
Exploring Approaches to Answer Biomedical
Questions: From Pre-processing to GPT-4
Notebook for the BioASQ Lab at CLEF 2023

Hyunjae Kim1, Hyeon Hwang1, Chaeeun Lee1, Minju Seo1, Wonjin Yoon2,3,† and
Jaewoo Kang1,4,*

1Department of Computer Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
2Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, 02115, USA
3Harvard Medical School, Boston, MA, 02115, USA
4AIGEN Sciences, Seoul, 04778, Republic of Korea

Abstract
Biomedical question answering (QA) plays a crucial role in assisting researchers, healthcare professionals,
and even patients in accessing and retrieving accurate and up-to-date information from the vast amount
of biomedical knowledge available in literature. To enhance the efficiency of knowledge discovery
and information retrieval, we investigate the efficacy of various pre-processing, model training, data
augmentation, and ensemble methods and evaluate a range of advanced pre-trained models such as
BioLinkBERT and GPT-4. Additionally, we explore data augmentation and ensemble methods to further
improve system performance. In our participation in BioASQ Task 11b-Phase B, our systems achieved a
top ranking in all four batches for the yes/no type of questions, in one out of four batches for factoid
questions, and in two out of four batches for list-type questions.
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1. Introduction

Biomedical question answering (QA) is a pivotal tool, empowering researchers, healthcare
professionals, and patients to access accurate, up-to-date information from the vast pool of
biomedical knowledge in the literature. The BioASQ challenge [1] has actively fostered collabo-
rative efforts across the scientific community to push the boundaries of cutting-edge biomedical
QA research for over a decade. Yoon et al. [2] made a significant contribution to the biomedical
QA field by utilizing the pre-trained model BioBERT [3], instead of traditional word embedding
models, in their milestone study. This approach has paved the way for numerous other systems
and approaches in this field.
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In this paper, we explore understudied or recently proposed pre-processing techniques,
new pre-trained models, training objectives, data augmentation, and ensemble approaches in
the BioASQ Task 11b [4]. We first revisit existing pre-processing methods to analyze what
type of question each method is suitable for. We use BioLinkBERT [5] as a new embedding
model in the BioASQ challenge and show that it outperforms existing language models such
as BioBERT and PubMedBERT [6]. We adopt a sequence tagging approach [7, 8] to train list-
type QA models, which is the first attempt in the challenge. In addition, we investigate the
potential performance improvement in BioASQ by employing data augmentation techniques
using SQuAD [9], a human-labeled factoid dataset consisting of Wikipedia documents, and
LIQUID [10], an automated framework that generates list-type questions and corresponding
answers from PubMed abstracts. We examine whether the utilization of an ensemble method
can further optimize the performance. Finally, we evaluate the capability of the state-of-the-art
pre-trained model, GPT-4 [11], on the list-type questions in a one-shot manner.

We selected the best combination of approaches from pre-processing to the use of GPT-4,
through experiments on the BioASQ-10b dataset [12] for each question type. We participated
in the BioASQ Task 11b-Phase B [13] to evaluate our systems on the official leaderboard. Our
systems delivered remarkable performance across various question types, leading to impressive
rankings. In the yes/no type, our systems achieved first place across all four batches, while
in the factoid type, we attained the highest rank in one out of four batches. Additionally, we
secured the highest rank in two out of four batches for the list type.

2. Task Description

In BioASQ 11B-phase b [13], models are required to provide answers to a given question, denoted
as 𝑞. These answers are inferred from a collection of snippets, represented as 𝑠1, . . . , 𝑠𝐽 , which
are extracted from PubMed abstracts. The format of answers depends on the question types.
For this year’s competition, we focused only on the following three question types that require
exact answers, excluding questions requiring ideal answers.

Yes/no. For this type of question, the model should answer “yes” or “no” to a question based on
the given snippets. An example question of this type is: “Is capmatinib effective for glioblastoma?”
Answering yes/no questions often requires considering multiple snippets collectively rather
than relying on a single snippet alone.

