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Abstract
This paper discusses our submission to the 2023 BioASQ challenge, document retrieval subtask (subtask
B, phase A). In the subtask, systems must return top 10 most relevant PubMed articles for each natural
language query. Our multi-stage system incorporates a bi-encoder model in the retrieval stage, and
a cross-encoder model at the reranking stage. At the retrieval stage, we use a hybrid retriever that
combines dense and sparse retrieval, where the dense retrieval is implemented with the bi-encoder and
the sparse retrieval is implemented with BM25. The bi-encoder and cross-encoder are initialized with
PubMedBERT and further trained on PubMed query-article search logs of unprecedented scale, with
about 255 million relevant query-article pairs. Each pair consists of a user query and a document clicked
on by the user during their search on PubMed. Our system ranks second place in the second batch, and
third place on the first and third batches at the 2023 BioASQ challenge, demonstrating the strength of
models trained on PubMed search logs.
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1. Introduction

Automatic question answering (QA) plays an important role in biomedical knowledge acquisition
and clinical decision support [1]. For many retrieval-augmented QA systems, the first stage is
to retrieve relevant documents for the given question. The BioASQ Biomedical Semantic QA
(Task 11B), particularly the document retrieval subtask (Phase A), provides a way to evaluate
QA systems on datasets built by biomedical experts [2]. We focus on the document retrieval
aspect of the broader biomedical QA process. Lexical and semantic retrieval are two major
approaches to textual information retrieval. Lexical retrieval is commonly implemented with
sparse retrievers, while semantic retrieval is implemented with dense retrievers. Conventionally,
document retrieval relied on sparse retrievers such as BM25 [3, 4], especially before the rise of
transformer-based deep learning models [5]. Sparse retrievers, by design, are capable of efficient
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lexical term matching but are weak at semantic matching due to the vocabulary mismatch
problem [6, 7].

In this regard, the recent developments in dense retrieval led to great performance improve-
ments over traditional sparse retrieval [8, 9]. However, dense retrievers have their drawbacks.
Unlike sparse retrievers, dense retrievers often underperform on datasets that are outside the
distributions of the training dataset [10], requiring large amounts of data and compute to train,
in addition to longer latency at inference time. Thus, term-based sparse retrieval still has a
place in document retrieval [11, 12]. A lexical retriever is much more cost-efficient and practical
at scale, so it is still widely used for early retrieval stages. And while transformer architectures
are good at capturing semantic meaning, they often struggle with lexical matching [13].

Both lexical and semantic retrieval models have clear strengths and weaknesses. Building
on this idea, one prominent research direction is incorporating different types of retrievers in
an attempt to combine their strengths [14, 15, 16]. In particular, combining sparse retrievers
and BERT-based bi-encoders has achieved notable results [17, 18]. Especially for zero-shot and
out-of-domain tasks, hybrid models that incorporate both dense and sparse retrieval outperform
dense retriever models alone. In addition to the retrieval stage, multi-stage document retrieval
systems have further reranking stages. Sparse retrievers and bi-encoders are often used for
early-stage retrieval. For reranking, a popular reranking architecture is the cross-encoder [19].
Cross-encoders generally outperform bi-encoders – albeit much slower during inference –
making cross-encoders apt for reranking stages, where there are fewer candidate documents to
rank [8].

In this work, we present a multi-stage retrieval system, where the first stage retrieval uses
a hybrid approach, consisting of a dense retriever and a sparse retriever. In the second stage,
we rerank with a cross-encoder model. Our contribution is that we pre-train both the dense
retriever and the cross-encoder reranker on large-scale PubMed search logs, which contain 255
million relevant article-article pairs [20] and have not been used by any prior work. Figure 1
summarizes our overall architecture.

In the retrieval stage, we use BM25 and a bi-encoder. Since BM25 is a static model that is
not trained with data, improving the dense retrieval component is essential to improving the
hybrid retriever overall. The PubMed articles are processed into a Pyserini index [21] and vector
embeddings for sparse and dense retrieval, respectively. The hybrid retriever selects the top
1000 most relevant articles for each query. Then, the scores of the retrieved list are discarded
and just the ranks are fed to the cross-encoder for the reranking stage. The reranker returns an
updated top 1000 list. The top 10 of the list are submitted for the BioASQ challenge.

