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Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by rapid motor neuron degeneration and subsequent
loss of motor function, typically leading to death by respiratory failure. As evidence of environmental
pollutants playing a role on ALS incidence surfaces, iDPP � CLEF 2023 challenge sought to evaluate
the predictive power of these pollutants on prognosis. As such, we have trained four survival prediction
models to rank patients based on the risk of reaching end-stage events: (a) initiation of non-invasive
ventilation (NIV), (b) initiation of percutaneous endoscopic gastrostomy (PEG) and (c) death. Baseline
models were trained with clinical and demographic data, and compared to models considering pollutant
exposure using (1) a 6 month window and (2) all available records. The temporal aspect of environmental
and clinical data was captured through feature statistics. Using Harrell’s Concordance Index (C-Index)
and Area Under the Receiver Operating Characteristic Curve (AUROC) as performance metrics, it was
concluded that most of the developed models had some predictive power. However, the inclusion of
environmental variables led to performance degradation when compared to the baseline model. Further
work on capturing the temporality of environmental exposure is therefore required to understand the
role of pollutants on ALS prognosis.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that affects the neuron cells
responsible for controlling muscle movement, causing a progressive loss of motor functions,
such as walking, speaking, and eating [1, 2]. Eventually, breathing difficulties arise, which are
the leading cause of death in ALS patients [3].

Since there is no known cure for ALS, treatments focus on retarding the natural progression
of the disease and improving the patient’s quality of life [4]. This is a challenge since ALS
is a complex and heterogeneous disease, in aspects such as affected areas (both at onset and
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throughout the disease course), with significant variability when evaluating disease progression
and prognosis among individuals [5].

Machine learning techniques have emerged as powerful tools in understanding disease
mechanisms and guiding clinical decision-making [6]. These methods were applied to identify
biomarkers in both diagnosis and prognosis [6], prediction of survival and end-stage events
[7], as well as the discovery of patient groups with similar disease progression courses [8] or
treatment response [9].

The iDPP � CLEF 2023 challenge1 uses highly curated data from real MS and ALS patients,
followed at clinical institutions in Lisbon, Portugal, Turin and Pavia, Italy. The focus of this
challenge is the prognostic prediction in both MS and ALS.

The role of environmental pollutants in ALS has gained attention due to their increasing
association and the observation of higher ALS rates, representing a potential disease risk factor
[10, 11, 12]. Thus, the objective of task 3 of the challenge is to evaluate the impact of pollutants
on the risk of impairment in ALS [13]. This task is based on task 1 of iDPP � CLEF 2022
challenge2, with the addition of the environmental data [14, 2].

In our contribution to iDPP, we evaluated the impact of including environmental pollutants
in predicting end-stage events: initiation of non-invasive ventilation (NIV), percutaneous
endoscopic gastrostomy (PEG), and death. We considered two possible time windows (6 months
and all data) to analyze the temporal environmental data and compute statistical features for
each pollutant. Four predictive models (Cox Proportional-Hazards, Random Survival Forest,
Survival SVM, and Gradient Boosting) were evaluated for each task.

The paper is organized as follows: Section 2 introduces related works; Section 3 describes our
approach and our experimental setup; Section 4 discusses our main findings; finally, Section 5
draws some conclusions and outlooks for future work.

2. Related Work

Amyotrophic lateral sclerosis does not manifest itself in a straightforward manner, as several
clinical presentations regarding onset and progression can be observed. Additionally, ALS
patients are typically faced with a short life expectancy [15]. Thus, prognosis prediction and
identification of predictive attributes are fundamental areas of research in ALS.

Survival analysis techniques are some of the most widely used for these tasks. They are
typically performed retrospectively, and by studying the impact of clinical, biological and
lifestyle factors on survival times. A systematic survey carried by Chió et al. [15] identified
several studies reporting that survival times were affected by factors such as age, site of onset
and forced vital capacity. Other aspects have since received additional focus, like BMI [16] and
cholesterol levels [17], as well as cognitive and behavioural impairment [18].

