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Abstract
The paper describes the results submitted by ‘Team-SMS’ at EXIST 2023. A dataset of 6920 tweets for
training, 1038 for validation, and 2076 tweets for testing was provided by the task organizers to train and
test our models. Our models include LSTM models coupled with attention layers and without attention.
For calculation of soft scores according to the task we tried to mimic human performance by taking an
average of different machine learning model predictions using Multinomial Naive Bayes, Linear Support
Vector Classifier, Multi Layer Perceptron, XGBoost, LSTM using GloVe embeddings, and LSTM using
fastText embeddings. We discuss our approach to remove the ambiguity in the labeling process and
detailed description of our work.
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1. Introduction

Sexism, a pervasive form of gender-based discrimination, continues to be a critical social issue
across the globe. It manifests in various contexts, such as workplaces, educational institutions,
and online platforms, reinforcing harmful stereotypes and limiting opportunities for individuals
based on their gender. As the world becomes increasingly interconnected through digital
platforms and social media, detecting and addressing sexism in online content has become a
pressing concern.

Deep learning, a subset of machine learning, has emerged as a powerful tool for tackling com-
plex tasks by automatically learning intricate patterns and representations from vast amounts of
data. Leveraging the capabilities of deep learning, researchers and technologists have been ex-
ploring innovative approaches to develop automated systems capable of detecting and combating
sexism in online communications.

The shared tasks on sEXism Identification in Social neTworks (EXIST) at CLEF 2023 [1, 2]
represent a systematic benchmark that attempts to tackle this challenge via machine learning and
Natural Language Understanding (NLU). Also, the assumption that natural language expressions
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have a single and clearly identifiable interpretation in a given context is a convenient idealization,
but far from reality, especially in highly subjective tasks such as sexism identification. The
learning with disagreements paradigm in this shared task aims to deal with this by letting
systems learn from datasets where no gold annotations are provided but information about the
annotations from all annotators, in an attempt to gather the diversity of view.

This paper presents our contribution to the tasks, algorithms to extract useful information
from multiple annotations, describes our overall approach and the methods and models ap-
plied and summarizes the obtained results. We summarize our results for two tasks: Sexism
Identification (Task 1) and Source Intention (Task 2).

2. Dataset Preprocessing

2.1. Ambiguity removal

A major challenge of the EXIST tasks [1, 2] is the small size of dataset (around 7000 tweets)
which is uniformly divided into English and Spanish tweets. This small size provides difficulty
in robust training of any model. Apart from that around 10% of the annotated tweets have
ambiguous labels i.e. the 6 annotations provided for the label have no clear majority which if
not processed further reduces the dataset size. To counter this, we formulated the following
algorithms to calculate a hard label from the annotations.

Trust score

The ‘trust score’ for each of the annotators in the training data can be calculated by finding
the ratio of correct annotations (from the tweets having majority labels) to total annotations
by each annotator. The result is stored in a dictionary. This provides us a metric to remove
ambiguities from the annotations and give hard labels to each ambiguous tweet by giving
priority to annotations of annotators with higher trust score. The distribution for each annotator
is uniformly distributed in the dataset thus removing any chances of bias. The generalized
algorithm (Algorithm 1) to calculate the Trust Score in any similar dataset is presented here.

To further generalize this, according to the info provided in the training data about the
annotators, they can be grouped into 6 classes with respect to gender and age (18-22F, 23-45F,
46+F, 18-22M, 23-45M, and 46+M). The individual trust scores are grouped into these classes
and their average is taken to calculate the class-wise trust score. This gives us another metric
to remove ambiguity from the tweets. The generalized algorithm (Algorithm 2) to do this is
presented here.

