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Abstract
This paper covers the participation of the SINAI team in the MedProcNER shared task and the BioASQ
workshop held on CLEF 2023. The main objective of this challenge is to create systems able to accurately
detect and normalize clinical procedure mentions in electronic health Reports. For the named entity
recognition (NER) sub-task we compare different ways of processing long sequences: sentence level
token classification based on fine-tuning of a RoBERTa model pre-trained on biomedical and clinical
data and employing different types of recurrent architectures that rely on non-trainable contextual word
embeddings extracted from the same pre-trained language model. In the normalization sub-task, we
perform a sequential process that combines literal string matching and embedding similarity search to
link each entity found in the previous sub-task with a concept from the SNOMED-CT ontology. Our
best-performing system achieves 0.7568 micro-averaged F1 score on the NER sub-task and 0.5267 on the
NORM sub-task.
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1. Introduction

Automated coding and classification technologies comprise diverse computer-based methodolo-
gies aimed at converting unstructured narrative text found in clinical records into structured
text. These methodologies involve the assignment of codes derived from standard terminologies,
all without requiring human intervention [1]. Structuring clinical information contained in free-
text clinical narratives enables a large variety of applications including assistance of healthcare
professionals with retrospective studies and clinical decision-making support [2]. Structured
clinical information at a large scale can also be leveraged by medical and pharmacologic inquiries
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with the aim of efficiently bringing clinical evidence to medical research.
Identification of clinically relevant terms in patients’ electronic health records (EHR) and their

mapping to codes from a relevant controlled vocabulary is a time-consuming task that entails
errors attributed to the human factor. For this reason, the automation of clinical coding had
attracted the attention of the NLP community. Since the field of clinical information retrieval
was formed, a large variety of approaches has been proposed to tackle this task ranging from
early rule-based methods [3] to sophisticated applications based on deep learning [4].

Regarding the relevant entities being detected, extraction of disease and drug mentions might
be the most investigated field within this specific branch of clinical NLP: many shared tasks
brought the community effort to it by making available high-quality datasets with expert-
generated annotations [5, 6, 7].

Clinical procedures encompass a range of activities undertaken by healthcare professionals
to diagnose, treat, or manage a patient’s medical condition. These activities, such as physical
examinations, laboratory tests, imaging studies, surgical procedures, medication administration,
and other medical interventions, are vital in the realm of patient care. Their significance lies in
aiding healthcare providers in the diagnosis and treatment of medical conditions, as well as
monitoring disease progression and averting complications. Furthermore, clinical procedures
contribute significantly to the advancement of medical knowledge and the enhancement of
healthcare outcomes through research endeavors.

By providing a dataset of reports extensively annotated by experts, MedProcNER task [8] at
the BioASQ workshop [9] fosters collective collaboration within the clinical NLP community in
the development of systems capable of correctly identifying and mapping to SNOMED-CT 1

codes of procedure mentions in reports written in Spanish.
This paper presents the contribution of the SINAI team to the MedProcNER shared task.

We participated in two sub-tasks: the first involving the detection of procedure mentions in
clinical reports and the second consisting in mapping the terms detected with the named entity
recognition (NER) system to codes from the SNOMED-CT ontology. We refer to these sub-tasks
as NER and NORM respectively.

2. Data

The MedProcNER corpus comprises 1,000 clinical case reports in Spanish, which have been
annotated with mentions of clinical procedures and normalized to SNOMED-CT codes [8]. These
texts are sourced from the SPACCC corpus [10] and are identical to the ones utilized in the
DisTEMIST [11] shared task at BioASQ 2022, thus making the annotations mutually beneficial
for medical entity recognition. In this section we provide a brief exploratory-descriptive analysis
of the corpus and describe the pre-processing procedures applied to prepare this data for being
fed to the systems described in Section 3.

1https://www.nlm.nih.gov/healthit/snomedct/snomed_overview.html
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2.1. Exploratory descriptive analysis

In order to make possible a competitive evaluation of the system presented by teams on the
task, the dataset was split by organizers into training and test subsets, the former containing
750 reports and being released with all the annotations and the latter totaling 250 reports and
being released in plain text format.

Each report in the training set was annotated with at least one procedure mention, reaching
48 as the maximum number of annotations with an average of 14.77 procedure mentions per
text, and being the standard deviation equal to 8.3807. Figure 1 displays the 10 most frequently
observed entities across the training data.