We evaluate our results both amongst different variants of our system (e.g., with differing
hyperparameter values) and against other high-performing systems by participating in the 2023
BioASQ challenge, document retrieval task [22]. We place in the top 3 for the first and the
third batches, and top 2 in the second batch, demonstrating the strength of our bi-encoder and
cross-encoder, and thus the value of training models with user query-click logs [23, 24, 25].
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Figure 1: Outline of the overall system; the pipeline has 3 major parts – preprocessing, retrieval, and
reranking – which are separated by the dotted vertical lines. The PubMed corpus is preprocessed and
filtered to only include articles with both a title and an abstract. The hybrid retriever consists of a dense
retriever and a sparse retriever, and returns an initial list of 1000 candidate documents, which is further
reranked by the reranker. The top 10 documents of the final returned list is submitted as part of the
BioASQ challenge.

2. Hybrid Retrieval

Dataset We use query-article pairs from PubMed search logs to train the Bi-Encoder [20].
Each unique query is associated with a list of articles. Each time a user searches for a query
on PubMed and clicks on an article in their search results counts as a click count for that
query-article pair. To build the training set, we start with raw PubMed search logs from 2020 to
2022. The raw logs consist of 168 million (M) unique queries and 24M unique articles. There
are mulitple stages of filtering, including removing navigational queries. Articles that don’t
have a title or an abstract are also excluded. After preprocessing, the logs are reduced to 255M
relevant query-article pairs, generated from 87M queries and 18M articles.

Dense Retrieval with Bi-Encoder To implement the dense retrieval portion of the hybrid
retriever architecture, we use a bi-encoder model. The dense retriever (DR) is a bi-encoder
comprised of a query encoder and a document encoder, both initialized with PubMedBERT-base
weights [27]. In a bi-encoder architecture, two independent encoders encode a query and a
document [28, 29]. The relevance score is then the dot product of the two embeddings. The
relevance scores are used to rank the most relevant documents.

DR is comprised of a query encoder (QEnc) and a document encoder (DEnc). They are both
12-layer transformer architectures and are implemented with Pytorch [30] and Hugging Face
Transformers library [31]. Given a query 𝑞 and a document 𝑑, the relevance score is computed
by:

DR(𝑞, 𝑑) = QEnc(𝑞)𝑇DEnc(𝑑) ∈ ℝ

QEnc and DEnc are as follows:

QEnc(𝑞) = Transformer([𝐶𝐿𝑆]𝑞[𝑆𝐸𝑃])[CLS] ∈ ℝ768

DEnc(𝑑) = Transformer([𝐶𝐿𝑆]𝑑𝑡 𝑖𝑡 𝑙𝑒[𝑆𝐸𝑃]𝑑𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡[𝑆𝐸𝑃])[CLS] ∈ ℝ768
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Figure 2: Overview of the hybrid retriever. The yellow boxes represent dense retrieval, and orange
denotes sparse retrieval. The scores from each retriever is summed to generate a final score for each
candidate document. The output of the hybrid retriever are the candidate documents, ranked by their
final scores. We train our own bi-encoder for dense retrieval, and use BM25 for sparse retrieval. FAISS
[26] is used to perform nearest neighbor search for document and query embeddings, and Pyserini [21]
is used to implement BM25.

Embeddings are taken from the last [CLS] hidden states. We use contrastive loss with in-
batch negatives [28]. For a training instance containing a query 𝑞 and clicked document 𝑑,
query-to-document loss 𝐿𝑜𝑠𝑠𝑞2𝑑(𝑞, 𝑑) and document-to-query loss 𝐿𝑜𝑠𝑠𝑑2𝑞(𝑞, 𝑑) are described by:

𝐿𝑜𝑠𝑠𝑞2𝑑(𝑞, 𝑑) = −log
exp(QEnc(𝑞)𝑇DEnc(𝑑))

∑𝑖∈𝐵 exp(QEnc(𝑞)DEnc(𝑑𝑖))

𝐿𝑜𝑠𝑠𝑑2𝑞(𝑞, 𝑑) = −log
exp(QEnc(𝑞)𝑇DEnc(𝑑))

∑𝑖∈𝐵 exp(QEnc(𝑞𝑖)DEnc(𝑑))
where 𝐵 denotes all documents from the mini-batch except the input training instance.