Ambiguity resolution

Once the individual and class-wise trust scores are calculated, they can be used to resolve
ambiguity by labelling ambiguous tweets. Either the individual trust scores or the class-wise
trust scores can be used for this purpose. For each annotator giving a ‘YES’ or ‘NO’ annotation,
the respective trust score (individual or class-wise) is added to the classes. The class having
higher score will act as the label. This provides a way to remove ambiguity from the tweets



Algorithm 1: Individual Trust Score
Data: Dataset 𝒟 with 𝑁 samples,
Each sample classified (into two class types, 𝐴 and 𝐵) by a set of entities (entity
𝑒 ∈ ℰ , 𝑒 : 𝒟 → {𝐴,𝐵}), 𝐸𝑑(⊂ ℰ) ∀ 𝑑 ∈ 𝒟 from the set of all entities ℰ
Result: 𝑇 : ℰ → R, where 𝑇 (𝑒) = Trust Score of 𝑒 ∀ 𝑒 ∈ ℰ ,
Set of successfully classified samples 𝒟𝐴 and 𝒟𝐵 ,
Set of ambiguous samples 𝒟ambi
Algorithm:
𝒟𝐴 ← 𝜑
𝒟𝐵 ← 𝜑
foreach 𝑒 ∈ ℰ do
𝒩 (𝑒)← 0
𝑇 (𝑒)← 0

foreach 𝑑 ∈ 𝒟 do
𝑛𝐴 ← 0
𝑛𝐵 ← 0
foreach 𝑒 ∈ 𝐸𝑑 do
𝒩 (𝑒)← 𝒩 (𝑒) + 1
if 𝑒(𝑑) = 𝐴 then

𝑛𝐴 ← 𝑛𝐴 + 1
else

𝑛𝐵 ← 𝑛𝐵 + 1

if 𝑛𝐴 > 𝑛𝐵 then
𝒟𝐴 ← 𝒟𝐴 ∪ {𝑑}

else if 𝑛𝐵 > 𝑛𝐴 then
𝒟𝐵 ← 𝒟𝐵 ∪ {𝑑}

foreach 𝑑 ∈ 𝒟 do
if 𝑑 ∈ 𝒟𝐴 then

𝐶 ← 𝐴
else

𝐶 ← 𝐵
foreach 𝑒 ∈ 𝐸𝑑 do

if 𝑒(𝑑) = 𝐶 then
𝑇 (𝑒)← 𝑇 (𝑒) + 1

𝒩 (𝑒)

and helps in retaining the training data. The generalized algorithm (Algorithm 3) to do this is
presented here.

After multiple runs, using the class-wise trust score for this purpose appears to perform better
than using the individual scores, probably because the former provides more generalization and
removes any individual bias.



Algorithm 2: Class-Wise Trust Score
Data: Set of all entities, ℰ ,
Set of all entity classes, 𝒞,
𝑆 : ℰ → 𝒞, where 𝑆(𝑒) = The entity class 𝑒 belongs to ∀ 𝑒 ∈ ℰ ,
𝑇 : ℰ → R, where 𝑇 (𝑒) = Trust Score of 𝑒 ∀ 𝑒 ∈ ℰ
Result: 𝑇𝑔 : 𝒞 → R, where 𝑇𝑔(𝑐) = Class-Wise Trust Score of 𝑐 ∀ 𝑐 ∈ 𝒞
Algorithm:
foreach 𝑐 ∈ 𝒞 do

𝑇𝑔(𝑐)← 0
𝑁(𝑐)← 0

foreach 𝑒 ∈ ℰ do
𝑁(𝑆(𝑒))← 𝑁(𝑆(𝑒)) + 1
𝑇𝑔(𝑆(𝑒))← 𝑇𝑔(𝑆(𝑒)) + 𝑇 (𝑒)

foreach 𝑐 ∈ 𝒞 do
𝑇𝑔(𝑐)← 𝑇𝑔(𝑐)

𝑁(𝑐)

Algorithm 3: Ambiguity Resolution
Data: Dataset 𝒟, ℰ , 𝐸𝑑 ∀ 𝑑 ∈ 𝒟 (same definitions as in Algorithm 1),
Set of successfully classified samples 𝒟𝐴 and 𝒟𝐵 ,
Set of ambiguous samples 𝒟ambi,
𝑇 : ℰ → R, where 𝑇 (𝑒) = Trust Score of 𝑒 ∀ 𝑒 ∈ ℰ ,
Classification bias 𝛽 ∈ {𝐴,𝐵}
Result: Successfully classified 𝒟 into 𝒟𝐴 and 𝒟𝐵 , such that 𝒟𝐴 ∪ 𝒟𝐵 = 𝒟
Algorithm:
foreach 𝑑 ∈ 𝒟ambi do