Factoid. Factoid-type questions are mainly concerned with the confirmation or summarization
of factual information and require a single concise answer (e.g., “Which enzyme does Opicapone
inhibit?”). The ground-truth answers are usually, but not always, contained in the snippets,
which distinguishes it from other QA tasks such as SQuAD, where answers always can be
extracted in a given context [9].

List. The list type requires more than one answer to a single question. An example question
is: “What laboratory abnormalities are commonly seen in patients with COVID-19?” Although



list-type questions have received less attention in academic research compared to factoid-
type questions [14], they are frequently encountered in practice, especially in the biomedical
domain [8]. Similar to the factoid type, answers may or may not be extracted from the given
snippets.

3. Methods

Our system comprises three models, each specifically designed for a particular question type. To
identify the optimal choices for each question, we explore five factors to consider in effectively
addressing different types of questions: pre-processing techniques (Section 3.1), QA model selec-
tion (Section 3.2), training objectives (Section 3.3), data augmentation approaches (Section 3.4),
and the use of ensemble methods (Section 3.5).

3.1. Pre-processing

Given that the total length of all 𝐽 snippets might exceed the input length limit of language
models, it becomes necessary to select which snippets from the given set should be provided to
the model as input. We examine two pre-processing techniques: the “single snippet” method
and the “full snippet” method.

Single snippet. One straightforward approach is to treat each snippet as an individual
instance, resulting in multiple question-snippet pairs as follows: (𝑞, 𝑠1), . . . , (𝑞, 𝑠𝐽). For the
factoid and list types, only snippets that contain at least one answer string are utilized as training
instances. On the other hand, all snippets are used for training for the yes/no type. Although this
approach has been commonly used in previous studies because of its simplicity, treating each
snippet as a separate instance can be sub-optimal, particularly for the yes/no type. In answering
yes/no questions, it is often necessary that multiple snippets are considered collectively and the
information present in one snippet should be considered in conjunction with other pieces of
information available in other snippets. Furthermore, this method disregards the opportunity to
extract valuable information from other snippets that could potentially aid in predicting correct
answers.

Full snippet. The full-snippet method addresses the limitations of the single-snippet approach
by concatenating all snippets together to form a single comprehensive evidence context. In
cases where the question-context pair exceeds the input length limitation imposed by the
language model, the set of given snippets is partitioned into multiple contexts based on sentence
boundaries. In other words, each context is created by concatenating the maximum number
of snippets, ensuring that the length limit is not exceeded. Separate contexts created in this
manner are then treated as individual instances.

3.2. QA Model

BioLinkBERT. BioLinkBERT [5] is a pre-trained language model trained on PubMed abstracts
using a new pre-training objective called document relation prediction, where the model predicts



whether two different segments are linked,1 come from a single document, or are randomly
selected from different documents. The model outperformed existing biomedical language
models such as PubMedBERT in various downstream tasks. Especially the model achieved an
accuracy of 94.8 on yes/no questions in a previous BioASQ challenge dataset [15]. Inspired by
this result, we used a BioLinkBERT-large model as our backbone model. For a given question 𝑞
and context 𝑐 that consists of one or multiple snippets, the corresponding token representations
are encoded as follows:

[h[CLS],h𝑞1 , . . . ,h𝑞𝑇 ,h[SEP],h𝑐1 , . . . ,h𝑐𝐿 ] = 𝐸(𝑞, 𝑐), (1)

where 𝐸 is the BioLinkBERT encoder, h[CLS] ∈ R𝑑 and h[SEP] ∈ R𝑑 are the representations
of special tokens [16], and 𝑇 and 𝐿 are the lengths of the question and context, respectively.
The token representations are then fed into task-specific layers, which will be described in
Section 3.3.

