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Abstract
We develop a maximum likelihood estimation approach for intelligent disease progression prediction.
We use patients’ covariates and employ a multi-layer perceptron to approximate the optimal distribution
parameters for a given parametric family of probability distributions. As far as we know, this is the first
time such a method has been applied to real multiple sclerosis data. Our numerical results indicate that
the method can achieve AUROC scores exceeding 0.8.
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1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease with a genetic predisposition which,
in combination with environmental factors, leads to inflammatory demyelination of the white
matter of the central nervous system (CNS). The majority of patients with multiple sclerosis
begin with a relapsing-remitting (RR) course. Over time, however, most progress to secondary
progressive MS (SPMS), which is characterized by a gradual and progressive worsening of
the disease. MS is the second most common cause of disability in young adults. Identifying
prognostic factors for disease progression early in its course is critical for evaluating possible
therapeutic interventions.

This paper presents a maximum likelihood estimation approach for predicting the progression
of multiple sclerosis. The work is part of the iDPP challenge at CLEF 2023. The iDPP challenge
[1] includes (but is not limited to) the following two tasks:

• Task 1: Predicting the risk of disease worsening - predicting the risk of worsening and
ranking subjects based on the risk scores. More specifically, the risk of worsening should
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be a value between 0 and 1 that reflects how early a patient experiences the worsening
event.

• Task 2: Predicting the cumulative probability of worsening - assigning cumulative proba-
bility of worsening at different time windows, i.e. between years 0 and 2, 0 and 4, 0 and 6,
0 and 8, 0 and 10.

In addition, for each task, we consider two different subtasks based on two alternative definitions
of worsening. Following clinical standards, worsening is defined on the basis of the Expanded
Disability Status Scale (EDSS):

• Subtask A: the patient crosses the EDSS ≥ 3 threshold at least twice within a one-year
interval.

• Subtask B: the first recorded EDSS value available in clinical records is defined as the
baseline, and worsening occurs according to the following rules:

– if the baseline is EDSS < 1, then worsening occurs when an EDSS increase of 1.5
points is first observed.

– if the baseline is 1 ≤ EDSS < 5.5, then worsening occurs when an EDSS increase
of 1 point is first observed.

– if the baseline is EDSS ≥ 5.5, then worsening occurs when an EDSS increase of 0.5
points is first observed.

Finally, for each subtask, we are given a separate dataset consisting of general patient informa-
tion, as well as a series of observations over 2.5 years.

The paper is organized as follows: Section 2 introduces related works; Section 3 describes
our approach; Section 4 explains our experimental setup; Section 5 discusses our main findings;
finally, Section 6 draws some conclusions and outlooks for future work.

2. Related Work

Applications in various domains involve time-to-event modelling problems in the presence of
censoring. Some examples include healthcare [2, 3], reliability [4, 5], finance [6], and other
fields.

The Cox proportional hazards model [7] is commonly used in survival analysis. However,
it employs a log-linear function to predict the outcome variable from the covariates. In this
sense, it may not be suitable to properly predict a multiple sclerosis patient outcome without
extensive feature engineering.

Recently, deep learning has been applied to extend the Cox proportional hazard model. More
specifically, the DeepSurv model [8] employs a multi-layered perceptron to replace the log-linear
function of the Cox proportional hazards model. Similar to the Cox proportional hazard model,
DeepSurv assumes a constant baseline hazard.

In addition, DeepHit [9] has proposed discretizing the space of event times, and using a deep
neural network to learn the distribution of survival times. Further, DeepHit does not make any
assumptions about the underlying stochastic process, and has the ability to handle competing
risks.



Random survival forests [10] is a non-parametric method that constitutes an extension of
the random forest method approach [11]. More specifically, random survival forests learn an
ensemble of trees for the analysis of right-censored survival data.

The idea of using a deep learning framework to estimate probability distribution parameters
for maximum likelihood estimation for right-censored data was initially introduced by Nagpal
et al. [12] as a part of their deep survival machines (DSM) framework. DSM employs a mixture
of individual parametric survival distributions to fit a set of right-censored survival data. The
work was further extended to recurrent deep survival machines (RDSM) by Nagpal et al. [13]
with the introduction of recurrent neural networks in place of the learnt representations. Unlike
DSM and RDSM, we do not use a mixture of parametric distributions but rather focus on fitting
the parameters of a single parametric probability distribution.

