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Abstract
The extraction of information from semi-structured documents is an ongoing problem. This task is
often approached from the perspective of NLP and large transformer-based models are employed. In
our work, we successfully demonstrated that the Key Information Localization and Extraction (KILE)
and Line Item Recognition (LIR) tasks can be effectively addressed as object detection problems using a
convolutional neural network (CNN) model. We utilized a relatively small and fast YOLOv8 model for
which we conducted a series of experiments to explore the impact of different factors on model training.
With YOLOv8, we were able to achieve AP 0.716 on the KILE task and 0.638 on the LIR task. Our code is
available at https://github.com/strakaj/YOLOv8-for-document-understanding.git.
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1. Introduction

Companies engage in daily communication often through semi-structured documents. Upon
receiving such documents, the initial step involves manually extracting the data before it can
be processed. This manual process is repetitive and time-consuming, leading to the question of
whether the information from these documents could be obtained automatically.

However, solving this problem automatically proves to be a complex task for several reasons.
Although invoices may contain similar information, their layouts and appearance can vary
dramatically across different companies. Another challenge stems from the need to understand
the text and the relationship between the individual parts of the document. In some cases,
the context, necessary to understand the document, may be missing, for example, when a
multi-page table lacks the header on subsequent pages, it may be difficult to interpret values on
those pages.

Document understanding includes various tasks, including Line Item Recognition (LIR) and
Key Information Localization and Extraction (KILE) as defined in [1]. LIR specifically focuses on
processing information from tables. While a typical table assumes that each row corresponds to
a single item, this assumption is often oversimplified. In reality, business documents frequently
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contain tables where items can span multiple lines. The objective of LIR is to detect and classify
all the information in the table and group related information into line items. KILE is a relatively
simpler task that only aims to detect information and classify them into a predefined set of
classes.

2. Data

The DocILE dataset [1, 2] is composed of three subsets. The main subset is a set of around
6700 annotated documents. All documents were chosen to have an invoice-like structure. The
second subset is a set of around 100 000 synthetically generated documents and the last is a set
of around 900 000 unlabeled documents. In our work, we primarily focused on the annotated
subset.

Annotated subset contains 5180 training documents, 500 validation documents, and 1000
test documents. Each document can have multiple pages resulting in 6759 training pages, 635
validation pages, and 1321 test pages. The KILE task contains 36 classes while the LIR task
contains 19 classes. In both tasks, information that needs to be extracted is referred to as fields.
These fields contain text and a bounding box that represents their location. Additionally, in the
LIR task, they also contain the id of the line item to which they belong. The documents in the
dataset are divided into layout clusters based on the types of fields in the document and their
position. This means that all documents in one layout cluster have fields with the same types
on the same positions.

The dataset exhibits a significant diversity of layouts, as demonstrated by the validation set
consisting of 204 distinct layout clusters and the training set containing 1063 clusters. This is
one of the main challenges of the document understanding task. In Figure 1 are shown two
documents from two layout clusters with similar classes but very different layouts.

2.1. Evaluation metric

For both tasks, it is only necessary to detect the position of all fields, their class (field type), and
in the case of the LIR task, to assign the field to the correct line item. Since the task is specified
as a detection task, the authors of the competition chose a standard metric for object detection.
The primary metric used for the KILE task is average precision (AP), and for the LIR task is used
micro F1 score (F1). To make the metric more suitable for the tasks, Pseudo-Character Centers
(PCC) of letters are used instead of Intersection-over-Union to determine true positives. This
choice was inspired by [3]. PCCs are generated by splitting the field uniformly by the number
of its character. The detected field should contain only PCCs corresponding to that field.

3. Model

In this work, we approached both tasks as object detection tasks. Because of its speed and small
size, we decided to utilize the YOLOv81 [4] model. YOLOv8 is a one-stage, anchor-free detector
based on a convolutional neural network (CNN).

1Implementation: https://github.com/ultralytics/ultralytics

https://github.com/ultralytics/ultralytics
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Figure 1: Example of two documents with similar information but different layouts.