𝑠𝐴 ← 0
𝑠𝐵 ← 0
foreach 𝑒 ∈ 𝐸𝑑 do

if 𝑒(𝑑) = 𝐴 then
𝑠𝐴 ← 𝑠𝐴 + 𝑇 (𝑒)

else
𝑠𝐵 ← 𝑠𝐵 + 𝑇 (𝑒)

if 𝑠𝐴 > 𝑠𝐵 then
𝒟𝐴 ← 𝒟𝐴 ∪ {𝑑}
𝒟ambi ← 𝒟ambi − {𝑑}

else if 𝑠𝐵 > 𝑠𝐴 then
𝒟𝐵 ← 𝒟𝐵 ∪ {𝑑}
𝒟ambi ← 𝒟ambi − {𝑑}

foreach 𝑑 ∈ 𝒟ambi do
𝒟𝛽 ← 𝒟𝛽 ∪ {𝑑}
𝒟ambi ← 𝒟ambi − {𝑑}



2.2. Text preprocessing

The following preprocessing steps were performed on each tweet:

1. Stopword Removal: The function stopword_removal is applied to each row of the
‘tweet’ column using the apply method. It is assumed that the stopword_removal
function removes commonly used words (stopwords) from the text, which are typically
irrelevant for natural language processing tasks. This was done with the help of the NLTK
[3] library.

2. Lowercasing: The lower() method is applied to the ‘tweet’ column, converting all the
text to lowercase. This step is performed to ensure consistency in the text and to avoid
treating words with different cases as different entities.

3. URL Removal: The regex, r‘https?:\/\/\S+’ is used to match and remove URLs
from each tweet. It looks for patterns starting with ‘http://’ or ‘https://’ followed
by any non-whitespace characters. This step aims to eliminate URLs, which are often
irrelevant for text analysis or modeling.

4. Website Removal: The regex, r"www\.[a-z]?\.?(com)+|[a-z]+\.(com)" is used
to match and remove website addresses from the tweets. It searches for patterns starting
with ’www.’ followed by an optional single letter and optional ’com’, or it matches any
combination of lowercase letters followed by ’.com’. This step targets website links that
were not captured by the previous URL removal step.

5. HTML Entity Removal: The regex, r‘&[a-z]+;’ matches and removes HTML entities
from the tweets. HTML entities are special characters represented using codes like ‘&’
for ‘&’, ‘<’ for ‘<’, etc. This step is useful when dealing with text scraped from websites
or social media platforms.

6. Special Character and Symbol Removal: r‘[^a-z\s\(\-:\)\\\/\];=\’#]’ is the
regex used to match and remove any character that is not a lowercase letter, whitespace,
parentheses, hyphen, colon, backslash, forward slash, semicolon, equal sign, single quote,
or hash symbol. This step removes special characters and symbols that might not carry
significant meaning for text analysis or modeling.

7. Mention Removal: The regex, r‘@mention’ matches and removes the string ‘@men-
tion’ from the tweets. This step targets mentions of users or handles often found in social
media text.

In summary, the code applies a series of text preprocessing steps to clean the ‘tweet’ column.
These steps include stopword removal, lowercasing, URL and website removal, HTML entity
removal, special character and symbol removal, and mention removal. The resulting ‘tweet’
column should contain cleaned and standardized text that is ready for further analysis or
modeling tasks.

3. Evaluation metrics

For all tasks and all types of evaluation (hard-hard, hard-soft, and soft-soft), the official metric:
ICM [4] is used. ICM is a similarity function that generalizes Pointwise Mutual Information
(PMI) and can be used to evaluate system outputs in classification problems by computing their



similarity to the ground truth categories. As there is not any current metric that fits hierarchical
multi-label classification problems in a learning with disagreement scenario, the organizers
have defined an extension of ICM (ICM-soft) that accepts both soft system outputs and soft
ground truth assignments.

1. Hard-Hard evaluation: For systems that provide a hard, conventional output, the
organizers provided a hard-hard evaluation. To derive the hard labels in the ground truth
from the different annotators’ labels, a probabilistic threshold was computed for each task.
As a result, for Task 1, the class annotated by more than 3 annotators is selected; and for
Task 2, the class annotated by more than 2 annotators is selected. Items for which there is
no majority class (i.e. no class receives more probability than the threshold) are removed
in this evaluation scheme. The official metric is the original ICM [4]. The systems are
also compared with F1 (the harmonic average of precision and recall). In Task 1, F1 is
used for the positive class, and in Task 2, the average of F1 for all classes is used.