3. Methodology

In this section we describe the methodology we have adopted.

3.1. Data

We assume that we are given right-censored data which consists of a set of 𝐼 triples {(x𝑖, 𝑡𝑖, 𝛿𝑖)}𝐼𝑖=1.
For each 𝑖 = 1, . . . , 𝐼 , the real vector x𝑖 ∈ R𝑑 denotes the features of the 𝑖−th entry. Further,
𝑡𝑖 is either the censoring time, or the time an event occurred. In addition, 𝛿𝑖 is an indicator
variable taking a value of 0 if 𝑡𝑖 is the censoring time, and a value of 1, if 𝑡𝑖 is the time at which
an event took place. It is assumed that for each 𝑖 = 1, . . . , 𝐼 either censoring occurs, or we
observe the event but not both.

3.2. Maximum Likelihood Formulation

The method of maximum likelihood can be adapted to various applied problems. In this section,
we develop a maximum likelihood estimation approach for intelligent disease progression pre-
diction. Given a set of right-censored patient data {(x𝑖, 𝑡𝑖, 𝛿𝑖)}𝐼𝑖=1, we can assume independence
among patients, and thus define the likelihood function of the observed data as follows:

𝐿(𝜃) =
∏︁

𝑖,𝛿𝑖=1

𝑓(𝑡𝑖|𝜃𝑖)
∏︁

𝑖,𝛿𝑖=0

(1− 𝐹 (𝑡𝑖|𝜃𝑖)) (1)

where

• 𝑓(𝑡𝑖|𝜃𝑖) is the probability density function evaluated at time 𝑡𝑖 for distribution parameters
𝜃𝑖.

• 𝐹 (𝑡𝑖|𝜃𝑖) is the cumulative probability density function evaluated at time 𝑡𝑖 for distribution
parameters 𝜃𝑖.

Please note that we do not assume that the patient data is identically distributed. On the
contrary, we consider different distribution parameters 𝜃𝑖 for each patient 𝑖 = 1, . . . , 𝐼 . Further,
please note that if we knew the distribution functions 𝑓 and 𝐹 , and if we could estimate the



distribution parameters 𝜃𝑖 for a previously unseen patient 𝑖, then we would also be able to
estimate the patient’s probability of worsening over a given time period. In order to achieve
that, we would like to use a parametric family of distributions in the above formulation (1).
Hence, we would need to choose a probability distribution with support over the positive real
line. In this work, we focus on the Weibull distribution [14]. It is a continuous probability
distribution that has closed form expressions for both its probability density function 𝑓(𝑡), and
cumulative density function 𝐹 (𝑡):

𝑓(𝑡|𝛼, 𝛽) :=

{︃
0, 𝑡 < 0
𝛽
𝛼

(︀
𝑡
𝛼

)︀𝛽−1
exp

(︁
−
(︀
𝑡
𝛼

)︀𝛽)︁
, 𝑡 ≥ 0

𝐹 (𝑡|𝛼, 𝛽) :=

{︃
0, 𝑡 < 0

1− exp
(︁
−
(︀
𝑡
𝛼

)︀𝛽)︁
, 𝑡 ≥ 0

(2)

Thus, we can seamlessly apply automatic differentiation in the gradient-based search for the
optimal distribution parameters. This allows us to use a feed-forward neural network with fully
connected layers as the function mapping feature inputs x𝑖 to estimated distribution parameters
𝜃𝑖 = (𝛼𝑖, 𝛽𝑖):

Ψ(A,b,x) := 𝜎(A𝑁𝜎(A𝑁−1𝜎(. . .A3𝜎(A2𝜎(A1x+ b1) + b2) + b3 . . . ) + b𝑁−1) + b𝑁 )
(3)

where A and b are collection of respectively real matrices A𝑛, 𝑛 = 1, . . . , 𝑁 , and real vectors
b𝑛, 𝑛 = 1, . . . , 𝑁 , and 𝜎 is an activation function such as the rectified linear unit. Thus, we
can write the problem of maximizing the likelihood function as follows:

max
A,b

∏︁
𝑖,𝛿𝑖=1

𝑓(𝑡𝑖|𝛼𝑖, 𝛽𝑖)
∏︁

𝑖,𝛿𝑖=0

(1− 𝐹 (𝑡𝑖|𝛼𝑖, 𝛽𝑖))

s.t.