Studies on the effect of therapeutics like non-invasive ventilation (NIV) and percutaneous
endoscopic gastrostomy (PEG) on survival were sparse at the time Chió et al. [15] conducted
their review but typically indicated a positive effect. More recently, Ackrivo et al. [19] applied
a multivariable Cox proportional hazards model to evaluate the role of NIV on survival. It

1http://brainteaser.dei.unipd.it/challenges/idpp2023/
2http://brainteaser.dei.unipd.it/challenges/idpp2022/
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was determined that NIV usage was associated with a 26% reduction in death rate, and that
patients with longer daily usage (> 4h) had improved survival. Spittel et al. [20] have conducted
a survival study in a German cohort, in which Kaplan-Meier estimates of survival were higher in
patients ventilated either non-invasively or through tracheostomy (TIV), with latter providing
greater effect. Through similar methods, Spataro et al. [21] identified higher survival rates in
dysphagic ALS patients submitted to PEG, when compared to those not receiving the treatment.
Given the beneficial effect of these therapies, time-to-event prediction may also be applied to
them, providing insight not only on prognosis but also on the best time for administration.

Research on building and evaluating predictive survival and time-to-event models, however,
is still underdeveloped in comparison to survival analysis of single cohorts. Ackrivo et al. [7] de-
veloped a multivariable logistic regression model for the prediction of respiratory insufficiency
or death using features collected at the first appointment. It was externally validated with
promising results. Pfohl et al. [22] have constructed interactive survival regression and classifi-
cation models, with variable thresholds, discovering that predictive factors of ALS survival are
time-fluctuating. Thus, the introduction of temporal data to survival prediction is valuable, but
poses challenges, such as capturing in a representative manner all the possible disease courses
ALS may take. This was addressed by Soares et al. [23, 24] and Martins et al. [25], which built
models to predict the need for NIV by encoding temporal dependencies through triclustering
and sequential pattern mining, respectively. Recently triclustering methods also proved to be
effective in understanding prognostics of other relevant critical endpoints [26].

Discussion on the influence of environmental factors in ALS has been gaining attention, with
several studies being dedicated to the relation between pollution levels and ALS prevalence.
Saucier et al. [11] conducted a series of systematic reviews, indicating a higher risk of ALS in
association with several factors. Air pollutants, in particular, have shown evidence of being
associated to higher risk of developing ALS [27], and to increased emergency department visits
by ALS patients [28]. The impact of environmental variables on ALS prognosis is, however,
still an open topic. Goutman et al. have studied the influence on survival of persistent organic
pollutants [29] and self-reported exposure based on occupation [30], but environmental-based
ALS survival prediction models are, to our knowledge, still in early development.

Thus, we propose to develop time-to-event models for the prediction of death, NIV and PEG,
taking into account longitudinal records for both clinical and environmental exposure data.

3. Methodology

3.1. Data Preprocessing

The data made available with this challenge contains information on ALS patients and comprises
three components: static (data collected at the patient’s first visit to the center), clinical assess-
ments (from patient follow-up), and environmental records (concentration of some pollutants
in the air). Data was preprocessed to obtain a dataset with the shape needed to be the input of
our method. Thus, we selected a set of the most relevant features from the literature [31] to
be used in our models. We computed new features from the temporal and environmental ones
and used them together with the static as model input. The selected and computed features are
depicted in Table 1. We considered three datasets, one for each subtask according to the event



Table 1
Features

Component Feature Type Computed?

Static Sex Binary
Ethnicity Categorical
Age at Onset Integer
Occupation Categorical
Disease Onset Categorical
UMN vs LMN Categorical

Visits (Temporal) ALSFRS-R (total score):
Slope Float ✓
Median value of assessments ✓
Std value of assessments ✓

Bulbar score:
Slope Float ✓
Median value of assessments ✓
Std value of assessments ✓

Motor score:
Slope Float ✓
Median value of assessments ✓
Std value of assessments ✓

Respiratory score:
Slope Float ✓
Median value of assessments ✓
Std value of assessments ✓

prediction [2].
Regarding the computed features, we focus on the temporal dynamics of the ALSFRS-R scale,

looking for the slope, median and standard deviation of the patient’s records for the total score
and each subscore: bulbar, motor, and respiratory. When incorporating environmental data,
we employ a similar strategy. For each pollutant, we filter the records of each pollutant to be
within an appropriate time window. We consider two-time windows: 6 months, as described in
the iDPP challenge [32, 33], and all the available records (no filtering). We then calculate the
following features, for each pollutant: maximum, minimum, median, and standard deviation.
These features, which describe the statistics of the time series of each pollutant, are then given
to the model, in addition to the clinical data.