2. Hard-Soft evaluation: For systems that provide a hard output, the organizers provided
a hard-soft evaluation, comparing the categories assigned by the system with the proba-
bilities assigned to each category in the ground truth. ICM-soft is the official evaluation
metric in this variant. The probabilities of the classes for each instance are calculated
according to the distribution of labels and the number of annotators for that instance.

3. Soft-Soft evaluation: For systems that provide probabilities for each category, the
organizers provided a soft-soft evaluation that compares the probabilities assigned by the
system with the probabilities assigned by the set of human annotators. As in the previous
case, ICM-soft is used as the official evaluation metric in this variant.

4. Task 1: Sexism Identification

The ‘Sexism Identification’ task involved classifying tweets as being sexist or not. To do this,
we employed the usage of various simple machine learning models and neural networks and
analyzed the results.

4.1. Simple models

We tested five models, namely Multinomial Naive Bayes [5, 6], Linear SVC [7, 6], Bernoulli Naive
Bayes [5, 6], Multilayer Perceptron [8, 6] and XGBoost [9]. The evaluation was done by removing
ambiguous tweets from the validation set and the metric of the evaluation is the ICM and F1
score using the hard-hard evaluation mode of the python script provided. All implementations
considered a 5-fold cross-validation process during the training stage. A hyperparameters
analysis was conducted for all models, considering: different learning rates, alpha, beta, hidden
layer sizes for the models for which they are applicable and optimal parameters were found.
The results are detailed in Table 1. XGBoost [9], Multilayer Perceptron [8, 6] and Bernoulli
Naive Bayes [5, 6] appear to perform significantly better than the others with ICM [4] scores of
around 0.27 as compared to scores of 0.2026 and 0.2370 for Multinomial Naive Bayes [5, 6] and
Linear SVC [7, 6] respectively.



Table 1
Results without applying ambiguity resolution

Model ICM Score [4] F1:YES F1:NO MARCO:F1

Multinomial Naive Bayes 0.2026 0.7021 0.7623 0.7322
Linear SVC 0.2370 0.7072 0.7778 0.7425
Bernoulli Naive Bayes 0.2714 0.7378 0.7753 0.7566
XGBoost 0.2740 0.7344 0.7796 0.7570
Multilayer Perceptron 0.2641 0.7286 0.7782 0.7534

Table 2
Results after applying ambiguity resolution

Model ICM Score [4] F1:YES F1:NO MARCO:F1

Multinomial Naive Bayes 0.1899 0.6987 0.7575 0.7281
Linear SVC 0.2249 0.7343 0.7492 0.7418
Bernoulli Naive Bayes 0.2361 0.7254 0.7642 0.7488
XGBoost 0.2515 0.7264 0.7725 0.7495
Multilayer Perceptron 0.2380 0.7163 0.7722 0.7443

The same models were also run after applying the ambiguity resolution algorithm with the
class-wise trust scores. The results for this are detailed in Table 2.

As seen in the results after applying ambiguity resolution, the accuracy decreases marginally
with an average reduction in the ICM [4] score of 8.49% across the models. So, it is not helping
us to extract more useful features by increasing the training data. In the future, the algorithms
could be improved by using a more complex combination of metrics to group and compute
scores to increase the accuracy. These models are not directly part of the main submission but
are used for the calculation of soft scores for Task 1. We tried to replicate human annotator
performance using these models and taking a probability of the predictions spread across these
models.

4.2. Soft-score calculation

The assumption that natural language expressions have a single and clearly identifiable inter-
pretation in a given context is a convenient idealization, but far from reality, especially in highly
subjective task as sexism identification. The learning with disagreements paradigm of EXIST
2023 [1, 2] aims to deal with this by letting systems learn from datasets from information about
the annotations from all annotators, in an attempt to gather the diversity of views. Taking this
into consideration for soft score calculation we sought to replicate human annotator expertise
through the utilization of various models. The soft score calculation involved aggregating
prediction probabilities (For example, if 4 models predicted YES and 2 predicted NO then the
soft score would be YES : 0.67, NO : 0.33) from six distinct models, namely Multinomial Naive
Bayes [5, 6], Linear Support Vector Classifier [7, 6], Multilayer Perceptron [8, 6], XGBoost [9],
LSTM [10, 6] using GloVe [11] word embeddings , and LSTM using word fastText [12] word



Figure 1: LSTM [10] + Attention [13] architecture for Task 1: Sexism Identification, via TensorFlow
Keras [14, 6] plot_model.

embeddings. By leveraging the collective insights from these diverse models, we aimed to
attain a robust and accurate soft score, mirroring the performance of human annotators. This
approach allowed us to harness the strengths of each model and effectively gauge the quality of
the text processing framework. The exact procedure is detailed in Algorithm 4.

