
USTC-iFLYTEK at DocILE: A Multi-modal Approach
Using Domain-specific GraphDoc
Notebook for the DocILE Lab at CLEF 2023

Yan Wang1, Jun Du1,*, Jiefeng Ma1, Pengfei Hu1, Zhenrong Zhang1 and
Jianshu Zhang2

1NERC-SLIP, University of Science and Technology of China (USTC), No. 96, JinZhai Road, Hefei, Anhui, P.R.China.
2iFLYTEK Research, No.666 West Wangjiang Road Hefei, Anhui, China.

Abstract
With the development of digitalization in business, the automatic extraction of information from semi-
structured business documents is becoming increasingly important. This paper introduces the methods
we employed in two tasks of the DocILE competition. We utilize the GraphDoc model firstly pre-trained
on provided invoice-domain documents to extract embeddings for text boxes and perform classification
for each of them. Based on the classification results, we feed the embeddings into our proposed Merger
module to aggregate separate text boxes into semantic instances and line items. Our approach achieved
an AP result of 71.25% on the test set of Task 1 and a micro-F1 result of 75.93% on the test set of Task
2. Scripts and pre-trained models used in our experiments have been made publicly available at here1.

Keywords
Document intelligence, Multi-modal, Domain-specific pre-train, Model ensemble

1. Introduction

Business documents are files that provide details related to a company’s internal and external
transactions. Despite the widespread adoption of digital business practices, many of them are
still presented in unstructured or semi-structured formats, such as contracts, invoices, and
reports, making it difficult to process automatically. And businesses often rely on manual data
entry and processing, which can be time-consuming, error-prone, and expensive.

Automatic information extraction from business documents is a highly challenging task and
the most immediate obstacle is the lack of suitable datasets, as mentioned by several authors
[1, 2]. Although several publicly available datasets exist for document understanding, only a few
of them are tailored to extracting information from business documents. And they are typically
limited in size [3, 4, 5] and lack annotations for field-level locations [6, 7, 8]. Additionally, the
variability in document structures and the scattered nature of the information make it difficult

1https://github.com/SPRATeam-USTC/DocILE-Competition
CLEF 2023: Conference and Labs of the Evaluation Forum, September 18–21, 2023, Thessaloniki, Greece
*Corresponding author.
$ yanwangsa@mail.ustc.edu.cn (Y. Wang); jundu@ustc.edu.cn (J. Du); jfma@mail.ustc.edu.cn (J. Ma);
hudeyouxiang@mail.ustc.edu.cn (P. Hu); zzr666@mail.ustc.edu.cn (Z. Zhang); jszhang6@iflytek.com (J. Zhang)
� http://staff.ustc.edu.cn/~jundu/ (J. Du); http://home.ustc.edu.cn/~xysszjs/ (J. Zhang)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:yanwangsa@mail.ustc.edu.cn
mailto:jundu@ustc.edu.cn
mailto:jfma@mail.ustc.edu.cn
mailto:hudeyouxiang@mail.ustc.edu.cn
mailto:zzr666@mail.ustc.edu.cn
mailto:jszhang6@iflytek.com
http://staff.ustc.edu.cn/~jundu/
http://home.ustc.edu.cn/~xysszjs/
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

to develop models that can accurately and efficiently extract key information from different
types of documents.

To address these challenges, the Document Information Localization and Extraction (DocILE)
competition [9] presents the DocILE dataset and benchmark [10], which includes two tasks:
Key Information Localization and Extraction (KILE) [11] and Line Item Recognition (LIR) [11].
Unlike Key Information Extraction (KIE) [7, 8], which focuses on extracting information from
documents, KILE requires additionally precise localization of the extracted information. The
goal of LIR task is to extract a list of line items [12, 13], such as those commonly found in
invoice goods and service tables and each item is represented by a set of key information such
as name, quantity, and price. Therefore, for Task 1, the main objective of the experiment is to
accurately localize key information (instances) of pre-defined categories in the document, while
Task 2 builds on Task 1 to further group instances into line items. The two benchmark tasks use
different primary metrics for evaluation. For Task 1, the Average Precision metric (AP) is used
as the official evaluation metric, while for Task 2, the primary evaluation metric is the micro F1
score over all line item fields.