(𝛼𝑖, 𝛽𝑖) = Ψ(A,b,x𝑖), 𝑖 = 1, . . . , 𝐼

𝛼𝑖 > 0, 𝑖 = 1, . . . , 𝐼

𝛽𝑖 > 0, 𝑖 = 1, . . . , 𝐼

where

𝑓(𝑡|𝛼, 𝛽) :=

{︃
0, 𝑡 < 0
𝛽
𝛼

(︀
𝑡
𝛼

)︀𝛽−1
exp

(︁
−
(︀
𝑡
𝛼

)︀𝛽)︁
, 𝑡 ≥ 0

𝐹 (𝑡|𝛼, 𝛽) :=

{︃
0, 𝑡 < 0

1− exp
(︁
−
(︀
𝑡
𝛼

)︀𝛽)︁
, 𝑡 ≥ 0

Ψ(A,b,x) := 𝜎(A𝑛𝜎(A𝑛−1𝜎(. . .A3𝜎(A2𝜎(A1x+ b1) + b2) + b3 . . . ) + b𝑛−1) + b𝑛)

(4)

In order to improve computational stability and avoid numerical issues, we choose to in-
stead maximize the log-likelihood function. As the logarithm function is monotonic, we can



equivalently write problem (4) as follows:

max
A,b

∑︁
𝑖,𝛿𝑖=1

log(𝑓(𝑡𝑖|𝛼𝑖, 𝛽𝑖)) +
∑︁
𝑖,𝛿𝑖=0

log(1− 𝐹 (𝑡𝑖|𝛼𝑖, 𝛽𝑖))

s.t.

(𝛼𝑖, 𝛽𝑖) = Ψ(A,b,x𝑖), 𝑖 = 1, . . . , 𝐼

𝛼𝑖 > 0, 𝑖 = 1, . . . , 𝐼

𝛽𝑖 > 0, 𝑖 = 1, . . . , 𝐼

where

𝑓(𝑡|𝛼, 𝛽) :=

{︃
0, 𝑡 < 0
𝛽
𝛼

(︀
𝑡
𝛼

)︀𝛽−1
exp

(︁
−
(︀
𝑡
𝛼

)︀𝛽)︁
, 𝑡 ≥ 0

𝐹 (𝑡|𝛼, 𝛽) :=

{︃
0, 𝑡 < 0

1− exp
(︁
−
(︀
𝑡
𝛼

)︀𝛽)︁
, 𝑡 ≥ 0

Ψ(A,b,x) := 𝜎(A𝑛𝜎(A𝑛−1𝜎(. . .A3𝜎(A2𝜎(A1x+ b1) + b2) + b3 . . . ) + b𝑛−1) + b𝑛)

(5)

Please note that even in the case when the activation function 𝜎 is the identity map, the
proposed formulation is neither convex, nor concave. Thus, in general, we cannot find a global
optimal solution to the proposed model using gradient-type methods. However, sub-optimal
solutions of reasonable quality can be found, as indicated in the next sections.

4. Experimental Setup

In this section, we describe our experimental setup.

4.1. Implementation

The training pipeline is implemented in the julia programming language [15]. Further, we use
the Knet library [16] for our neural network implementation. Our code is available on bitbucket.
We run training and testing steps on a Core i7 CPU with 16 GB of RAM. What is more, we
use a validation set to determine the values of our hyper-parameters. Moreover, we use the
Adam optimizer [17] with a learning rate of 0.00001. While the value may seem somewhat
small, we found it to work well in practice. In addition, we do not split the data into batches but
rather use the entire training dataset for each step of Adam. Furthermore, we apply dropout
regularization [18, 19] to the input layer with a dropout rate chosen among 0.01 and 0.2. We
choose the number of hidden units in the neural network among 100 and 200. Finally, the
number of training epochs (which also equals the number of training steps of Adam) is chosen
among 5000 and 10000.