Algorithm 4: Soft Score Calculation
Data: 𝒯 , pieces of text to be classified,
𝑚 : 𝒯 → {YES,NO} ∈ ℳ, the set of models being used to classify
Result: Soft scores, 𝒮 , where 𝒮 : 𝒯 → {{Y,N} | 0 ≤ Y,N ∈ R ≤ 1,Y + N = 1}
Algorithm:
𝑁 = 𝑛(ℳ)
foreach 𝑡 ∈ 𝒯 do

Y = 0
N = 0
foreach𝑚 ∈ℳ do

if 𝑚(𝑡) = YES then
Y = Y + 1

𝑁
else

N = N + 1
𝑁

𝒮(𝑡) = {Y,N}



4.3. Deep learning models

We submitted a total for 3 runs for this task and used neural network models for all of them.
The final models for all the runs were trained on both the training and validation data. The
exact details are given below.

Model for Run 1

We employed 200-dimensional GloVe [11] Twitter word embeddings for English texts, while 300-
dimensional fastText [12] word embeddings were utilized for Spanish texts. For English texts,
the model architecture comprised of a dense [8] layer designed to convert the 200-dimensional
embeddings into a more compact representation of 120 dimensions. Subsequently, a 120-unit
LSTM [10] layer was incorporated, with a 20% dropout [15] rate to enhance generalization.
To capture the contextual dependencies within the text, an attention [13] layer and a pooling
[16] layer were included in the model. Finally, a dense layer with softmax [17] activation was
employed to convert the representations into two dimensions (for classification), facilitating
meaningful predictions. The model architecture is shown in Figure 1.

For the model for Spanish texts, a dense layer was used to convert the 300-dimensional
embeddings to 150-dimensions. This was followed by a 150 unit LSTM layer with dropout
followed by a Dense layer of 32 units with dropout and finally output (of 2 dimensions) using
softmax activation. The soft score calculation involved the usage of Algorithm 4.

Model for Run 2

In this run, we employed 300-dimensional fastText [12] word embeddings for both English and
Spanish texts. The model architecture was designed to maximize performance and accuracy,
comprising a 150-unit LSTM [10] layer, followed by a Dropout [15] layer to mitigate overfitting.
This was succeeded by a Dense [8] layer with 32 units, followed by another Dropout layer,
ultimately culminating in the final output utilizing softmax [17] activation. This run employed
same model architecture for both English and Spanish texts. The soft score prediction employed
the same process of taking the probabilistic score of various model predictions.

Model for Run 3

The model and word embedding specifications for this run are the same as in Run 2. This run
employed our ambiguity resolution algorithm using class-wise trust score to increase the data
for training.

4.4. Results

Run 1 received a rank of 26/53 on soft-soft evaluation, 51/65 on hard-hard evaluation and
52/65 on hard-soft evaluation on ALL text instances. The significantly better soft-soft score
indicates that such a method of employing various machine learning models to mimic human
performance and creating soft probabilistic scores can be useful in future work in other tasks.

Run 2 received a rank of 27/53 on soft-soft evaluation, 52/65 on hard-hard evaluation and
rank 53/65 on hard-soft evaluation on ALL text instances.