GPT-4. Recently, foundation models such as ChatGPT [17] and GPT-4 [11] have been utilized
in various downstream applications. Notably, they have demonstrated comparable or even
superior performance compared to supervised models without fine-tuning. These findings serve
as compelling evidence that the models possess the capability to deliver accurate answers to
questions even in specialized domains such as biomedicine. In this challenge, we selected Open
AI’s latest model, GPT-4, as our QA system.2 Unlike BioLinkBERT, GPT-4 is a black-box model;
thus, we cannot access the hidden representation to update the model, and we should query the
model using instructions [20]. We used only a single labeled example to provide the model with
more comprehensive information on the task and desired output format (see Table 1 for the
input prompt we used).

3.3. Training Objective

Binary classification. For the yes/no type, the model is trained using a binary classification
objective, where the final hidden representation of the [CLS] token, h[CLS], is fed to a linear
layer. The loss is defined as the sum of the negative log probabilities of the true answer class
(i.e., yes or no).

Span prediction. For the factoid type, the token representations of the context are fed
into two different linear layers that calculate logit values for the start and end positions
of the answer span as follows: 𝑧start

𝑐1 , . . . , 𝑧start
𝑐𝐿

= [w⊤
starth𝑐1 , . . . ,w

⊤
starth𝑐𝐿 ], 𝑧

end
𝑐1 , . . . , 𝑧end

𝑐𝐿
=

[w⊤
endh𝑐1 , . . . ,w

⊤
endh𝑐𝐿 ]. These logits are used to calculate probability values for each token,

indicating the likelihood of it being the start or end of the answer span. The loss is calculated
by summing the negative log probabilities of the start and end positions of the ground-truth
answer.

1Citation information were used.
2Note that we used GPT-4 only in the list type because the model did not outperform supervised models for the
yes/no and factoid types in our initial experiments on BioASQ-10b. Please see concurrent works for results of GPT
models in yes/no and factoid questions in the biomedical domain [18, 19].



Table 1
The designed prompt for GPT-4 to answer list-type questions. {Test Question} and {Test Context} are
substituted by real questions and contexts in test batches.

Your task is to identify a list of answers to the question in the provided context.
To help you understand the task, here is an example:

Question:
Which acetylcholinesterase inhibitors are used for treatment of myasthenia gravis?

Context:
Pyridostigmine and neostygmine are acetylcholinesterase inhibitors that are used as
first-line therapy for symptomatic treatment of myasthenia gravis.

Answer:
neostigmine, pyridostigmine

Now, here is the actual question and context for you to find the appropriate list of answers.

Question:
{Test Question}

Context:
{Test Context}

Answer:

Sequence tagging. One conventional approach to solving list-type QA involves considering
the top answer predictions of a single-span QA model that surpasses a pre-defined threshold as
final predictions. Recent studies [7, 8] have proposed an alternative approach, treating list QA as
a sequence tagging problem, where the model classifies each context token into B (beginning), I
(inside), or O (outside) tags, similar to named entity recognition. This approach showed better
performance in list QA than existing single-span QA models in a range of general and biomedical
QA datasets [14, 10]. Inspired by these results, we adopted this approach to train our list-type
QA model.

3.4. Data Augmentation

We explored two data augmentation approaches to enhance performance in the factoid and list
types. 3

SQuAD. For the factoid type, we followed previous studies that leveraged a large-scale single-
span dataset SQuAD [2, 22, 23, 24]. While the SQuAD dataset is not specifically designed for the

3Due to the high performance of our models in initial experiments, we did not extensively investigate a data
augmentation approach for the yes/no question type. However, it would be interesting to investigate the impact
and transferability of existing yes/no QA datasets such as PubMedQA [21] in future research.



Table 2
Statistics of the BioASQ-10b (the training and validation sets) and BioASQ-11b (the test batches) datasets.

Type Number of Questions

Training Validation Batch 1 Batch 2 Batch 3 Batch 4

Yes/no 1,148 124 24 24 24 14

Factoid 1,252 166 19 22 26 31

List 816 85 12 12 18 24

Table 3
Model components for each question type. We selected the best options using a validation process on
BioASQ-10b.