3.2. Modeling

In the previous section, Section 3.1, we described the pre-processing done to the data by selecting
the most important static features and computing features to handle the temporal section of the
data.

Further pre-processing is necessary at the event level to proceed with the modeling. There
are three sub-tasks within Task 3: A, B, and C. They regard ranking subjects in terms of the risk
of early occurrence of different endpoints:



A. Non-Invasive Ventilation (NIV) or Death, whichever occurs first;
B. Percutaneous Endoscopic Gastrostomy (PEG) or Death, whichever occurs first;
C. Death

Task 3A and 3B have two possible events requiring multi-event survival analysis. However,
because for any patient, the event considered is whichever occurs first, the occurrence is
independent. This allows us to formulate the problem as a single-event survival analysis, where
the patient will have one of the events happen or none. We know the risk that either of them
will happen, but we do not effectively know which event will happen.

We used sksurv [34] Python library to learn a model for each sub-task, experimenting with
four models: Cox Proportional-Hazards, Random Survival Forest, Survival SVM, and Gradient
Boosting.

We considered a standard machine learning pipeline: train/test split (90% train, 10% test), grid
search hyperparameter optimization with Repeated Stratified K-Fold Cross Validation using the
train split, and assessing the quality of the models using the test split, which is the same for
each model.

Due to time constraints, we opted for a grid search hyperparameter search, with a relatively
narrow search space. The search space is presented in Table 2.

Table 2
Hyperparameter space for each model. np. geomspace is a method that generates num numbers
between the lower and upper bound, geometrically distributed.

Model Hyperparameter Search Values
CoxPHSurvivalAnalysis alpha np. geomspace(0.1, 3,num = 50)

RandomSurvivalForest n_estimators [50, 100, 150, 200, . . . , 1000]

FastSurvivalSVM(max_iter=100000) alpha np. geomspace(0.001, 5,num = 30)

GradientBoostingSurvivalAnalysis
n_estimators [50, 100, 250, 500, 750, 1000]
learning_rate np. geomspace(0.001, 5,num = 10)
max_depth [1, 3, 5, 10]

We optimize the models using Harrell’s Concordance Index metric [35] (c-index), with the
evaluation on the test set being the deciding factor on the models to submit to the challenge.
The optimization was done for each sub-task and for three different setups in regards to
environmental data: no environmental data, environmental data with a time window of six
months, and all the environmental data available.

We conducted experiments using the datasets made available by the organization for Task
3 [32, 33]. All the experiments were run on a Desktop Computer with an AMD Ryzen 9 7950X
16-Core with 64GB of RAM and Ubuntu 22.04.2. The code was run using Python 3.10.11.



4. Results

In this section, we provide the results obtained for subtask A (Section 4.1), B (Section 4.2) and
C (Section 4.3), along with a discussion. The particular focus of the discussion, and of this
task overall, is to understand whether the inclusion of environmental data in the model inputs
provides a richer context to improve the prognostic capabilities of the models.

Two evaluation metrics are presented to evaluate the models: Harrell’s Concordance Index
(C-Index) [35] and Area Under the Receiver Operating Characteristic Curve (AUROC). Both
assess the predictive power but in different ways. C-Index measures the predictive power of a
model in terms of its ability to rank and predict outcomes of groups of individuals, measured
from 0 (worst) to 1 (best).

AUROC, on the other hand, measures a model’s predictive power in terms of a binary
classification problem by plotting the true positive rate against the false positive rate, considering
different classification thresholds. The area under this curve yields a value between 0 (worst)
and 1 (best). In the context of the challenge, the AUROC regards predicting event times at each
time interval (12, 18, 24, 30, and 36 months).