Figure 1: 10 most frequently observed entity spans across the training data subset. English translation
made only to ease the reading

As for the length of the text in the MedProcNER corpus, Table 1 summarizes the related
statistics obtained by splitting the text with the RoBERTa Byte-Pair Encoding tokenizer [12], the
same we employ in the proposed systems. It can be noted that there are no relevant differences
between the two provided subsets in terms of this characteristic.

Table 1
Corpus length statistics

Subset Maximum length (tokens) Minimum length (tokens) Avg (STD)

Train 1486 98 458.05 (218.16)
Test 1439 115 458.14 (233.24)

2.2. Pre-processing

In order to make the data format coherent with the approaches we selected to tackle both
sub-tasks we developed different pre-processing procedures.



To be able to evaluate our systems during the development process, we divided the training
set provided by the organizers into two subsets: one that contained 80% of the data (601 reports)
was selected for training, and 20% (149 reports) was reserved for performing the in-house
evaluation.

As will be covered in detail in Section 3, the application of transformer models to the token
classification task poses the challenge related to the maximum input length restrictions. This
led us to employ three different pre-processing procedures.

For the first approximation, we split the reports into sentences using the SentenceRecognizer
from the SpaCy processing pipeline 2. SpaCy’s SentenceRecognizer relies on es_core_news_sm
pre-trained language model 3 which predicts whether each token of every text starts a sentence
or not. For the second approximation, we truncated all long texts to 512 tokens. Finally, the
third approximation consisted in no applying any pre-processing at all.

As for the labeling scheme, we performed experiments with two different types: BIO and
BIOES. In the BIO scheme the ‘B-’ prefix of the label indicates that the token corresponds to the
beginning of the named entity, ‘I-’ prefix marks the labels of tokens inside of the entity while
‘O’ label is reserved for tokens that do not form part of any named entity. BIOES scheme is a
little bit more sophisticated because it also distinguishes the end (‘E-’ prefix) of an annotation
and single-token entities (‘S-’ prefix).

3. System description

In this section we describe the systems presented for the official evaluation on the two sub-tasks.

3.1. Sub-task 1: NER

The advent of large language models like BioBERT [13] or BioM-ELECTRA [14] has proven
the benefits of domain-specific pre-training that enables such models to capture the contextual
representation of the corpora thus improving the performance of these systems on downstream
tasks such as text classification or NER. For this reason, we opted for basing our system on
bsc-bio-ehr-es, a RoBERTa architecture model pre-trained on a combination of biomedical
and clinical corpora [15]. This system achieved state-of-the-art (SOTA) performance on Spanish
clinical NLP benchmarks like CANTEMIST (tumor morphology mentions extraction) [16] and
PharmaCoNER (pharmacological substance mention extraction) [17].

One of the main challenges in using contextual representations from such transformer
architectures as BERT or RoBERTa is the limit of the maximum length of the input text, which
is set to 512 tokens.

As we stated in Section 2, despite the fact of the average length of clinical reports in the corpus
being below the maximum length threshold of the bsc-bio-ehr-es model, the maximum
length exceeds 1400 tokens in both subsets. To be more precise, 248 texts from the train set
(33.07% of the total) and 87 texts from the test set (34.8% of the total) are more than 512 tokens
long. Moreover, the tendency of longer reports to contain more annotation makes to seem

2https://spacy.io/api/sentencerecognizer
3https://spacy.io/models/es
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unfeasible the widely adopted approach of text truncation. More specifically, truncation of the
texts from training and validation data subsets entails a loss of 49.5% of all the annotations,
lowering the mean number of entities per document from 14.77 to 7.14.

Unlike the SOTA approach to transformer model fine-tuning by adding a classification
head typically consisting of a linear layer combined with some regularization techniques like
dropout [18], using recurrent classifiers like Long Short-Term Memory (LSTM) layers or Gated
Recurrent Unit (GRU) layers doesn’t require the inputs to have the same dimensions and
a priori do not have maximum input length restrictions [19, 20]. Recently, approaches that
combine the benefits of transformers and recurrent models in order to improve NER quality were
proposed [21]. Nonetheless, the recurrent nature of such classifiers makes them particularly
vulnerable to the vanishing gradient problem, especially when dealing with very long sequences.

With the objective of evaluating the viability of a combination of transformer embeddings
with recurrent classifiers of different architectures, our team submitted a total of 5 runs for the
NER sub-task.