4.2. Datasets

We are given two different datasets, one for subtask A, and one for subtask B. In this way, task
1A and task 2A both use the first dataset, while task 1B and task 2B both use the second dataset.
Each dataset contains 2.5 years of patient visits. In addition, the occurrence of the worsening
event, as well as the time of its occurrence are also given.

The training and testing data of both datasets (subtask A and subtask B) is partitioned into
static patient data and dynamic patient data. Furthermore, the dynamic patient data includes
information on relapses, EDSS scores, evoked potentials, MRI results and multiple sclerosis
course.

The training dataset for subtask A includes the following: 441 patients, 481 relapses, 2,661
EDSS scores, 1,211 evoked potentials, 960 MRIs, and 310 multiple sclerosis courses. The training
dataset for subtask B includes the following: 511 patients, 553 relapses, 3,069 EDSS scores, 1,522
evoked potentials, 966 MRIs, and 325 multiple sclerosis courses. In addition, the testing dataset
of subtask A includes the following: 111 patients, 95 relapses, 675 EDSS scores, 278 evoked
potentials, 236 MRIs, and 68 multiple sclerosis courses. And the testing dataset of subtask
B includes the following: 129 patients, 125 relapses, 813 EDSS scores, 299 evoked potentials,
266 MRIs, and 75 multiple sclerosis courses. For a detailed description of the datasets and the
evaluation measures, please see the overview papers by the CLEF challenge organizers [20, 21].

5. Results

The challenge objectives consist of the following:

• Task 1 - predicting the risk of disease worsening
• Task 2 - predicting the cumulative probability of worsening

In order to handle both tasks, we use the available training data to build a model and estimate
a maximum likelihood distribution for each patient given the patient’s covariates (features).
Ideally, for task 1 we would have preferred to use coherent risk measures [22, 23] to estimate
the risk of disease worsening from the patients’ distributions. However, in order to meet the
requirement that risk values are in the range of [0, 1] we decide to use a cumulative probability
estimate instead of coherent risk measures. The performance of the submitted models is reported
in Figures 1-11. Please note that the name of each model indicates the model’s parameters’
values. For instance, the first model in Figure 1 is named “T1b.0.2.1.0e-5.5000.200”, indicating
that it is a Task 1B model with the following parameters:

• A dropout rate of 0.2 used in the input layer.
• A learning rate of 1.0e-5 used by the Adam optimizer.
• The model is trained for 5000 epochs, i.e. the Adam optimizer performs 5000 steps.
• The number of hidden units is set to 200.

We can see that the highest Harrell’s concordance index values fall in the interval [0.6, 0.65].
Ideally, we would like to improve those results in the future. One way we could do that is by
incorporating event ordering into the model training procedure. Another approach we could



try is scaling down classical coherent risk measures to fit into the [0, 1] interval for the given
patient data. In Figures 2-6 we can see that the highest AUROC exceeds 0.8. In the future, we
can further improve those results by better model optimization. In addition, in Figures 7-11 we
can find the ratio of observed to expected events for all submitted models.

The model with the highest AUROC score T2a.0.01.1.0e-5.10000.100.adj has a couple of
aspects that distinguish it from the rest of the models. First, for each patient dataframe (static
patient data, relapses, EDSS scores, evoked potentials, MRI results and multiple sclerosis course)
it explicitly takes into account the length of the dataframe. And second, it normalizes the
age_at_onset variable using division by fifty. This suggests that current results can be further
improved by additional data pre-processing.

Finally, in Table 1 we present illustrations of probability density functions for three randomly
chosen patients from the test set for the 2a.0.01.1.0e-5.10000.100.adj model. Please note that the
risk and the probabilities of worsening for each patient depend entirely on the computed values
of the distribution parameters 𝛼𝑖 and 𝛽𝑖.