Table 3
Hyperparameter values for each model used in subtask A (Value A column), subtask B (Value B column)
and subtask C (Value C column), found through hyperparameter optimization. *: indicates a floating
point with additional decimal places.

Model Hyperparameter Environmental Data Value A Value B Value C

CoxPHSurvivalAnalysis alpha
None 1.606* 2.798* 1.498*

6 months 3.0 3.0 3.0
All 3.0 3.0 3.0

RandomSurvivalForest n_estimators
None 350 1000 1000

6 months 450 200 800
All 50 1000 800

FastSurvivalSVM(max_iter=3500) alpha
None 0.001* 0.081* 0.001*

6 months 0.001 0.001 0.001
All 0.001 0.001 0.001

GradientBoostingSurvivalAnalysis

n_estimators
None 500 750 750

6 months 500 500 1000
All 500 500 750

learning_rate
None 0.017* 0.017* 0.006*

6 months 0.002* 0.006* 0.002*
All 0.017* 0.006* 0.017*

max_depth
None 1 1 3

6 months 3 1 1
All 1 1 1

4.1. Subtask A

As described in Section 3, we experimented with four models by performing hyperparameter
optimization and testing them on a test set split derived from the provided training set. The



Table 4
Subtask A challenge results, with the following metrics: C-Index, Area Under the Receiving Operator
Characteristic (AUROC), measured at different time intervals (12, 18, 24, 30 and 36 months). The report
includes the estimated value for the metrics and the 95% confidence intervals underneath them. The
models are Random Survival Forest (RSF) and Gradient Boosting Survival Analysis (GBSA). *: Best value
for the metric (row) for the model RSF. **: Best value for the metric (row) for the model GBSA.

None 6 months All
Metric RSF GBSA RSF GBSA RSF GBSA

C-Index
0.682*

[0.651; 0.712]
0.691**

[0.659; 0.723]
0.549

[0.468; 0.630]
0.613

[0.542; 0.683]
0.531

[0.458; 0.603]
0.572

[0.492; 0.653]

AUROC (12m)
0.748*

[0.691; 0.804]
0.774**

[0.718; 0.830]
0.603

[0.449; 0.756]
0.655

[0.521; 0.790]
0.553

[0.406; 0.700]
0.609

[0.451; 0.767]

AUROC (18m)
0.762*

[0.711; 0.812]
0.780**

[0.731; 0.829]
0.536

[0.397; 0.675]
0.631

[0.501; 0.760]
0.521

[0.385; 0.656]
0.598

[0.465; 0.731]

AUROC (24m)
0.778*

[0.729; 0.827]
0.777**

[0.728; 0.827]
0.545

[0.412; 0.677]
0.639

[0.507; 0.772]
0.489

[0.355; 0.624]
0.586

[0.455; 0.717]

AUROC (30m)
0.768*

[0.716; 0.820]
0.757**

[0.704; 0.811]
0.579

[0.446; 0.712]
0.686

[0.555; 0.817]
0.571

[0.434; 0.708]
0.609

[0.481; 0.736]

AUROC (36m)
0.764*

[0.709; 0.818]
0.743**

[0.686; 0.801]
0.562

[0.423; 0.701]
0.670

[0.534; 0.805]
0.450

[0.303; 0.596]
0.593

[0.460; 0.725]

hyperparameter found during the search for each model are presented in Table 3 (Value A
column).

For the submissions, we considered the three best-performing models, out of the four, due
to submission limits. In Table 4, we present the results for two of them: Fast Survival SVM
(FSSVM) and Gradient Boosting Survival Analysis (GBSA). In terms of their overall performance,
only in two instances have the estimated values for a metric fall below random chance (0.5), in
the AUROC (24m) and AUROC (36m) for RSF using all the environmental data available. This
indicates a reasonable predictive power by the models. However, in several instances, the 95%
confidence interval contains 0.5. All of those instances are models trained with environmental
data. Indeed, when looking at the results, we see an evident degradation in performance when
providing the model with environmental and clinical data. For instance, c-index value is 0.682
and 0.691 for RSF and GBSA, respectively, when no environmental data is provided to the models.
With the addition of the environemental data the c-index values, in both models, decreased as
the time window of environmental data considered increase, namely 0.531 and 0.572 for RSF
and GBSA, respectively.