Type Pre-processing QA Model Training
Objective

Data
Augment. Ensemble

Yes/no Full snippet BioLinkBERT [5]
Binary
classification

Factoid Single snippet BioLinkBERT [5]
Span
prediction

SQuAD [9]

List Full snippet
BioLinkBERT [5]

Sequence
tagging

LIQUID [10]

GPT-4 [11]

biomedical domain, it shares a fundamental similarity with the factoid-type QA in BioASQ. Both
datasets aim to find accurate answers to factual questions within a provided text. We initially
pre-trained our models using SQuAD and subsequently fine-tuned them using the BioASQ data.

LIQUID. A recent study [10] proposed a data generation model for list QA, called LIQUID,
and made the 140k question-answer pairs produced by the model publicly available.4 We utilized
this synthetic data to pre-train our models, and subsequently, we fine-tuned the models using
the BioASQ data.

3.5. Ensemble

We used different ensemble techniques for the yes/no, factoid, and list types, respectively.

Yes/No. We employed majority voting, where predictions from each individual model were
aggregated, and the final prediction was determined by the majority prediction.

Factoid. We use a probability-based ensemble method for factoid-type questions. In this
approach, we calculate the sum of probability values for each of the top 20 answers predicted

4https://github.com/dmis-lab/LIQUID

https://github.com/dmis-lab/LIQUID


Table 4
Performance (macro F1) on BioASQ-11b in the yes/no type. Numbers in parentheses indicate the number
of single models constituting the ensemble model.

Batch Rank System Macro F1 Description

Batch 1

1 DMIS-KU-5 0.9515 Single
7 DMIS-KU-1 0.8571 Ensemble (20)
7 DMIS-KU-2 0.8571 Ensemble (10)
7 DMIS-KU-3 0.8571 Ensemble (10)
13 DMIS-KU-4 0.8545 Single

Batch 2

1 DMIS-KU-4 1.0000 Single
4 DMIS-KU-1 0.9577 Ensemble (20)
4 DMIS-KU-2 0.9577 Ensemble (10)
4 DMIS-KU-3 0.9577 Ensemble (10)
10 DMIS-KU-5 0.9143 Single

Batch 3

1 DMIS-KU-4 1.0000 Single
3 DMIS-KU-1 0.9545 Ensemble (20)
5 DMIS-KU-5 0.9111 Single
11 DMIS-KU-2 0.8693 Ensemble (10)
12 DMIS-KU-3 0.8634 Ensemble (10)

Batch 4

1 DMIS-KU-1 1.0000 Ensemble (20)
7 DMIS-KU-2 0.9181 Ensemble (10)
7 DMIS-KU-5 0.9181 Single
15 DMIS-KU-3 0.9048 Ensemble (10)
17 DMIS-KU-4 0.8250 Single

by individual models. The top five predictions with the highest summed probabilities are then
selected as the final answers.

List. We counted the number of answers predicted by single models to a given question
based on their string form. For each answer, we calculated an ensemble score as the proportion
of how many models out of the total number of models predicted the answer. For instance,
suppose that model A, model B, and model C predict {“leprosy,” “cirrhosis,” “cholera”}, {“leprosy,”
“COVID-19”}, and {“cirrhosis”}, respectively, then the ensemble scores of each prediction as
follows: leprosy (2/3), cirrhosis (2/3), cholera (1/3), and COVID-19 (1/3). If the score is higher
than the threshold, we included the predicted answer in the final answer set; otherwise, we
excluded it. We searched for the best threshold value using the BioASQ 10b dataset.

4. Experimental Setups

4.1. Dataset

We used the training and test sets of the BioASQ-10b dataset [12] as our training and validation
set, respectively. Systems were evaluated on BioASQ-11b [25], which was newly proposed for



Table 5
Performance (mean reciprocal rank, i.e., MRR) on BioASQ-11b in the factoid type. Numbers in parenthe-
ses indicate the number of single models constituting the ensemble model.