6. Conclusion and Future Work

The development of predictive models of the disease is a step forward towards better clinical
assessment and an individualized therapeutic approach for multiple sclerosis patients.

In this paper we have developed a maximum likelihood estimation approach for intelligent
disease progression prediction. To the best of our knowledge, this is the first instance of such
a method being applied to real multiple sclerosis data. Our numerical results indicate that
the method can achieve AUROC scores exceeding 0.8. In the future we can explore several
directions of further research. First, we can attempt to incorporate event ordering into the
training procedure in order to improve Harrell’s concordance index scores. Further, we can
attempt to apply (scaled-down) coherent risk measures in order to obtain risk estimates in the
[0, 1] interval. Finally, we may also look into improving the quality of the numerical solution
with the use of second-order optimization methods such as K-FAC [24] or L-BFGS [25].
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A. Numerical Results

𝛼𝑖 𝛽𝑖 Probability Density Function

12.4033 1.58571 2 4 6 8 10 𝑡𝑖

𝑓
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𝑖|𝛼
𝑖,𝛽
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𝑓
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𝑓
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𝑖|𝛼
𝑖,𝛽

𝑖)

Table 1
Probability density functions for three randomly selected patients from the testing set for the
T2a.0.01.1.0e-5.10000.100.adj model.
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Figure 1: Task 1 - Harrell’s Concordance Index computed for all submitted runs. The bars in the plot
show the 95% confidence interval.



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T2a.0.01.1.0e-5.10000.100.adj

T2a.0.2.1.0e-5.10000.100

T2a.0.2.1.0e-5.10000.200

T2a.0.2.1.0e-5.5000.100

T2a.0.2.1.0e-5.5000.200

T2b.0.2.1.0e-5.10000.100

T2b.0.2.1.0e-5.10000.200

T2b.0.2.1.0e-5.5000.100

T2b.0.2.1.0e-5.5000.200

Figure 2: Task 2 - AUROC computed for all submitted runs with a 2-year time horizon. The bars in the
plot show the 95% confidence interval.



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T2a.0.01.1.0e-5.10000.100.adj

T2a.0.2.1.0e-5.10000.100

T2a.0.2.1.0e-5.10000.200

T2a.0.2.1.0e-5.5000.100

T2a.0.2.1.0e-5.5000.200

T2b.0.2.1.0e-5.10000.100

T2b.0.2.1.0e-5.10000.200

T2b.0.2.1.0e-5.5000.100

T2b.0.2.1.0e-5.5000.200

Figure 3: Task 2 - AUROC computed for all submitted runs with a 4-year time horizon. The bars in the
plot show the 95% confidence interval.
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Figure 4: Task 2 - AUROC computed for all submitted runs with a 6-year time horizon. The bars in the
plot show the 95% confidence interval.
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Figure 5: Task 2 - AUROC computed for all submitted runs with a 8-year time horizon. The bars in the
plot show the 95% confidence interval.
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Figure 6: Task 2 - AUROC computed for all submitted runs with a 10-year time horizon. The bars in
the plot show the 95% confidence interval.
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Figure 7: Task 2 - the ratio of observed to expected events computed for all submitted runs with a
2-year time horizon. The bars in the plot show the 95% confidence interval.
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Figure 8: Task 2 - the ratio of observed to expected events computed for all submitted runs with a
4-year time horizon. The bars in the plot show the 95% confidence interval.
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Figure 9: Task 2 - the ratio of observed to expected events computed for all submitted runs with a
6-year time horizon. The bars in the plot show the 95% confidence interval.
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Figure 10: Task 2 - the ratio of observed to expected events computed for all submitted runs with a
8-year time horizon. The bars in the plot show the 95% confidence interval.
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Figure 11: Task 2 - the ratio of observed to expected events computed for all submitted runs with a
10-year time horizon. The bars in the plot show the 95% confidence interval.


	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data
	3.2 Maximum Likelihood Formulation

	4 Experimental Setup
	4.1 Implementation
	4.2 Datasets

	5 Results
	6 Conclusion and Future Work
	A Numerical Results