The first system (run-1) corresponded to a sentence level token classification approach that
used the BIO scheme for entity labeling and relied upon fine-tuning the bsc-bio-ehr-es
pre-trained model by adding a 0.1 dropout and a linear layer on top of the original RoBERTa
architecture. In order to maximize the performance of the fine-tuned model we selected the
values for learning rate, training batch size, weight decay, Adam optimizer epsilon and the
number of warm up steps after 5 trials of hyperparameter optimization that relied on the
Optuna framework [22]. The search space and the selected value for each of the parameters are
summarized in Table 2. To determine the number of training epochs we implemented an early
stopping strategy that stopped training after 3 epochs without improvement of the F1-score
during the evaluation of the development set.

Table 2
Hyperparameter optimization search space and results

Parameter Search space Selected Value

Learning rate Float value between 3𝑒− 5 and 5𝑒− 5 3.5𝑒− 5
Training batch size Either 8 or 16 8
Weight decay Float value between 1𝑒− 12 and 1𝑒− 1 1.8𝑒− 3
𝐴𝑑𝑎𝑚𝜖 Float value between 1𝑒− 10 and 1𝑒− 6 1.1𝑒− 9
Warm up steps integer value between 0 and 1000 496
Training epochs - 11

The second system (run-2) is a classifier with one layer of Bidirectional LSTM (Bi-LSTM)
followed by a Linear layer and a Conditional Random Field (CRF) layer. This classifier takes as
input non-trainable representations of texts truncated to the maximum length of 512 tokens
and labeled following the BIOES scheme. Those representations were obtained as a mean
of the output from the last four layers of the same bsc-bio-ehr-es pre-trained model, but
without subjecting it to any fine-tuning. We utilized a sliding window technique to obtain a
contextual representation for each token, adjusting the size of the window to 128. In other
words, each token embedding corresponds to its representation in a context of 64 preceding and
64 following tokens. As in the previously described approach, we evaluated the system on the



Table 3
Summary of the main distinctive features of the systems presented

run-1 run-2 run-3 run-4

Maximum length sentence level 512 full text full text
Labeling scheme BIO BIOES BIOES BIO
Trainable embeddings True False False False
Contextual embeddings False True True True
Classifier Linear LSTM+CRF GRU+CRF LSTM+CRF

development set after each epoch and interrupted training after 3 epochs without improvements
of the reference metric, which occurred at the end of 109th.

The third system (run-3) generated text representations following the same approach as
described for run-2, but this time we did not truncate the text of the reports. The labeling
scheme used in this case was BIOES. As the core layer of the trained classifier, we selected a
Bi-GRU layer, as a popular and more lightweight alternative for the Bi-LSTM. This layer was
followed by a Linear layer and a CRF. The early stopping callback interrupted this system’s
training process after 106 epochs of training.

The fourth system (run-4) is a modification of the previous one, with a Bi-LSTM layer instead
of a Bi-GRU. This system started to overfit more quickly, as the training was stopped after
completing epoch 87.

Finally, the fifth presented system (run-5) was identical to the run-4 but used BIO labeling
scheme rather than BIOES.

Table 3 provides a summary of the distinctive characteristics of all four presented systems.
All systems were trained on a single NVIDIA A-100 40GB GPU by making use of Huggingface

transformers Python library [23] for the first run and Flair Python toolkit [24] for the other
ones.

3.2. Sub-task 2: NORM

The normalization sub-task requires linking every detected mention during the previous task to
a SNOMED CT concept. To this end, we developed three different linkers which are executed
sequentially.

As an initial step, we make use of the golden labels from the training set provided by the
organizers. We perform a look-up matching process where any entity found exactly in this set
is assigned its golden code. After this, all the entities that were not found in the previous step
follow a similar matching, assigning a SNOMED-CT code to any entity exactly present in the
given gazetteer. Finally, we precalculate an embedding vector for every term in the gazetteer
using SapBERT-XLMR [25], which is a transformer model trained with UMLS 2020AB. We
also embed all the remaining unannotated entities from the NER subtask. Then, we perform a
similarity search between both embedding arrays by using the Faiss library [26]. As a result of
this last process, each entity gets assigned the code of its most similar term in the ontology.



Table 4
Official results obtained by the SINAI team in Clinical Procedure Recognition and Normalization subtasks
along with the best-performing system in the competition.