In the KILE task, the bounding box of the field can be directly detected without requiring
any additional processing. In the LIR task, field bounding boxes are also detected but an
additional clustering of the detected fields into line items is necessary. This clustering process
was achieved by adding a new class called line_item. The bounding boxes for this class are
generated during training. The coordinates of the bounding box are determined based on all
the fields corresponding to one line item. During the prediction phase, bounding boxes of this
class indicates which LIR fields should be grouped together.

3.1. LIR post-processing

Post-processing of detected LIR fields involves only a grouping procedure. Objects are grouped
into line items based on detected line_item fields. To determine the line item to which each LIR
field belongs, we find the line_item field that has the largest overlap in the y-axis with the LIR
field. The overlap must exceed a chosen threshold, which, based on experiments, see Table 1,
we set at 20% of the height of the line_item field. Tables usually span across the entire width of
the page, therefore we used only overlap in the y-axis and omitted the x-axis completely. The
grouping can be also approached in different ways, it may be beneficial to explore different
approaches in the future.



Table 1
Results of a model for different thresholds between line item field and LIR fields.

Threshold 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1 0.598 0.601 0.602 0.595 0.565 0.559 0.560 0.560 0.558 0.538

3.2. Chargrid

Chargrid was presented in [5] as a novel representation of the documents. Chargrid is con-
structed from character bounding boxes. In the first step, a new image is initialized with the
same dimensions as the original document. In the second step, each character is assigned a
unique numeric value. In the last step, the area of the box corresponding to a character is filled
in the new image by the value assigned to this character.

We adopted this procedure but with some modifications. Instead of replacing the original
image, we concatenated chargrid representation with the original image. Since we did not have
character bounding boxes, we used word bounding boxes from OCR [6], which we divided
uniformly by the number of characters. Furthermore, instead of encoding characters into
one numeric value, we used three numbers for each character, which led to slightly better
results than using one number only. To encode characters into 3 channels, we first select a
number base for which there exists a mapping between characters and numbers in this base,
such that each character has a value with a maximum of 3 digits. We obtain the base using⌈︁

3
√︀
𝑙𝑒𝑛(characters + 1)

⌉︁
. Then, we assigned each character value in the chosen base. At the

first position in the set of characters, we added an empty character that represents the document
background. Finally, we normalize the encoded values by the base value so that the encoded
values fall within the range of ⟨0, 1⟩.

An example of a chargrid is in Figure 2. In order to use this representation, it was necessary
to increase the number of kernels of the input convolutional layer of the YOLOv8 model.

(a) Document (b) Chargrid

Figure 2: Example of chargrid representation of the document.



3.3. Augmentations

Data augmentation is one of the most common practices used during the training of the model to
prevent overfitting and improve its ability to generalize by increasing the variability of the input
data while simulating real data examples that are missing from the training set. The original
YOLOv8 implementation uses several commonly used augmentations. In our experiments,
we explored the usage of some of these augmentations, in Figure 3 you can see examples of
individual augmentations that were used in experiments.

(a) Original (b) Translate (c) Scale

(d) Left-right flip (e) Mosaic (f) HSV

Figure 3: Examples of the explored augmentations.

The first two augmentations are translate and scale, both augmentations alter the position of
the image in the frame. Translate moves the image in the frame and scale shrinks the image
or zooms in on it. If there is no image in the part of the frame after the translation or change
of scale, this part is filled with a predefined neutral gray color. Both augmentations simulate
the fact that the position of individual fields can largely vary within each frame. Left-right flip
augmentation reflects columns of the image along the vertical axis. As with the two previous
augmentations, this augmentation changes the position of the fields in the frame but also
changes the appearance of the text. It is noteworthy that this augmentation does not represent
any real cases, but we included it to better understand what is and what is not important for
the model. The last geometric augmentation used in experiments is mosaic augmentation.
Mosaic augmentation combines four images into one by cropping one part from each image and
stitching them together. This augmentation also alters the position of the fields in the image
but also allows the model to learn that fields can be in the document in any context. The last
used augmentation was HSV augmentation which alters the brightness of the image.