Table 3
Results for all runs submitted for Task 1 in the ALL INSTANCES category

Soft vs Soft
Run Rank ICM-Soft ICM-Soft Norm Cross Entropy

SMS_1 26 0.3142 0.547 1.665
SMS_2 27 0.3142 0.547 1.665

Hard vs Hard
Run Rank ICM-Hard ICM-Hard Norm F1

SMS_3 52 0.2469 0.5233 0.6717
SMS_1 54 0.2369 0.517 0.6787
SMS_2 55 0.2369 0.517 0.6787

Hard vs Soft
Run Rank ICM-Soft ICM-Soft Norm

SMS_3 53 -0.5638 0.4052
SMS_1 55 -0.6017 0.399
SMS_2 56 -0.6017 0.399

Table 4
Results for all runs submitted for Task 1 in the ES category

Soft vs Soft
Run Rank ICM-Soft ICM-Soft Norm Cross Entropy

SMS_1 26 0.3061 0.506 1.6297
SMS_2 27 0.3061 0.506 1.6297

Hard vs Hard
Run Rank ICM-Hard ICM-Hard Norm F1

SMS_3 52 0.1937 0.4663 0.6766
SMS_1 54 0.1809 0.4578 0.6888
SMS_2 55 0.1809 0.4578 0.6888

Hard vs Soft
Run Rank ICM-Soft ICM-Soft Norm

SMS_3 53 -0.5495 0.3557
SMS_1 56 -0.6433 0.3392
SMS_2 57 -0.6433 0.3392

Run 3 received a rank of 49/65 on hard-hard evaluation and rank 50/65 on hard-soft evaluation.
This run with the algorithm performed marginally better which indicates that improving the
algorithm may lead to better results. The complete results are detailed in Tables 3, 4 and 5.

The results for hard-hard and hard-soft evaluation are not very promising which indicates
other training methods should be employed to get better results. Combined training rather than
parallel training of Spanish and English texts could prove helpful (which we tried for runs of
Task 2). On the other hand, the runs gave very promising results on the soft score metric which
proves that such an attempt to employ various models to create soft score can be developed
further to get better results.



Table 5
Results for all runs submitted for Task 1 in the EN category

Soft vs Soft
Run Rank ICM-Soft ICM-Soft Norm Cross Entropy

SMS_1 27 0.253 0.5871 1.7046
SMS_2 28 0.253 0.5871 1.7046

Hard vs Hard
Run Rank ICM-Hard ICM-Hard Norm F1

SMS_3 49 0.3015 0.5875 0.6658
SMS_1 51 0.2833 0.5764 0.665
SMS_2 52 0.2833 0.5764 0.665

Hard vs Soft
Run Rank ICM-Soft ICM-Soft Norm

SMS_3 51 -0.641 0.4581
SMS_1 52 -0.6411 0.4581
SMS_2 53 -0.6411 0.4581

5. Task 2: Source Intention

The ‘Source Intention’ task involved identifying whether a tweet was sexist or not and subse-
quently classifying the sexist tweets based on their source intention into Direct, Reported or
Judgemental categories.

5.1. Deep learning models

We submitted a total of 3 runs for this task each of whose details are given below. The final
models for runs 1 and 2 were trained on both training and validation data whereas the model
for run 3 was trained only on the training data. The exact details of the models are given below.

Model for Run 1

For this run, we used 200-dimensional GloVe [11] embeddings for English and 300-dimensional
fastText [12] embeddings for Spanish. For labelling, we selected the label which was in clear
majority with respect to all the annotations. The model consists of two parallel paths. One of
the paths starts with a dense [8] layer (size 200 for English and 300 for Spanish) which squeezes
the input tensors into 50-dimensions. This is followed by a dropout [15] of 20%, followed by
a 50-unit LSTM [10] layer with a dropout of 25%. This is finally passed to an attention layer
whose scores are fed to the other path. The other parallel path is a replica of this path but
without the final attention [13] layer. The output from the LSTM layer is concatenated with the
attention scores from the other path. This is followed by pooling [16] and a dense layer of 4
units with softmax [17] activation for final classification. The model architecture is shown in
Figure 2.



Figure 2: Parallel LSTM [10] + Attention [13] architecture for Task 2: Source Intention, via TensorFlow
Keras [14, 6] plot_model.

Model for Run 2

For this run, 200-dimensional fastText [12] embeddings (reduced from 300-dimensions) were
used for both Spanish and English texts and a single model was trained on both languages. The
labelling procedure is the same as in Run 1. The model architecture is also identical to that of
Run 1, with the slight difference that 80-unit LSTM [10] networks were used instead of 50-units.

Model for Run 3

This run is perfectly identical to Run 2 with only a slight difference in training methodology
where the validation data set was not used to train the final model unlike the previous runs.

