𝑛𝑚 represents the number of used VSMs. In our experiments, 𝑛𝑚 is limited to the
set {1, 2, 3}.
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Figure 1: Pipeline classification based on multi word-embedding stacking over data batches

It is worth mentioning that an instance of the pipeline is run for each of the three sub-tasks
proposed for the RestMEX 2023 (i.e., Attraction, Country, and polarity).

6.1. XGBoost

XGBoost[15] is an optimized distributed gradient boosting open source library designed to
be highly efficient, flexible, and portable. It works under the gradient boosting framework.
Gradient boosting tries to, given two weak classifiers models 𝐹1, 𝐹2, build a stronger classifier
𝐹3 following a Taylor expansion where:

𝛾2 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾𝐿(𝑦𝑡𝑟𝑢𝑒, 𝐹1(𝑥) + 𝛾𝐹2(𝑥)) (5)

𝐹3 =𝐹1 + 𝛾2𝐹2 (6)

Where 𝐿 is the predefined lost function. Once we have 𝐹3, we can iterate over all our weak
models to improve gradually; note how this is a Taylor expansion of first order; XGBoost uses a
second-order Taylor expansion introducing the gradient and hessian of 𝐹1.

6.2. Experimental setup

For our experiments, the number of batches 𝑛 was fixed to 20, where four (𝑘 = 4) are separated
as a validation set and 16 for training the model; a cross-validation with five folds is performed
to measure the generalization capacity for our model. For the FastText and 𝜇TC classifier,
the default system parameters are kept and applied to each of the 20 batches. For 𝜇TC, no
prepossessing is used over the text because it is one of the parameters optimized by 𝜇TC. On
the other hand, for BERT and FastText, the only preprocessing applied is normalizing the text



to lowercase. Please note that while FastText and 𝜇TC predictions are fed forwardly to XGB,
BERT is used to produce document embeddings by averaging the vector representation for the
words in each text; the embeddings are used to train an MLP, which outputs are the inputs used
to the staking process.

6.3. Results

Table 3 summarizes the scores Sentiment𝑃 , Res𝑝, Res𝐶 , and Res𝐴 for the five folds using 20
batches for all seven possible systems combinations on the training data set. BERT produces
the best result when a single model is used. In contrast, the best ensemble uses a BERT and
FastText combination. To ease reading best results are bold-faced.

Table 3
Results for 5 folds over 20 data batches

Ensemble Sentiment𝑃 Res𝑃 Res𝐶 Res𝐴

𝜇TC 0.6425 0.3833 0.8483 0.9553
BERT 0.6873 0.4669 0.8496 0.9658

FastText 0.6797 0.4435 0.8727 0.9593
𝜇TC + BERT 0.6914 0.4608 0.8712 0.9730

𝜇TC + FastText 0.6826 0.4420 0.8830 0.9634
BERT + FastText 0.7004 0.4688 0.8913 0.9726

𝜇TC + BERT + FastText 0.6960 0.4592 0.8921 0.9735

Table 4 depicts the rank in which each system placed for the competition on the
test data set as well as its corresponding Sentiment Track Score, ours being UMSNH-
Team_sentiment_results_xgb_ensemble (bold-faced) in 9th place. All teams were able to submit
as many system results as they wished. Still, only their highest-scoring result is taken into
account.

7. Conclusions and future work

From the results, it is clear that assembling improves on the results given by the individual
embeddings. However, it is noticeable that when using a combination of the three models,
there is a slight decrease in the score for Sentiment and Polarity, which indicates that doing so
generates a little loss of information. Given the results from the RestMex competition, where
our work placed us in the middle of the other teams, the presented methodology could be
considered as a baseline for different events as it is relatively lightweight and computationally
undemanding.

As for future work, we would like to experiment with different sizes of batches to see if this
affects the results somehow, as well as improving the models generated by FastText thorugh
parameter optimization. We can now use heavier embedding methods (ELMo, RoBERTA) due
to the recent acquisition of a more powerful server capable of processing the complete data set
without splitting it into batches. Having more types of embeddings, we can include combinations



Table 4
RestMex 2023 Sentiment Analysis Track Results

Run Sentiment Track Score Rank

LKE-IIMAS-Team_RUN_2 0.7790190145 1
javier_alonso-Team_sentiment_sub6 0.766199648 2
IIMAS-UNAM-Team_resultados 0.7500702313 3

INGEOTEC-Team 0.7375714733 4
UCT_UA-Team_run_01 0.7190152899 5

BUAA-Team_M1_M1_M2 0.7189219428 6
Dataverse-Team_Results_RestMex23 0.7173586609 7

SENA-Team_i-1 0.700868302 8
UMSNH-Team_sentiment_results_xgb_ensemble 0.6991728136 9

Camed_CU-ES-Team_camed_camila_y_eduardo_results_output 0.6977828325 10
JL-Team-Added 0.6888903674 11

ITT-Team-Topics_k=1 0.6814168808 12
Algiedi-Team-5000 0.6691846165 13

Arandanito-Team_POS-ADJ+NOUN+VERB 0.6392190289 14
ABCD-Team_submission 0.4727653249 15

Olga-Team-dfTestfinal_LyS-SALSA 0.3144048884 16
The_Last-Team 0.2295272137 17

of these in the optimization process instead of using a brute-force method. We aim to improve
the performance of our system by further exploring the mentioned steps.
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