Batch-level losses, 𝐿𝑜𝑠𝑠𝐵𝑞2𝑑 and 𝐿𝑜𝑠𝑠𝐵𝑑2𝑞, are as follows:

𝐿𝑜𝑠𝑠𝐵𝑞2𝑑 = ∑
𝑖∈𝐵

𝑊𝑖𝐿𝑜𝑠𝑠𝑞2𝑑(𝑞𝑖, 𝑑𝑖)

𝐿𝑜𝑠𝑠𝐵𝑑2𝑞 = ∑
𝑖∈𝐵

𝑊𝑖𝐿𝑜𝑠𝑠𝑑2𝑞(𝑞𝑖, 𝑑𝑖)

where 𝑊𝑖 is a parameter that gives higher weight to instances with more clicks. The final loss
𝐿𝑜𝑠𝑠𝐵 for the mini-batch is then:

𝐿𝑜𝑠𝑠𝐵 = 𝛼𝐿𝑜𝑠𝑠𝐵𝑞2𝑑 + (1 − 𝛼)𝐿𝑜𝑠𝑠𝐵𝑑2𝑞



where 𝛼 is a trained hyper-parameter. We optimize parameters in QEnc and DEnc end-to-end
by gradient-based optimizers. The models use the Adam optimizer [32] without weight decay,
with learning rate of 2e-5 and epsilon 1e-8. We encode all queries and documents using QEnc
and DEnc, respectively. We use the FAISS library to build an index and perform nearest N search
[26]. The query and document embeddings are added to a FlatIP FAISS index, and maximum
inner-product search is used to generate the a list of 1000 most relevant documents for each
query.

Sparse Retrieval with BM25 Sparse retrievers such as BM25 continue to be quite useful
despite the recent rise of dense retrieval methods [33]. BM25 frequently serves as a nice baseline,
but it can also be used to complement dense retrievers’ weaknesses, such as lexical matching.
We use the Pyserini library to implement BM25 [21] .

Hybrid Retriever Our retriever combines results from the dense retriever and the sparse
retriever. The document scores returned by the retrievers are normalized with L1 norm. A
hyperparameter 𝜆 controls the weight of the BM25 scores in the final summed scores:

Score(𝑞, 𝑑) = ̃𝑆𝑑𝑟(𝑞, 𝑑) + 𝜆 ̃𝑆𝑠𝑟(𝑞, 𝑑)

where Score(𝑞, 𝑑) is the final hybrid retrieval score for some query 𝑞 and some document 𝑑,
̃𝑆𝑑𝑟 the L1-normed score from the dense retriever, and ̃𝑆𝑠𝑟(𝑞, 𝑑) the L1-normed score from the

sparse retriever. The final output list of the hybrid retriever for some query is simply the top
1000 relevant documents, ranked by the above summed scores.

3. Reranking with Cross-Encoder

The top 1000 list returned by the hybrid retriever is then reranked by our cross-encoder model.
Unlike the bi-encoder, a single cross-encoder model (CrossEnc) is fed both the query and
document, and predicts their relevance directly, without having to use nearest neighbors
search. CrossEnc, like QEnc and DEnc, is initialized with PubMedBERT weights [27], and
implemented with Pytorch [30] and Hugging Face Transformers libraries [31]. After filtering
and preprocessing from the original 35 million PubMed papers, we feed the concatenations to
(CrossEnc). Each instance 𝑑 corresponding to a paper is formatted as [title]+[abstract].
The overall input to the CrossEnc is [CLS]𝑞[SEP]𝑑[SEP], as in:

CrossEnc(𝑓 𝑐𝑣𝑞, 𝑑) = 𝑊 𝑇Transformer([CLS]𝑞[SEP]𝑑[SEP])[CLS] + 𝑏 ∈ ℝ

where [𝐶𝐿𝑆] and [𝑆𝐸𝑃] are special tokens in BERT, 𝑊 ∈ ℝ768 and 𝑏 ∈ ℝ are learned paramters,
and 𝑞 denotes query. Unlike QEnc and DEnc, which are trainedwith in-batch negatives, CrossEnc
uses local negatives [34]. For a training instance with a query 𝑞 and a relevant (clicked) document
𝑑, the negative log-likelihood loss is:

𝐿𝑜𝑠𝑠(𝑞, 𝑑) = −log
exp(CrossEnc(𝑞, 𝑑))

exp(CrossEnc(𝑞, 𝑑)) + ∑𝑗∈𝑀 exp(CrossEnc(𝑞, 𝑑𝑗))



where 𝑀 is a list of documents that are irrelevant (not clicked).
We pre-train the CrossEnc on PubMed search log data, and further train using the training

set provided by BioASQ, which consist of over 4000 queries [35]. As for inference, we apply
CrossEnc to every document in the list returned by the hybrid retriever for each test query, and
the list of documents ranked by CrossEnc scores is the reranked list. Each team can submit up
to 5 systems for official evaluation. For submission, we use two different versions of CrossEnc
– one at 1200 optimization steps, and another at 1800.

4. Evaluation

The official BioASQ evaluation offers a way to compare our systems against other high per-
forming systems. In the official BioASQ 2023 results, our systems rank at third, second, and
third place for batches 1-3, respectively. We experiment with many different combinations of
hyperparameters, which are shown in Table 1. The official results are on Table 2. Finally, we
perform additional experiments on an internal development set for ablation purposes, shown
on Table 3.

4.1. Configurations

Table 1 shows the various systems we submitted for official evaluation. Retriever1 and Retriever2
are hybrid retrievers combining our bi-encoder and BM25. The lambda values show how much
weight was given to the BM25 scores in producing the overall retriever score. These are not
reranked. Rerankers 1 through 5 represent submissions that are reranked by our cross-encoder
after the initial retrieval by our hybrid retriever. We tried two different versions of the cross-
encoder – which are checkpoints saved at 1200 and 1800 steps. For example, Ranker3 starts
with the list returned by the hybrid retriever with lambda value of 1.25, and reranks with the
cross-encoder checkpoint at 1800 steps.

Table 1
System names and their respective hyperparameters, for Table 2. 𝜆𝐵𝑀25 refers to the hyperparameter for
controlling the weight of sparse retrieval at the retrieval stage. Steps are optimization steps at which
the checkpoint of the cross-encoder was saved. Retrievers 1 and 2 are retriever only, while Rerankers 1-5
use both retriever and reranker. For example, Reranker3 takes the results from Retriever2, and reranks
with the cross-encoder checkpoint at 1800 steps.

System Name 𝜆𝐵𝑀25 Steps

Retriever 1 1 N/A
Retriever 2 1.25 N/A
Reranker 1 1 1800
Reranker 2 1 1200
Reranker 3 1.25 1800
Reranker 4 2 1200
Reranker 5 0.6 1800



4.2. Official BioASQ Evaluation

Teams can submit up to 5 systems for official evaluation in the challenge [2]. Table 2 indicates
which 5 systems we use for each batch. Retriever2 outperforms Retriever1 in batch 1, but
Retriever1 outperforms Retriever2 in batch 2 by 66%. Retriever2 scores 0.3401 in batch 1 but
0.1725 in batch 2. The performance differences both among the two retrievers and among
the first two batches is quite large. There is high variance amongst the batches which highly
influences the two retrievers’ performance, considering that there’s only a 0.25 𝜆𝐵𝑀25 difference
between them. Nevertheless, it is clear that the rerankers consistently outperform the retriever-
only systems. For example, the best reranker outperforms the best retriever by 29% and 30% on
batches 1 and 2 respectively, which demonstrates the strength of our cross-encoder trained on
PubMed search logs. And accordingly, we no longer submit retriever-only systems for batch 3.

Rerankers 1, 3, and 5 are reranked with cross-encoder checkpoint at 1800 steps, but Reranker1
and Reranker3 outperform Reranker5 by 24%. The only difference is that Reranker5 has a
significantly lower 𝜆𝐵𝑀25 of 0.6, as opposed to 1 or 1.25, showing that the hyperparameter
weight of the sparse retriever versus dense retriever in the hybrid retriever can have a large
impact. We use two different versions of the reranker (1200 and 1800) in an attempt to capture
different aspects of the test data, which is only somewhat successful. In batch 1, Reranker1 and
Reranker2 have the same MAP score despite using different versions of the cross-encoder.

In batch 3, Reranker2 and Reranker4, which use the 1200 version, outperform Reranker1 and
Reranker3, which use the 1800 version, by about 1%. In comparison with other top teams, our
systems fare pretty well. In batch 1, our top system scores 0.4404, comparable to the top score
of 0.4590. In batch 2, the top system outperforms our best system by 3%. We again rank top 3 in
batch 3.