5.2. Results

Run 1 received a rank of 19/32 on hard-hard evaluation and 10/33 on hard-soft evaluation on
ALL text instances. It also received a rank of 2/32 on hard-soft evaluation on ES text instances.
The significantly better hard-soft evaluation performance indicates that such an model performs



Table 6
Results for all runs submitted for Task 2 in the ALL INSTANCES category

Hard vs Hard
Run Rank ICM-Hard ICM-Hard Norm F1

SMS_1 19 -0.0892 0.6533 0.3654
SMS_3 20 -0.1226 0.6461 0.3504
SMS_2 23 -0.2571 0.6175 0.3246

Hard vs Soft
Run Rank ICM-Soft ICM-Soft Norm

SMS_2 6 -5.627 0.6978
SMS_3 8 -5.9579 0.6894
SMS_1 10 -6.0774 0.6863

Table 7
Results for all runs submitted for Task 2 in the ES category

Hard vs Hard
Run Rank ICM-Hard ICM-Hard Norm F1

SMS_1 20 -0.1314 0.6185 0.328
SMS_3 21 -0.1314 0.6185 0.328
SMS_2 23 -0.2641 0.5892 0.3295

Hard vs Soft
Run Rank ICM-Soft ICM-Soft Norm

SMS_1 2 -4.693 0.6871
SMS_3 3 -4.693 0.6871
SMS_2 8 -5.3008 0.6697

Table 8
Results for all runs submitted for Task 2 in the EN category

Hard vs Hard
Run Rank ICM-Hard ICM-Hard Norm F1

SMS_1 18 -0.0554 0.6949 0.3828
SMS_3 20 -0.1261 0.6805 0.3592
SMS_2 25 -0.2786 0.6495 0.3142

Hard vs Soft
Run Rank ICM-Soft ICM-Soft Norm

SMS_2 8 -6.3311 0.7271
SMS_3 16 -8.2171 0.6857
SMS_1 19 -8.4236 0.6812

most like human annotators and using such an architecture might be useful in future tasks.
Run 2 received a rank of 23/32 on hard-hard evaluation and 6/33 on hard-soft evaluation

on ALL text instances. It also received ranks of 8/32 and 8/33 on hard-soft evaluation on ES
and EN text instances respectively. The results of this run appear to be the most consistent
across languages and indicates that training on both languages together might result in better
performance on texts containing both of the languages.



Run 3 received similar ranks to Run 2 on ALL text instances but a rank of 3/32 on hard-soft
evaluation on ES text instances (compared to 8/32) and 16/33 on hard-soft evaluation on EN
text instances (compared to 8/33). Therefore, it seems to perform slightly better at Spanish and
worse in English. The complete results are detailed in Tables 6, 7 and 8.

All the runs were performed on the same general architecture with variation in the training
procedure. The results for hard-hard evaluation are not promising indicating other architectures
might be more suitable for it. However, the results of hard-soft evaluation indicates that such an
architecture might be more suitable for mimicking the human annotating process (as it appears
to predict correctly for higher probabilities) and may be explored and developed further for
future tasks.

6. Conclusions and Future Work

In this paper, we have detailed the work done by the SMS team in Task 1: Sexism identification
and Task 2: Source Intention of the EXIST Lab at CLEF 2023 [1, 2]. The aim of our experiments
was to test how LSTM + Attention models give results by incorporating different training
methods of parallel or combined training, different word embeddings, different architectures
etc.

We have come to the conclusion that combined processing of multilingual training data
gives the best overall performance due to the results of run 2 of Task 2 which scored an overall
ICM-Soft Norm of 0.6978, the highest among the three runs and performed more consistently
across English and Spanish (with a rank of 8 in both) as compared to the other two runs.

In the future, we plan to continue to develop and assess our ambiguity resolution algorithms
to improve the training phase of the system by removing the ambiguity and getting more
features to train. The algorithms can be tested on larger datasets with a similar structure of
being labelled by individual annotators. As we have utilized a combination of age and gender
to group and compute scores for ambiguity resolution, a more complex combination of metrics
could be used in datasets where more information regarding the annotators is available which
might yield better results. We also plan to do a detailed analysis on the mimicking of human
performance using various machine learning models as represented in this paper on other
similar tasks and refine the process.
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