In this paper, we present our systems in the DocILE competition in both tasks. We employ the
pre-trained GraphDoc [14] model to extract embeddings for text boxes and perform classification
for each of them. Based on the classification results, the embeddings are fed into the proposed
Merger module to aggregate the instances. And for Task 2, another Merger module is employed
to group instances into line items.

2. Dataset

This competition provides three subsets, which are derived from the UCSF Industry Documents
Library1 and Public Inspection Files2: an annotated set of 6,680 real business documents, an
unlabeled set of 932k real business documents, and a synthetic set of 100k documents with full
task labels generated using proprietary document generation techniques. The annotated set is
further split into training (5,180), validation (500), and test (1,000) sets, and includes annotations
for 36 pre-defined categories in the KILE task and 19 others in the LIR task.

3. Methods

Due to the competition’s prohibition on using external document datasets for training, we
pre-trained several GraphDoc models under different configurations on the provided unlabeled
set before fine-tuning the annotated set for both tasks. For both KILE and LIR tasks, we first
classify text boxes into various categories using the output embeddings of the GraphDoc model,
followed by the instance aggregation process handled by the proposed Merger module. And for
Task 2, we further employ another Merger module to gather instances into line items. There are
also some pre/post-processings according to the text contents and distances between text boxes.
Finally, we also adopt a model ensemble strategy to further enhance the system performance.

1https://www.industrydocuments.ucsf.edu/
2https://publicfiles.fcc.gov/

Unlabelled Documents Swin Transformer FPN

[x1,y1,x2,y2] ; “FOX 56”

[x1,y1,x2,y2] ; “1811 Hwy 315”

[x1,y1,x2,y2] ; “Send Payment To”

... ...

Line-Level OCR
Sentence

BERT

Layout
Embedding

Feature
Pooling

Feature Aggregation Visual Embedding

Text Embedding

Graph
Attention Layer

MSM

MSM Pretrain

GraphDoc Model

×N

Figure 1: The pre-training schema. MSM is short for Masked Sentence Modeling task.

3.1. GraphDoc pre-training

GraphDoc is a document understanding model that applies a multimodal graph attention-
based approach. Unlike previous pre-training models such as RoBERTa [15] and LayoutLM
[16], GraphDoc treats the semantic regions of document images extracted by optical character
recognition (OCR) as fundamental input elements instead of individual words. This novel
approach allows the model to better capture the semantic information in documents and
generalize across different types of business documents.

The pre-training process is illustrated in Figure 1. We rendered the unlabelled 932k PDF
documents into images for separate pages. To guarantee the quality of the pre-training corpus,
we remove those words whose confidence is lower than 0.5 and text lines whose average
confidence is lower than 0.85. After that, only those pages which have more than 5 text lines and
50 characters will be reserved for pre-training. Finally, we can get 2,736,766 valid pages in total.
The Masked Sentence Modeling (MSM) is used as the pre-training task for GraphDoc. Each
sentence is randomly and independently masked, while its corresponding layout information is
preserved. For the masked sentence, its text content is replaced with a special symbol named
[MASK]. The training target is to predict the sentence embeddings of masked ones based on
the sentence embeddings and the visual embeddings of others.

During pre-training, we freeze the parameters of Sentence-BERT [17] and jointly train the
visual backbone and GraphDoc in an end-to-end fashion. GraphDoc contains 12 layers of graph
attention blocks, with the hidden size set to 768 and the number of heads to 12. We pre-train
the GraphDoc using Adam optimizer, with the learning rate of 5× 10−5. The learning rate is
linearly warmed up over the first 10% steps and then linearly decayed. As for the MSM task,
15% of all input sentences are masked among which 80% are replaced by the [MASK] symbol,
10% are replaced by random sentences from other documents, and 10% remain the same.

We pre-train two different GraphDoc models with the parameter top-𝑘 for the graph attention
layer set to 36 and 60, respectively. The pre-training is conducted on 8 Telsa A100 48GB GPUs
with a batch size of 240. When top-𝑘 is set to 36, it takes around 13 hours to pre-train on 2.7
million unlabelled pages for 3 epochs. When changing the parameter top-𝑘 to 60, it takes around
19.5 hours to complete the pre-training for 4 epochs. More choices of top-k are not explored
further due to time constraints.