Additional augmentations provided by the YOLOv8 framework are rotation, up-down flip,
shear, perspective, and mixup. We did not use these augmentations in our experiments. Rotation,
shear, up-down flip, and perspective are similar to the other geometric augmentations that we
used. Finally, we believe that the mixup is not relevant to our task.

4. Experiments

In this section, we will describe experiments that were conducted in order to determine the best
parameters of the model and other factors that can influence the training procedure. Our aim is
to get a better understanding of this task and what is beneficial for it.

Experimental Setup. If not stated otherwise, we trained models for 100 epochs with an
initial learning rate 1 × 10−3 using optimizer AdamW [7]. An input image size was set to
640× 640 pixels and batch size to 16. In experiments, where the input image size is equal to
1280× 1280, there was the batch size decreased to 8 due to memory requirements. All models
were trained from randomly initialized weights. If not specified otherwise, models were trained
on annotated train set and evaluated on annotated validation set. Synthetic and unlabeled
datasets were not used. All the provided results are averages over three runs initialized from
different seeds and the last checkpoint is always used for evaluation.

The model expects the input image to be a square. Instead of a standard resizing of the image,
which would distort the aspect ratio, the shorter side of the image is padded from both sides
with a neutral background color.

Augmentations. We decided to explore possible data augmentations because the model
trained without them showed clear signs of overfitting. Data augmentation is a common practice,
but the specific augmentations used can vary depending on the task. In this experiment, we
aimed to determine the most beneficial augmentations for KILE and LIR tasks. We conducted
experiments with augmentations illustrated in Figure 3. The two most beneficial augmentations
were mosaic and translate augmentations. Their comparison is in Table 2. The scale augmentation
also showed some improvements, although not as much as the previous two. Unfortunately, a
combination of translate and scale did not improve the results compared to translate alone. On
the other hand, the two remaining augmentations did not help with overfitting and in some
cases even worsened the results.

It should be noted that all augmentations that have been beneficial are geometric augmenta-
tions that alter the position of objects in images. We argue that the model trained without these
augmentations strongly relies on the position of the individual classes in the image. However,
when the augmentations are applied, the model is forced to obtain information about the ob-
ject from other visual clues, such as the size, length, and formatting of the text. The inferior
performance observed during training with the HSV augmentation can be attributed to the
loss of details after applying this augmentation. Despite the left-right flip being a geometric
augmentation that alters the position of objects in the image, there was no improvement in
the results. This is expected as this augmentation does not represent any real-world scenario.
Additionally, since the augmentation is applied with a probability of 0.5, the model receives



mixed information about the structure and appearance of the text. This indicates that model
can distinguish the appearance and context of the fields. This is further supported by the fact
that the model trained with left-right flip augmentation with the probability of 1.0 achieved
comparable results with the model trained without it.

In our final setup, the chosen augmentations were applied with the default setting defined in
the YOLOv8 config file. For translate probability was 1.0 and the image could be translated by a
maximum of 10% of its size in each axis. Mosaic augmentation was also applied with probability
1.0. Although the mosaic augmentation itself achieved the best results, we used translate in
all subsequent experiments, because training with this augmentation was approximately four
times faster than with the mosaic augmentation.

Table 2
Comparison of the influence of the two most beneficial augmentations. All models were evaluated on
the validation set.

KILE LIR
Model Translate Mosaic AP F1 AP F1

YOLOv8n ✗ ✗ 0.303 0.457 0.252 0.450
YOLOv8n ✓ ✗ 0.474 0.601 0.378 0.561
YOLOv8n ✗ ✓ 0.479 0.601 0.380 0.562
YOLOv8n ✓ ✓ 0.470 0.597 0.385 0.564

Chargrid In [5] was as an input for the model used only chargrid generated from the document.
The advantage of chargrid is that it can capture even small characters that could be lost in a
standard image at low resolution. On the other hand, chargrid does not convey information
about specific formatting of the text and other visual features on the page e.g. borders of the
table. However, these features are presented in the original image.