Batch Rank System MRR Description

Batch 1

4 DMIS-KU-1 0.5526 Ensemble (10)
4 DMIS-KU-2 0.5526 Ensemble (10)
4 DMIS-KU-5 0.5526 Ensemble (10)
7 DMIS-KU-4 0.5439 Ensemble (20)
9 DMIS-KU-3 0.5088 Ensemble (10)

Batch 2

8 DMIS-KU-1 0.4773 Ensemble (15)
11 DMIS-KU-4 0.4697 Ensemble (10)
13 DMIS-KU-3 0.4621 Ensemble (15)
13 DMIS-KU-5 0.4621 Ensemble (10)
15 DMIS-KU-2 0.4561 Ensemble (20)

Batch 3

2 DMIS-KU-1 0.5154 Single
4 DMIS-KU-2 0.5077 Ensemble (2)
6 DMIS-KU-3 0.4981 Single
13 DMIS-KU-5 0.4647 Single
16 DMIS-KU-4 0.4500 Ensemble (2)

Batch 4

1 DMIS-KU-1 0.7323 Ensemble (4)
2 DMIS-KU-2 0.7108 Ensemble (4)
3 DMIS-KU-3 0.6882 Single
4 DMIS-KU-4 0.6570 Single
5 DMIS-KU-5 0.6473 Single

the 2023 challenge. The statistics of the datasets are listed in Table 2.

4.2. Our Systems

We selected our final systems through a validation process among various combinations of
methods (see Section 5.2 for detailed validation results). Table 3 presents the optimal selections
for the “single” model for each question type. We searched for the best checkpoints of single
models by measuring performance on the validation set every epoch. Ensemble models consisted
of different single models that were randomly initialized and then selected through the validation
process.

5. Results

5.1. Official Evaluation on BioASQ-11b

Tables 4, 5, and 6 show that our best models achieved top scores in many batches. Especially, in
the yes/no type, our models achieved the highest scores across all batches, to with full-snippet
method contribute significantly.



Table 6
Performance (F-measure) on BioASQ-11b in the list type. Numbers in parentheses indicate the number of
single models constituting the ensemble model. Please refer to Section 3.5 for a description of threshold
values.

Batch Rank System F-Measure Description

Batch 1

1 DMIS-KU-3 0.7027 Ensemble (20), threshold: 0.6
1 DMIS-KU-5 0.7027 Ensemble (20), threshold: 0.7
3 DMIS-KU-4 0.6992 Ensemble (10), threshold: 0.7
4 DMIS-KU-2 0.6965 Ensemble (10), threshold: 0.6
5 DMIS-KU-1 0.6937 Ensemble (10), threshold: 0.6

Batch 2

6 DMIS-KU-3 0.3178 Ensemble (15), threshold: 0.75
8 DMIS-KU-2 0.3087 Ensemble (15), threshold: 0.75
9 DMIS-KU-1 0.3080 Ensemble (10), threshold: 0.6
10 DMIS-KU-5 0.3022 Ensemble (20), threshold: 0.4
13 DMIS-KU-4 0.2871 Ensemble (20), threshold: 0.4

Batch 3

4 DMIS-KU-5 0.5477 Ensemble (15), threshold: 0.75
5 DMIS-KU-4 0.5466 Ensemble (15), threshold: 0.75
6 DMIS-KU-3 0.5454 Ensemble (20), threshold: 0.7
7 DMIS-KU-2 0.5437 Ensemble (20), threshold: 0.6
8 DMIS-KU-1 0.5341 Ensemble (10), threshold: 0.6

Batch 4

1 DMIS-KU-1 0.7440 GPT-4
4 DMIS-KU-2 0.6806 Ensemble (20), threshold: 0.6
5 DMIS-KU-5 0.6787 Ensemble (15), threshold: 0.75
6 DMIS-KU-3 0.6752 Ensemble (20), threshold: 0.7
7 DMIS-KU-4 0.6747 Ensemble (15), threshold: 0.75

In the factoid type, we achieved the highest score in the last batch. Our factoid QA models
basically used a similar model structure and training method, but their performance and rankings
were very different from batch to batch. This is because we continuously searched for best
single models by randomly initializing them, making us to obtain better single models in batches
3 and 4. In addition, we found that the performance of ensemble models depended on the
individual performance of single models rather than the quantity of single models. For instance,
by ensembling a small number of high-performing models, we were able to achieve second and
first place in batches 3 and 4, respectively.