Unlabelled Documents

Labelled Documents

Multi-Scale
Word-level

OCR

Inst-level
Annotation

Item-level
Annotation

Visual Embedding with
Swin Transformer + FPN

GraphDoc
Model Process A:

Classification

Process B:
Instance Merge

Process C:
Line Item Merge

Sent-Emb

2D-Emb

Merger
Model

Task 1 : KILE

Task 2 : LIR

Swin Transformer FPN

[x1,y1,x2,y2] ; “FOX 56”

[x1,y1,x2,y2] ; “1811 Hwy 315”

[x1,y1,x2,y2] ; “Send Payment To”

... ...

Line-Level OCR
Sentence

BERT

Layout
Embedding

Feature
Pooling

Feature Aggregation Visual Embedding

Text Embedding

Graph Attention Layer

MSM

MSM Pretrain

GraphDoc Model

×N

Figure 2: The finetuning schema.

3.2. Data pre-processing

Data pre-processing is one of the important steps in both tasks. When it comes to models such
as RoBERTa, LayoutLM, and GraphDoc, OCR results are essential for accurately locating key
information in documents. The competition organizers provide pre-computed OCR results
using the DocTR library [18] with the DBNet [19] detector and the CRNN [20] recognition
model, which are further post-processed by snapping word boxes to text to obtain snapped text
boxes (𝐵snap).

To improve the recall rate of instances in the detection process, we convert the document
PDF into image 𝐼 and scale it by 1.25, 1.5, and 1.75 times the original size before text detection
and recognition.

𝐵DocTR(𝐼
′) = 𝑓DocTR(𝐼

′), 𝐼 ′ ∈ {𝐼1.25, 𝐼1.5, 𝐼1.75} (1)

Then, we apply non-maximum suppression (NMS) with an IoU threshold of 0.3 to generate an
intermediate set of text boxes 𝐵nms:

𝐵nms = NMS(𝐵DocTR(𝐼
′), 0.3) (2)

Lastly, we incorporate missed text boxes into the snapped text boxes provided by the competition
organizers and eliminate erroneous large-sized text boxes generated by DocTR. Specifically, we
add approximately 2% more text boxes to the existing set, while the percentage of removed
text boxes is roughly 0.1% of the total count.

𝐵final = Filter(𝐵snap ∪ {𝑏 | 𝑏 ∈ 𝐵nms, IoS(𝑏, 𝑏′) < 0.3, 𝑏′ ∈ 𝐵snap}) (3)

where Filter is a filtering operation that removes erroneous text boxes. Intersection over Smaller
(IoS) is similar to IoU, but the score between two text boxes 𝑏𝑖 and 𝑏𝑗 is defined as:

IoS(𝑏𝑖, 𝑏𝑗) =
area of intersection

min(area of 𝑏𝑖, area of 𝑏𝑗)
(4)

3.3. Model

The overview of our model is illustrated in Figure 2. Binary cross-entropy loss (BCELoss) is
used for classification due to overlaps between instances and the possibility of one text box

belonging to multiple categories, which is consistent with the published baselines.

ℒcls = − 1

𝑁

𝑁∑︁
𝑖=1

(𝑐𝑖 log �̂�𝑖 + (1− 𝑐𝑖) log(1− �̂�𝑖)) (5)

where 𝑁 is the number of classes, 𝑐𝑖 is the true label for each class, and �̂�𝑖 is the classification
logit for each class. To prevent memory errors caused by a large number of text boxes in
some document images, we group the text boxes in each image after sorting them from left to
right and top to bottom and feed them into the model in batches. Additionally, to avoid losing
instances that may be split between different groups, a sliding window strategy is also adopted.

In contrast to the rule-based approach used in the baselines [10], we introduce a learnable
Merger module to automatically aggregate text boxes into semantic instances based on their
embeddings extracted by GraphDoc, as depicted in Figure 3. In Task 1, for each category, we
calculate the attention score between text boxes of the same category to determine which text
boxes should be merged into an instance. The attention score between the 𝑖-th text box and the
𝑗-th text box is calculated as follow:

𝑎𝑖𝑗 = (E𝑖W
𝑘)(E𝑗W

𝑞)⊤ (6)

where E𝑖 ∈ R𝑑, E𝑗 ∈ R𝑑, W𝑘 ∈ R𝑑×𝑑, W𝑞 ∈ R𝑑×𝑑. 𝑑 is the dimension of the embedding
extracted by GraphDoc. The loss function for instance merging is as follow:

ℒinst = − 1

𝑊 *𝐻

𝑊∑︁
𝑖=1

𝐻∑︁
𝑗=1

(︁
𝑀𝑖,𝑗 log �̂� 𝑖,𝑗 + (1−𝑀𝑖,𝑗) log(1− �̂� 𝑖,𝑗)

)︁
(7)

where 𝑊 and 𝐻 represent the width and height of the attention map, respectively, 𝑀𝑖,𝑗 is the
true label at position (𝑖, 𝑗), and �̂� 𝑖,𝑗 is the attention score at position (𝑖, 𝑗). Moreover, to avoid
conflicts, we employ a method similar to NMS by using the mean attention scores of text boxes
in the merged instance (NMS score). Specifically, if there are overlapping text boxes between
two instances, the instance with the higher score will be selected.

Differing from Task 1, the input instances in Task 2 are restricted to a single class and are
non-overlapping. Therefore, it’s not necessary to merge instances separately for each class.
All text boxes with pre-defined classes are input into the Merger module with the background
texts excluded. The inputs of the second merge stage are instance-level embeddings using the
average of all text boxes’ embeddings in each instance, which can be formulated as:

EInst
𝑗 =

∑︀𝑛
𝑖=1E𝑖

𝑛
(8)

where EInst
𝑗 represents the embedding of the 𝑗-th instance, and 𝑛 is the number of text boxes

contained in the 𝑗-th instance. And ℒitem, the loss function for line item merging, is similar to
ℒinst.

Boxes Classification

Instance Merge

Line-item Merge

𝐵! 𝐵" 𝐵#
𝐵$ 𝐵% 𝐵&
𝐵' 𝐵(𝐵)

Instance Merger Attention

Line-item Merger Attention

𝐼! 𝐼"
𝐼#

𝐼%
𝐼$
𝐼&

Boxes

Instances

Instances

Line-items

Figure 3: The merge results of instance merging and line item merging. The red, green, and blue boxes
represent text boxes, instances, and line items, respectively. The marks near boxes are the indexes. And
the attention maps on the right indicate which boxes should be merged.

3.4. Model ensembling

In order to further enhance model performance, we ensemble several models using different
GraphDoc models to improve the text box classification accuracy. Specifically, after the fine-
tuning stage, we select the top best-performing models under two different configurations as
described in Section 3.1 for ensembling. There are four ensemble strategies depending on the
ensemble method and the evaluation metric for model performance. Moreover, the micro F1
score for text box classification under each strategy is also calculated.

• strategy 1 : Averaging + official. The final probability scores used for classification are
generated by averaging the probability scores of various models for each text box. Model
selection criteria is based on the official evaluation metric of each task.

• strategy 2 : Averaging + F1. Employ the Averaging method as a model ensemble technique
as strategy 1. But the selection criteria for models is based on their micro F1 score for
text box classification.

• strategy 3 : Voting + official. The final classification results are voted by various models
for each text box. Model selection criteria is based on the official evaluation metrics of
each task.

• strategy 4 : Voting + F1. Employ the Voting method as a model ensemble technique and
the selection criteria for models is based on their micro F1 scores for text box classification.

The number of models under different top-𝑘 configurations used for the ensemble in each
strategy is determined based on the micro F1 score for text box classification of the ensemble
models. As for the final selection of the four strategies, for Task 1, it is determined based on
the micro F1 score of the ensemble models for text box classification. For Task 2, the official
evaluation metric on the task is used to determine the optimal strategy. Lastly, the ensemble
classification results are fed into the Merger module of the best-performing model prior to an
ensemble.

3.5. Post-processing

Although our classification and Merger modules have achieved impressive results in both tasks,
there still exists some challenges that cannot be addressed by the models alone. There are mainly
two types of post-processing strategies performed: text box splitting and instance splitting.
For example, instances of the "currency_code_amount_due" class are typically represented by
boxes only containing the character "$", which are below the detection threshold of DocTR
due to their small scales. We extract the text box containing the "$" symbol as the location
of the instance if the text box belongs to this class and contains "$" in the text. Moreover, we
observe that text box belonging to certain classes with "id" in their class names usually has the
"#" symbol in its text, which is absent in the text of the corresponding instance. We remove the
character "#" from the text and split the text box.