We decided to compare a model trained only on images, a model trained on chargrids only, and
a model trained on both. The results of the experiment are in Table 3. The model trained only
with chargrids achieved better results than the model trained only on images. This indicates that
the semantic information contained within the text is more useful than the visual information.
However, when both representations were used, the model achieved better results than when
using the representations separately. This means that each representation provides unique
information.

Table 3
Comparison of different training setups - using images, chargrids, or both. All models were evaluated on
the validation set.

KILE LIR
Model Image Chargrid AP F1 AP F1

YOLOv8n ✓ ✗ 0.474 0.601 0.335 0.525
YOLOv8n ✗ ✓ 0.492 0.612 0.347 0.534
YOLOv8n ✓ ✓ 0.511 0.628 0.349 0.539



Model size. YOLOv8 has several variants that differ in the number of parameters. We observed
that models with a higher number of parameters were more prone to overfitting, as expected.
This tendency was more prominent in the KILE task compared to the LIR task. This behavior
can be attributed to the larger number of objects in the LIR task, where tables consist of multiple
lines that can differ in appearance. Better results with larger models could be probably achieved
with more data and longer training. In Figure 4 are compared YOLOv8 model variants with
different numbers of parameters with baseline methods proposed by competition organizers in
[1]. Interestingly, even the smallest model with 3.2 M parameters achieved better results than
transformer-based models with more than 80 M parameters on the KILE task. This indicates
that model size is not the only important factor in successfully addressing this task.
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Figure 4: Comparison of performance of models with the different number of parameters on KILE and
LIR task.

In Table 4 are summarized numbers of parameters and FLOPs of YOLOv8 variants, RoBERTa
and LayotLMv3. All variants of YOLOv8 have a lower number of parameters compared to
RoBERTa and LayotLMv3. However, only the smallest variants of YOLOv8 have a lower number
of FLOPs than RoBERTa and LayotLMv3.

Table 4
Comparison of a number of parameters and FLOPs of the models. Values provided for YOLOv8 are
calculated for a model with image input size 1280 × 1280 and values provided for RoBERTa and
LayotLMv3 are with 512 tokens at the input. The number of parameters for RoBERTa and LayotLMv3 is
in the format: model parameters + embedding parameters.

Model Parameters (M) FLOPs (B)

YOLOv8n 3.157 35.430
YOLOv8s 11.167 115.267
YOLOv8m 25.903 317.282
YOLOv8l 43.692 662.971
YOLOv8x 68.230 1034.189

RoBERTa 86.131 + 91.812 87.747
LayoutLMv3 87.402 + 91.812 123.407



Other. For completeness, we also verified the obvious parameters for which we expected an
improvement in the results. First, we verified the impact of the size of the input image. From
the results in Table 5, it can be seen that the increase in size greatly improved results. We
believe it is caused by the fact that details that are lost in low resolution images are important
for detection.

Table 5
Comparison of the effect of input image size on the performance. All models were evaluated on the
validation set.

Image
Size

KILE LIR
Model AP F1 AP F1

YOLOv8n 640 0.476 0.600 0.334 0.557
YOLOv8n 1280 0.594 0.672 0.345 0.587

It is common that models trained from weights pre-trained on different dataset learn faster
and have better results. YOLOv8 provides weights pre-trained on the COCO dataset [8]. Even
though objects in the COCO dataset and images of documents are very different, starting from
the pre-trained model was beneficial as indicated by results in Table 6.

Table 6
Comparison of the effect of weight initialization on the results. All models were evaluated on the
validation set.

KILE LIR
Model Weights AP F1 AP F1

YOLOv8n Random 0.474 0.601 0.378 0.561
YOLOv8n COCO 0.513 0.632 0.395 0.576

The dataset contains a large set of syntactic documents and unlabeled documents. It is often
the case that the more data, the better the result. In Table 7, there are the results of a model
trained on a train set only and of a model trained on the train set together with a synthetic
set. Unexpectedly, the model trained on the train and synthetic set performed worse on the
validation set than the model trained on the train set only. When trained only on synthetic data
model showed signs of overfitting and the results for the validation set were close to zero.

Table 7
Results of a model trained on a synthetic dataset. All models were evaluated on the validation set.