4.2. Subtask B

Table 3 (Value B column) contains the hyperparameters through optimization for each of the
considered models. Out of those models, we present the results for the Fast Survival SVM
(FSSVM) and Gradient Boosting Survival Analysis (GBSA) in Table 5.

While subtask A pertains to the prediction of Non-Invasive Ventilation (NIV) or Death, subtask
B pertains to Percutaneous Endoscopic Gastronomy (PEG) or Death. Despite this difference,
the same patterns emerge in the results. Despite all metrics being scored above the random



Table 5
Subtask B challenge results, with the following metrics: C-Index, Area Under the Receiving Operator
Characteristic (AUROC), measured at different time intervals (12, 18, 24, 30 and 36 months). The report
includes the estimated value for the metrics and the 95% confidence intervals underneath them. The
models are Fast Survival SVM (FSSVM) and Gradient Boosting Survival Analysis (GBSA). *: Best value
for the metric (row) for the model FSSVM. **: Best value for the metric (row) for the model GBSA.

None 6 months All
Metric FSSVM GBSA FSSVM GBSA FSSVM GBSA

C-Index
0.669*

[0.639; 0.699]
0.679**

[0.651; 0.708]
0.601

[0.530; 0.671]
0.641

[0.578; 0.704]
0.606

[0.535; 0.677]
0.647

[0.588; 0.705]

AUROC (12m)
0.736*

[0.674; 0.797]
0.748**

[0.690; 0.807]
0.652

[0.489; 0.816]
0.694

[0.557; 0.831]
0.654

[0.493; 0.816]
0.712

[0.590; 0.834]

AUROC (18m)
0.766*

[0.719; 0.813]
0.768**

[0.722; 0.813]
0.673

[0.557; 0.790]
0.698

[0.585; 0.810]
0.675

[0.562; 0.789]
0.710

[0.602; 0.818]

AUROC (24m)
0.741*

[0.693; 0.790]
0.765**

[0.719; 0.810]
0.679

[0.572; 0.785]
0.739

[0.641; 0.837]
0.695

[0.59; 0.800]
0.751

[0.656; 0.846]

AUROC (30m)
0.722*

[0.672; 0.773]
0.744**

[0.694; 0.794]
0.632

[0.514; 0.749]
0.687

[0.576; 0.798]
0.639

[0.52; 0.759]
0.673

[0.562; 0.785]

AUROC (36m)
0.719*

[0.666; 0.771]
0.749**

[0.697; 0.801]
0.577

[0.451; 0.703]
0.641

[0.518; 0.764]
0.585

[0.456; 0.715]
0.653

[0.529; 0.776]

baseline and generally achieving better results, hinting at PEG being easier to predict than NIV,
the models’ performance when trained with environmental data worsened. Although, in this
subtask, the increase in the time window of environmental data considered, does not reflect a
decrease in the c-index value.

4.3. Subtask C

The hyperparameters for each model used for the experiments in subtask C, are found in Table 3
(Value C column). Following the same structures as the previous tasks, Table 6 contains the
results for this subtask, using Fast Survival SVM (FSSVM) and Gradient Boosting Survival
Analysis (GBSA) models.

The results show no difference from the previous subtasks in the sense that the models
show reasonable predictive power, and in general, the addition of environmental data did not
introduce any advantage; however, there is an exception to the rule in the metric AUROC (12m),
where GBSA fared better when leveraging clinical data and environmental data with a time
window of 6 months when compared with no environmental data. Additionally, supplying all
the available environmental data obtained better results than the none baseline. However, for
other metrics, this pattern does not repeat itself. This could indicate that environmental data
could be a productive predictor for predictions over small timespans.