Furthermore, to prevent occasional errors in the Merger module, we devise rules to keep
each text box as a separate instance if the distance between the text boxes in a single instance
exceeds the predefined threshold. Specifically, for Task 1, we apply instance splitting when the
minimum horizontal distance between text boxes is greater than 1.5 times the minimum width
of text boxes and the maximum vertical distance is greater than 2 times the maximum height.
For Task 2, instance splitting is applied when the minimum horizontal distance between text
boxes is greater than twice the maximum width.

Additionally, for Task 1 whose official evaluation metric is AP, the score (confidence) in the
final predicted result is critical since predictions are sorted by score from the highest to the
lowest. And there are also three different score selection methods evaluated as described below:

• NMS score : As introduced in section 3.2, NMS score refers to the average attention score
of text boxes within the same instance.

• Classification score : The average probability scores for the text boxes contained within
the instance.

• NMS classification score : Average of Classification score and NMS score.

4. Resources

We use BCELoss with the transformers3 framework to train the classification, instance merge,
and line item merge tasks in a joint manner. The loss functions for two tasks are as follows:

ℒKILE = ℒcls + ℒinst (9)

ℒLIR = ℒcls + ℒinst + ℒitem (10)

The initial learning rate is set to 5× 10−5 and is linearly warmed up over the first 10% steps
and then linearly decayed. Adam is used as the optimizer. The training is conducted on 2 Telsa
V100 24GB GPUs with a batch size of 8. For Task 1, we train the model for 300-500 epochs,
while for Task 2, we train the model for 500-1000 epochs.

5. Experiments and Results

For Task 1 and Task 2, we fine-tuned the model with different top-𝑘 configurations, and the
variation curves of losses used in each task are shown in Figure 4.

Firstly, the instance detection recall rates on the validation set are compared in Table 1. When
the IoS between a text box and an instance exceeds the threshold, we regard the text box as a
part of the instance and assign it the same class label as the instance, indicating that the instance
is detected. It can be observed that our data pre-processing significantly improves the recall
rate of instance detection. Specifically, it achieves a recall rate of 0.995 at the threshold of 0.3,
while the official method only achieves a recall rate of 0.979.

Table 1
The instance detection recall rates for the official OCR and our processed OCR

Config
Threshold

0.1 0.3 0.5 0.7 0.9

Official 0.982 0.979 0.968 0.944 0.885
Multi-scale 0.998 0.995 0.983 0.957 0.891

Table 2
Impact of different classification thresholds in the text box classification stage on the official evaluation
metrics

Task
Threshold

0.1 0.3 0.5 0.7 0.9

Task 1 0.714 0.701 0.690 0.676 0.643
Task 2 0.782 0.783 0.784 0.784 0.782

Secondly, for the selection of the classification threshold during the text box classification
stage, Table 2 presents the performance of both tasks on the validation set at different thresholds.
3https://github.com/huggingface/transformers

(a) Task 1, top-𝑘=36 (b) Task 1, top-𝑘=60

(c) Task 2, top-𝑘=36 (d) Task 2, top-𝑘=60

Figure 4: The loss curves for Task 1 and Task 2 under different top-𝑘 configurations, trained using
annotated training data.

It can be seen that the selection of the classification threshold can exert a substantial influence
and the results of Task 1 can differ by up to 7 percent when the threshold changes from 0.1 to
0.9. For Task 1, a threshold of 0.1 is considered optimal, while for Task 2, a threshold of 0.5 is
deemed appropriate.

Then, as discussed in Section 3.4, we ensemble multiple models using four schemes to
enhance the text box classification accuracy and improve the model’s performance. Based
on the observations for Task 1, the accuracy of text box classification is positively correlated
with the official evaluation metric. The Merger module performs well when the classification
is correct. As shown in Table 3, when strategy 4 is chosen and the ensemble number is 11,
the micro F1 score for text box classification on the validation set is the highest. For Task 2,
two Merger modules are employed, making it difficult to ascertain the performance of each
module. To address this issue, the selection of the final ensemble strategy is based on the official
evaluation metric of Task 2 at the optimal ensemble quantity for each of the four strategies. As
indicated in Table 3, strategy 1 is the final ensemble approach and the number of models used
for ensembling is 11.