KILE LIR
Model Training set AP F1 AP F1

YOLOv8n train 0.476 0.600 0.371 0.557
YOLOv8n train+synthetic 0.417 0.552 0.354 0.527



In some cases, we observed that the documents in the synthetic set are visually different
from the documents in the validation set, and train set, even when they belong to the same
cluster. Examples can be viewed in Figure 5. This is not an issue for baseline methods RoBERTa
and LayoutLMv3 presented in [1] that both use textual information, but it can be an issue for
YOLOv8 which mainly relies on visual information. The results indicate that YOLOv8 is not
able to sufficiently generalize information from documents that are visually different from the
validation set documents, even when they contain semantically similar information at similar
positions in the document.

In object detection, there are no commonly used techniques for pre-training of the model on
unlabeled data, therefore we did not utilize unlabeled dataset.

Train set Validation set Synthetic set

Train set Validation set Synthetic set

Figure 5: Examples of documents from the same layout clusters from different datasets. The first row
represents documents from the cluster: 293 and second row documents from the cluster: 554.



5. Results

The final training setup was based on the experiments conducted in the previous section. We
used the largest variant of the model, YOLOv8x pre-trained on the COCO dataset. Input image
had resolution 1280× 1280 and was concatenated with chargrid. As augmentation was used
only translate augmentation. The initial learning rate was set to 1× 10−3, the batch size was
8, and the AdamW optimizer was used. The model used for the KILE task was trained for 30
epochs and the model for LIR was trained for 50 epochs.

Table 8
Comparison of results of baseline models presented in [1] and YOLOv8x on KILE & LIR tasks on
validation set.

KILE LIR
Model AP F1 Prec. Recall AP F1 Prec. Recall

RoBERTaBASE [9] 0.552 0.688 0.681 0.694 0.552 0.688 0.709 0.668
RoBERTaBASE+SYNTH [9] 0.566 0.689 0.680 0.698 0.567 0.701 0.721 0.683
LayoutLMv3OURS [10] 0.513 0.657 0.651 0.662 0.546 0.666 0.688 0.645
LayoutLMv3OURS+SYNTH [10] 0.532 0.674 0.680 0.668 0.564 0.681 0.704 0.659
DETRtable + RoBERTaBASE [11] - - - - 0.553 0.682 0.719 0.648

YOLOv8x 0.716 0.772 0.747 0.799 0.435 0.638 0.603 0.677

Results on the validation set are presented in Table 8. The model achieved superior results
compared to the baseline methods on the KILE task. However, the model performed suboptimally
on the LIR task. This could be attributed to various factors, one of which is the high number
of false positive detections. In most tables not all columns are relevant, but the model was
always not able to effectively distinguish which columns are important for the given table and
which are not. As a result, there were excessive detections of fields in the tables, leading to a
large number of false positives. Another common error that contributed to the high number
of false positives, was the miss-classification of fields. An example of excessive detections is
shown in Figure 6 and an example of miss-classifications is shown in Figure 7. In the case of
miss-classified fields, the error often occurred with semantically similar classes e.g. gross, net,
etc.
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(a) Annotations (b) Predictions

Figure 6: Example of excessive predictions in tables.
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Figure 7: Example of miss-classified fields and excessive predictions in tables.

In Table 9, there are presented results on the test set. Results on the KILE task are consistent
with the validation set. Nevertheless, the YOLOv8 results on the LIR task decreased more than
the results of the baseline methods.

Table 9
Comparison of results of baseline models presented in [1] and YOLOv8x on KILE & LIR tasks on test set.