4.4. Discussion

In the previous sections, we covered the results obtained for each subtask of Task 3 of the iDPP
challenge. The overall takeaway is that we do not find evidence that, using the datasets provided,



Table 6
Subtask C challenge results, with the following metrics: C-Index, Area Under the Receiving Operator
Characteristic (AUROC), measured at different time intervals (12, 18, 24, 30 and 36 months). The report
includes the estimated value for the metrics and the 95% confidence intervals underneath them. The
models are Fast Survival SVM (FSSVM) and Gradient Boosting Survival Analysis (GBSA). *: Best value
for the metric (row) for the model FSSVM. **: Best value for the metric (row) for the model GBSA.

None 6 months All
Metric FSSVM GBSA FSSVM GBSA FSSVM GBSA

C-Index
0.651*

[0.622; 0.680]
0.664**

[0.635; 0.692]
0.583

[0.515; 0.651]
0.641

[0.577; 0.706]
0.605

[0.538; 0.671]
0.634

[0.566; 0.703]

AUROC (12m)
0.738*

[0.677; 0.798]
0.747

[0.685; 0.809]
0.709

[0.572; 0.845]
0.773**

[0.656; 0.889]
0.721

[0.589; 0.853]
0.753

[0.626; 0.881]

AUROC (18m)
0.717*

[0.668; 0.767]
0.737**

[0.689; 0.785]
0.659

[0.545; 0.772]
0.714

[0.605; 0.823]
0.667

[0.555; 0.779]
0.706

[0.597; 0.816]

AUROC (24m)
0.702*

[0.655; 0.749]
0.733**

[0.688; 0.779]
0.654

[0.554; 0.754]
0.704

[0.608; 0.799]
0.684

[0.586; 0.782]
0.690

[0.592; 0.787]

AUROC (30m)
0.692*

[0.644; 0.740]
0.712**

[0.666; 0.759]
0.636

[0.529; 0.742]
0.672

[0.567; 0.776]
0.664

[0.56; 0.769]
0.643

[0.536; 0.751]

AUROC (36m)
0.699*

[0.650; 0.748]
0.727**

[0.679; 0.774]
0.553

[0.435; 0.671]
0.655

[0.541; 0.769]
0.601

[0.485; 0.718]
0.661

[0.541; 0.781]

environmental data provide additional insights to improve their predictive performance. We
see the contrary, adding entropy to the models such that their performance degrades.

We posit this could be down to two factors:

• The statistics computed for the environmental data might not be informative enough to
evidence patterns associated with event occurrences. Processing the data differently, or
even resorting to deep learning to process the raw time series, might yield a different
result;

• As discussed in Section 2, the degree of association between environmental data and the
prognosis of ALS is still up for debate. It could be that for most of the cohort, there is a
weak link between the two and, as such, yields no benefit in using such data.

5. Conclusions and Future Work

As no known cure for ALS exists, individuals anticipate a life expectancy limited to a few years
when diagnosed with this condition. Therefore, the primary objective of treatments is to impede
the progression of the disease to ensure a high standard of living for the patient. The objective
of iDPP � CLEF 2023 challenge is to evaluate the role of environmental pollutants in the risk
of impairment in ALS.

In our work, we evaluated the performance of four predictive models (Cox Proportional-
Hazards, Random Survival Forest, Survival SVM, and Gradient Boosting) in the prediction
of end-stage events: initiation of non-invasive ventilation (NIV), percutaneous endoscopic
gastrostomy (PEG), and death.



While our results suggest that our models have a reasonable predictive power (since in most
instances the measures fall above random chance), the inclusion of environmental data does
not improve the predictive performance of the models. In fact, in several instances, the models
trained with environmental data degraded the performance compared to models trained only
with clinical data. This degradation has two possible reasons: either the statistical analysis of
the environmental data may not provide sufficient information to reveal patterns related to the
occurrences of events, or the link between ALS and the pollutant data is weak in the cohort
data. Therefore, alternative approaches should be used for processing the raw time series such
as deep learning [36, 37] or biclustering/triclustering [38, 24, 39, 26] techniques for temporal
analysis and classification.
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