Table 3
The micro F1 scores for text box classification under different model ensembling strategies and model
numbers and the official evaluation metric at the optimal ensemble quantity

Task Strategy
Model Number

Official Evaluation Metric
1 5 11 20

Task 1

Strategy 1 (Averaging + official) 0.912 0.914 0.914 0.914 -
Strategy 2 (Averaging + F1) 0.916 0.916 0.915 0.915 -
Strategy 3 (Voting + official) 0.906 0.918 0.918 0.918 -
Strategy 4 (Voting + F1) 0.914 0.919 0.921 0.920 -

Task 2

Strategy 1 (Averaging + official) 0.872 0.872 0.874 0.871 0.785
Strategy 2 (Averaging + F1) 0.882 0.887 0.884 0.885 0.784
Strategy 3 (Voting + official) 0.892 0.880 0.875 0.873 0.784
Strategy 4 (Voting + F1) 0.902 0.891 0.888 0.887 0.761

Besides, Table 4 presents the performance of our final ensemble model with different score
selection methods on the AP for Task 1 on the validation set. And Table 5 showcases the
performance of our final ensemble model with NMS classification score in different post-
processing approaches. Additionally, there are approximately 6% of instances generated through
text box splitting in Task 1 and the percentage is around 2% in Task 2.

Table 4
The influence of different score selection methods on the AP for Task 1

Score Selection AP

None 0.606
NMS score 0.625

Classification score 0.740
NMS classification score 0.740

Table 5
Post-processing results on official evaluation metrics on the validation set

Instance Splitting Text Box Splitting Task 1 Task 2

- - 0.672 0.769
✓ - 0.677 0.770
✓ ✓ 0.740 0.785

Furthermore, ablation experiments are also conducted to summarize and justify each process
as shown in Table 6. Finally, we evaluate the performance of our ensemble model on the test
sets and the model achieves an AP of 71.25% for Task 1 and a micro F1 score of 75.93% for
Task 2 as shown in Table 7.

Table 6
The results of ablation experiments on pre-processing, post-processing and model ensembling on the
validation set

Pre-processing Post-processing Model Ensembling
Task 1 Task 2

AP F1 AP F1

- - - 0.638 0.700 0.577 0.755
✓ - - 0.643 0.702 0.594 0.766
✓ ✓ - 0.714 0.750 0.615 0.784
✓ ✓ ✓ 0.740 0.769 0.619 0.785

Table 7
The results on the test set

Task AP F1 P R

Task 1 71.25% 74.25% 71.41% 77.31%
Task 2 57.89% 75.93% 80.82% 71.60%

6. Conclusion and Future Work

This paper presents the model and methods we used in the DocILE competition. We utilize the
GraphDoc model to extract embeddings for each text box and perform classification for each of
them. Based on the classification results, we feed the embeddings into our proposed Merger
module to aggregate the instances and line items. To further improve the model performance,
we also conduct model ensembling and some post-processing operations. The results of the
validation and test sets demonstrate the effectiveness of our approach in both KILE and LIR
tasks. As mentioned, our approach still requires manual rule-making to address some errors. In
the future, we will continue to explore ways to automatically solve these issues.

References

[1] P. Dhakal, M. Munikar, B. Dahal, One-shot template matching for automatic document
data capture, in: 2019 Artificial Intelligence for Transforming Business and Society (AITB),
volume 1, IEEE, 2019, pp. 1–6.

[2] F. Krieger, P. Drews, B. Funk, T. Wobbe, Information extraction from invoices: a graph
neural network approach for datasets with high layout variety, in: Innovation Through
Information Systems: Volume II: A Collection of Latest Research on Technology Issues,
Springer, 2021, pp. 5–20.

[3] H. Sun, Z. Kuang, X. Yue, C. Lin, W. Zhang, Spatial dual-modality graph reasoning for key
information extraction, arXiv preprint arXiv:2103.14470 (2021).

[4] E. Medvet, A. Bartoli, G. Davanzo, A probabilistic approach to printed document under-
standing, International Journal on Document Analysis and Recognition (IJDAR) 14 (2011)
335–347.

[5] J. Wang, C. Liu, L. Jin, G. Tang, J. Zhang, S. Zhang, Q. Wang, Y. Wu, M. Cai, Towards robust

visual information extraction in real world: New dataset and novel solution, in: Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, 2021, pp. 2738–2745.