Subtask System MiP MiR MiF1

NER run 1 0.7631 0.7505 0.7568
run 2 0.7786 0.7043 0.7396
run 3 0.7396 0.7110 0.7250
run 4 0.7538 0.7353 0.7444
run 5 0.7705 0.7049 0.7362

NORM run 1 0.5310 0.5224 0.5267
run 2 0.5455 0.4936 0.5183
run 3 0.5079 0.4884 0.4980
run 4 0.5173 0.5047 0.5109
run 5 0.5352 0.4898 0.5115

4. Results

In this section, we present the results obtained by the systems we developed as part of our
participation in MedProcNER sub-tasks 1 and 2 at BioASQ 11. The evaluation metrics for both
tasks, which are computed by comparing the generated predictions to the expert’s manual an-
notations, are micro-averaged precision (MiP), micro-averaged recall (MiR) and micro-averaged
F1-score (MiF), being the latter the reference metric for the leader board.

Table 4 displays the evaluation metrics scored by all the presented systems during the official
evaluation of the test set.

On the NER sub-task, the best performing system in terms of MiF resulted to be run-1, the
fine-tuned RoBERTa system that approached the task of procedure mention recognition as a
sentence level token classification task. Nevertheless, the incorporation of a recurrent classifier
based on the LSTM layer was proven to be beneficial for the system’s precision, making them
suitable for environments where a low false positive rate is crucial.

As sub-task 2 relies on the results obtained in the NER task, in Table 4 we show the NORM
scores of the described system applied to the predictions made by every NER system developed.
The best-performing system is the one applied to the entities recognized in run 1 from the first
sub-task, which achieved a MiP of 0.5310, a MiR of 0.5224, and a MiF1 of 0.5267.

In Table 5 we describe the impact of every step in our system as the number of entities
matched during the first and second steps of our sequential approach. Our best-performing
system in the first sub-task found a total of 3559 entities in the test set, which is the highest
number across all the runs. Run 4 extracted 3531 entities, and 50% of them were successfully
matched with either the train set or the ontology. The second system found a relatively low
number of entities with respect to the other runs (3275), making the exact matching technique
more relevant in the overall score for this experiment as a higher percentage of the codes
assigned in this manner has been achieved (52.18%). This is also reflected in the fact that this
run scored the highest MiP in the test set (0.5455).



Table 5
Entities exactly matched in steps 1 and 2 during sub-task 2.

System Total entities Step 1 matches Step 2 matches % Exact matches

run 1 3559 1632 147 49.99%
run 2 3275 1546 163 52.18%
run 3 3479 1515 186 48.89%
run 4 3531 1580 185 49.99%
run 5 3311 1510 175 50.89%

5. Conclusions and future work

In this paper we present the system developed by the SINAI team at the MedProcNER shared
task to tackle the sub-tracks of clinical procedure mention recognition and normalization.

For the NER subtask, we compare four different systems with the aim of evaluating different
approaches to processing long sequences: we experiment with performing sentence level
token classification, text truncation and full text processing. To test the utility of transformer
embeddings generated in a contextual manner we employed a set of recurrent classifiers that
operate with different labeling schemes and various maximum text lengths.

All five presented systems showed promising and close to each other results. In terms of MiF,
a sentence level NER system based on a RoBERTa model pre-trained on biomedical and clinical
corpora and fine-tuned by adding a dropout and a linear layer on top of the original architecture
resulted to be the best performing one with a 0.7568. The fact that the lowest false positive
rate was shown by an LSTM classifier that operated with a contextual representation of reports
truncated to the maximum length of 512 tokens suggests the need of performing sentence
level NER employing the same recurrent architecture to accurately measure the benefits of this
approach. We also leave for future work the ablation study of such parameters as the number of
layers used to generate the contextual representation of text that is fed to the recurrent classifier
and the impact of adding the CRF layer.

Regarding the NORM subtask, we performed a sequential matching where we first look for
the entities in the training set, then we match the remaining unannotated entities against the
SNOMED-CT gazetteer provided by the organizers, and finally, we compute a similarity search
between the embedded ontology terms and the entities that were not found in the previous
steps. As this task relies on the results achieved in the previous task, the best-performing system
has been run 1 too, scoring a micro-averaged F1-score of 0.5267. As for future work, we aim to
try different techniques for the entities that could not be found in the exact matching process
such as data augmentation to expand the pool of potential candidates in the gazetteer or the
use of fuzzy techniques such as Levenshtein distance to fix possible grammar mistakes in the
input files.
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