In the list type, we achieved first place in two batches using supervised model and GPT-4,
respectively. For the supervised model, the full-snippet method, data augmentation using
LIQUID, and ensemble were all effective to improve the performance (see Section 5.2 for
more results). GPT-4 outperformed our supervised models in batch 4 and achieved the best
performance. This is very surprising because our supervised models were ensemble models of
several single models trained using thousands of human-labeled BioASQ data and 140k artificial
QA data, while GPT-4 used only a single question-answer pair.



Table 7
Ablation study of pre-processing methods. See Section 3.1 for detailed descriptions of the single-snippet
and full-snippet approaches.

Method Yes/no Factoid List

Single snippet 0.9347 0.5132 0.4773
Full snippet 0.9815 0.4762 0.5373

Table 8
Comparision of pre-trained language models. Note that the performance was measured using macro F1
and mean reciprocal rank for the yes/no and factoid types, respectively.

Model Vocabulary Model Size Yes/no Factoid

BioBERT-base Wiki+Books 110M 0.8091 0.4734

PubMedBERT-base PubMed 110M 0.9630 0.4815

BioLinkBERT-base PubMed 110M 0.9634 0.4840
BioLinkBERT-large PubMed 340M 0.9837 0.5132

Table 9
Ablation study of data augmentation methods. Note that SQuAD and the synthetic dataset generated
by LIQUID [10] were used as augmenting data for the factoid and list types, respectively.

Method Factoid List

BioASQ 0.5132 0.5373
+ Augment. 0.5294 (+ 0.0162) 0.5731 (+ 0.0358)

5.2. Ablation Study on BioASQ-10b

Effect of pre-processing. Table 7 shows that the effect of the pre-processing method varied
depending on the type of question. In the case of yes/no and list question types, the full-snippet
approach outperformed the single-snippet method. This is because both question types require
a comprehensive understanding of the context to provide accurate answers. However, for the
factoid question type, the single-snippet method was found to be more suitable. We speculate
that the single-snippet method was effective because most factoid questions can be answered
with only the surrounding context of the answer without much additional context.

Language model selection. To find the best-performing encoder on the BioASQ data, we
tested several variants of common pre-trained language models in the biomedical domain:
BioBERT [3], PubMedBERT [6], and BioLinkBERT [5]. As shown in Table 8, BioLinkBERT was
slightly better than PubMedBERT with the same size (110M parameters), and the BioLinkBERT-
large model significantly outperformed the base-sized models.

Effect of data augmentation. Table 9 shows that augmenting the SQuAD data improves
performance on the factoid questions, which is consistent with previous studies [2, 22, 23, 24].



Table 10
Validation performance of single and ensemble models for the three question types. “Best Single”
indicates the highest performance among the single models that constitute the ensemble model. The
performance is measured based on Macro F1 scores for the yes/no type, mean reciprocal rank for the
factoid type, and F-measures for the list type.

Type Batch System Best Single Ensemble

Yes/no 4 DMIS-KU-1 0.9815 0.9908 (+ 0.0093)
Factoid 4 DMIS-KU-1 0.5522 0.5643 (+ 0.0121)

List 4 DMIS-KU-2 0.5964 0.6127 (+ 0.0163)

In addition, the LIQUID data significantly improved the model performance on the list type,
which is consistent with Lee et al. [10].

Effect of ensemble. Table 10 shows validation results for the three question types, highlight-
ing improvements in performance attained through ensembling of multiple models.

6. Conclusion

This study focused on conducting comprehensive experiments, encompassing a range of pre-
processing techniques and the utilization of advanced models such as BioLinkBERT and GPT-4.
In addition, we delved into the exploration of data augmentation and ensemble methods, further
refining the performance of our QA system. Our models achieved high performance in BioASQ
task 11b - phase B. We hope that our findings and analysis will contribute towards enhancing
the performance of biomedical QA systems, ultimately maximizing knowledge discovery and
information retrieval efficiency.
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