[6] Ł. Borchmann, M. Pietruszka, T. Stanislawek, D. Jurkiewicz, M. Turski, K. Szyndler, F. Gral-
iński, Due: End-to-end document understanding benchmark, in: Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2),
2021.

[7] Z. Huang, K. Chen, J. He, X. Bai, D. Karatzas, S. Lu, C. Jawahar, Icdar2019 competition
on scanned receipt ocr and information extraction, in: 2019 International Conference on
Document Analysis and Recognition (ICDAR), IEEE, 2019, pp. 1516–1520.

[8] T. Stanisławek, F. Graliński, A. Wróblewska, D. Lipiński, A. Kaliska, P. Rosalska, B. Topolski,
P. Biecek, Kleister: key information extraction datasets involving long documents with
complex layouts, in: Document Analysis and Recognition–ICDAR 2021: 16th International
Conference, Lausanne, Switzerland, September 5–10, 2021, Proceedings, Part I, Springer,
2021, pp. 564–579.

[9] Š. Šimsa, M. Uřičář, M. Šulc, Y. Patel, A. Hamdi, M. Kocián, M. Skalický, J. Matas, A. Doucet,
M. Coustaty, D. Karatzas, Overview of DocILE 2023: Document Information Localization
and Extraction, in: A. Arampatzis, E. Kanoulas, T. Tsikrika, S. Vrochidis, A. Giachanou,
D. Li, M. Aliannejadi, M. Vlachos, G. Faggioli, N. Ferro (Eds.), Proceedings of the Fourteenth
International Conference of the CLEF Association (CLEF 2023), LNCS Experimental IR
Meets Multilinguality, Multimodality, and Interaction., 2023.

[10] Š. Šimsa, M. Šulc, M. Uřičář, Y. Patel, A. Hamdi, M. Kocián, M. Skalický, J. Matas, A. Doucet,
M. Coustaty, D. Karatzas, DocILE Benchmark for Document Information Localization and
Extraction, in: 17th International Conference on Document Analysis and Recognition,
ICDAR 2021, San José, California, USA, August 21–26, 2023, Lecture Notes in Computer
Science, Springer, 2023.

[11] M. Skalickỳ, Š. Šimsa, M. Uřičář, M. Šulc, Business document information extraction:
Towards practical benchmarks, in: Experimental IR Meets Multilinguality, Multimodality,
and Interaction: 13th International Conference of the CLEF Association, CLEF 2022,
Bologna, Italy, September 5–8, 2022, Proceedings, Springer, 2022, pp. 105–117.

[12] O. Bensch, M. Popa, C. Spille, Key information extraction from documents: evaluation and
generator, arXiv preprint arXiv:2106.14624 (2021).

[13] T. I. Denk, C. Reisswig, Bertgrid: Contextualized embedding for 2d document representa-
tion and understanding, arXiv preprint arXiv:1909.04948 (2019).

[14] Z. Zhang, J. Ma, J. Du, L. Wang, J. Zhang, Multimodal pre-training based on graph attention
network for document understanding, IEEE Transactions on Multimedia (2022).

[15] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
V. Stoyanov, Roberta: A robustly optimized bert pretraining approach, arXiv preprint
arXiv:1907.11692 (2019).

[16] Y. Xu, M. Li, L. Cui, S. Huang, F. Wei, M. Zhou, Layoutlm: Pre-training of text and layout for
document image understanding, in: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 1192–1200.

[17] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks,
arXiv preprint arXiv:1908.10084 (2019).

[18] Mindee, doctr: Document text recognition, https://github.com/mindee/doctr, 2021.

https://github.com/mindee/doctr

[19] M. Liao, Z. Wan, C. Yao, K. Chen, X. Bai, Real-time scene text detection with differentiable
binarization, in: Proceedings of the AAAI conference on artificial intelligence, volume 34,
2020, pp. 11474–11481.

[20] B. Shi, X. Bai, C. Yao, An end-to-end trainable neural network for image-based sequence
recognition and its application to scene text recognition, IEEE transactions on pattern
analysis and machine intelligence 39 (2016) 2298–2304.

	1 Introduction
	2 Dataset
	3 Methods
	3.1 GraphDoc pre-training
	3.2 Data pre-processing
	3.3 Model
	3.4 Model ensembling
	3.5 Post-processing

	4 Resources
	5 Experiments and Results
	6 Conclusion and Future Work