KILE LIR
Model AP F1 Prec. Recall AP F1 Prec. Recall

RoBERTaBASE [9] 0.534 0.664 0.658 0.671 0.576 0.686 0.695 0.678
RoBERTaBASE+SYNTH [9] 0.539 0.664 0.659 0.699 0.583 0.698 0.710 0.687
LayoutLMv3OURS [10] 0.507 0.639 0.636 0.641 0.531 0.661 0.682 0.641
LayoutLMv3OURS+SYNTH [10] 0.512 0.655 0.662 0.648 0.582 0.691 0.709 0.673
DETRtable + RoBERTaBASE [11] - - - - 0.560 0.682 0.706 0.660

YOLOv8x 0.680 0.747 0.735 0.759 0.383 0.597 0.599 0.595



This fact motivates us to analyze the results in more detail. Both validation and test sets
can be divided into three subsets based on the number of documents from the same cluster
appearing in the train set. The results for each subset can be found in Table 10. It is obvious that
YOLOv8 compared to baseline methods performed worse on the zero-shot subset as the relative
decrease in score is greater for YOLOv8. On many-shot and few-shot subsets, the relative change
for all models is similar.

Table 10
Comparison of results on subsets of the validation set in the first half of the table and on subsets of
the test set in the second half. Values in brackets indicate a relative change in the percentage of the
corresponding metrics compared to the results on all documents. AP values are the results for the KILE
task and F1 values are the results for the LIR task. The results with the largest relative increase or the
smallest decrease are highlighted in bold.

All Many-shot Few-shot Zero-shot
Model AP F1 AP F1 AP F1 AP F1
YOLOv8x 0.716 0.646 0.800 (+12) 0.703 (+9) 0.730 (+2) 0.613 (-5) 0.488 (-32) 0.384 (-41)

RoBERTaBASE+SYNTH 0.566 0.701 0.624 (+10) 0.792 (+13) 0.566 (+0) 0.608 (-13) 0.406 (-28) 0.465 (-34)
LayoutLMv3OURS+SYNTH 0.532 0.681 0.800 (+50) 0.599 (-12) 0.524 (-2) 0.530 (-22) 0.365 (-31) 0.431 (-37)

YOLOv8x 0.680 0.597 0.814 (+20) 0.683 (+15) 0.646 (-5) 0.489 (-18) 0.393 (-42) 0.402 (-33)

RoBERTaBASE+SYNTH 0.539 0.698 0.615 (+14) 0.760 (+9) 0.499 (-7) 0.568 (-19) 0.384 (-29) 0.631 (-10)
LayoutLMv3OURS+SYNTH 0.512 0.691 0.601 (+17) 0.773 (+12) 0.465 (-9) 0.538 (-22) 0.338 (-34) 0.586 (-15)

5.1. Future Work

The YOLOv8 model proved to be useful for the extraction of information from documents,
but we believe that there is still room for improvement. We have not sufficiently explored
the possibilities of using synthetic data and unlabeled data for training, because our initial
experiments did not show any significant differences while using them but the training was
substantially longer. While pre-training models on unlabeled data is a crucial step in NLP tasks,
it is not a common practice in object detection. However, there could be potential opportunities
to explore and adapt this procedure for improving the performance of the object detection
model as well.

Augmentations present another area with potential opportunities for improvement. We
observed that geometric augmentations had a positive impact on model training. However, we
used standard augmentations used in object detection. In the future, it may be beneficial to
design augmentations specifically tailored for this task.

Last but not least the post-processing of the detected objects can be possibly improved given
that we did not use any sophisticated methods. Especially in the LIR task, we observed a high
number of false positive detections. The use of a filtration method based on a priori occurrences
of different object classes in one table could potentially lead to better results.

6. Conclusion

Document information extraction using transformer-based models is a common approach,
typically treating the task as an NLP problem. However, in our work, we demonstrated that the



KILE and LIR tasks can be effectively addressed as object detection tasks using the CNN model.
We mainly focused on exploring various factors that can impact the training process, such

as image size and different augmentations. Additionally, we successfully demonstrated that
chargrid representation concatenated with input image is beneficial for training.

Furthermore, we compared the results of YOLOv8 with baseline methods, analyzed the
results, and provided suggestions for future work. To evaluate the performance of our proposed
approach, we compared the results of YOLOv8, with baseline methods. On the KILE task,
YOLOv8 surpassed the baseline methods, achieving an 0.716 AP. However, for the LIR task,
YOLOv8 did not outperform the baseline methods, the best achieved F1 score was 0.638.
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