Table 2
Mean average precision (MAP) official evaluation results from 2023 BioASQ task B phase A, batches 1-3.
”-” denotes systems that weren’t submitted for that batch for official evaluation. Bolded are the best
performing amongst our submitted systems.

Systems Batch 1 Batch 2 Batch 3

Retriever 1 0.2569 0.2860 -
Retriever 2 0.3401 0.1725 -
Reranker 1 0.4404 0.3743 0.2905
Reranker 2 0.4404 - 0.2939
Reranker 3 0.4397 0.3743 0.2902
Reranker 4 - - 0.2939
Reranker 5 - 0.3014 0.2712

1st Place System 0.4590 0.3852 0.3185
2nd Place System 0.4462 (ours) 0.3042
3rd Place System (ours) 0.3720 (ours)



4.3. Further Analysis

We randomly select about 200 queries from the BioASQ training dataset to form a development
set [35]. We perform ablation experiments on the development set to further test the merit of
our design choices. The results are summarized in Table 3. We evaluate the systems on the
development set with three metrics: mean average precision (MAP), recall at 10 (R@10), and
recall at 1000 (R@1k). We test BM25 (sparse retrieval only), Bi-Encoder (dense retrieval only),
Hybrid Retriever, Reranker, and systems that combine the normed scores from Reranker and the
previous 3 systems (i.e. BM25, Bi-Encoder, Hybrid Retriever). The plus sign in table 3 indicates
that the normed scores from the ”operand” systems were summed to generate the final score
for the system.

The trends show the relative strengths of BM25 and BERT-based models. BM25 and Reranker2
+ BM25 show strong performance for R@1k, perhaps showing that sparse retrieval is effective
at recall but not as strong in precision, especially for low ranks. Hybrid Retriever outperforms
BM25 and Bi-Encoder in MAP and R@10, justifying the case for hybrid retrieval. And although
Bi-Encoder on its own performs poorly, it still improves retrieval when incorporated. In
addition, Reranker outperforms Hybrid Retriever, confirming the importance of reranking and
justifying the need for multi-stage systems. Finally, we test the possibility that reranking,
similar to retrieval, also benefits from hybrid models – i.e. that the reranker might gain from
augmentation with either BM25, Bi-Encoder, or Hybrid Retriever. The experiments show that
our cross-encoder reranker is just as effective or better on its own as it is when comibined with
another retriever into a ”hybrid” version, with the exception of Reranker + BM25 in R@1k,
which further confirms the aforementioned strength of BM25 in recall. Overall, our internal
evaluations further demonstrate the effectiveness of hybrid retrieval and multi-stage ranking
systems.

Table 3
Results of ablation experiments on our development set, which is a subset of about 200 queries from the
BioASQ training set [35]. MAP denotes mean average precision, R@10 is recall at 10, and R@1k is recall
at 1000. Bold denotes the best performing system(s) with respect to the metric. The plus sign indicates
that the ranks are scored by summing the normed scores from the ”operands.” Hybrid Retriever and
Reranker in this table are the same systems as Retriever 1 and Reranker 2 from table 2, respectively.

System Name MAP R@10 R@1k

BM25 (Sparse Retriever) 0.235 0.331 0.806
Bi-Encoder (Dense Retriever) 0.112 0.183 0.636
Hybrid Retriever (BM25 + Bi-Encoder) 0.235 0.340 0.793

Reranker 0.319 0.416 0.793
Reranker + BM25 0.306 0.405 0.826
Reranker + Bi-Encoder 0.312 0.408 0.778
Reranker + Hybrid Retriever 0.319 0.416 0.793



5. Conclusion

We present a multi-stage system with a hybrid retriever and a reranker. The hybrid retriever is
implemented with a bi-encoder model and BM25, and the reranker is a cross-encoder model.
Our system rank at third, second, and third place for batches 1-3 respectively in the 2023 BioASQ
challenge, document retrieval subtask, showing the strength of training on PubMed search logs.
As for potential future directions, one simple addition would be to use reciprocal rank fusion to
combine different versions of the trained reranker [36]. Another promising approach is to use
large language models such as ChatGPT1 as the reranker [37, 38, 39].
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