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Abstract  
We present an evaluation study of the usage of two different post-hoc model agnostic XAI 

methods, namely SHAP and AraucanaXAI, to provide insights about the most predictive 

factors of worsening in MS patients, based on clinical observations carried out during a period 

of 2.5 years. We pre-processed the temporal features considering a Latent Class Mixed 

Modelling (LCMM) approach in order to discover and extract temporal trajectories as an 

additional informative feature. The different XAI approaches are compared according to four 

quantitative evaluation metrics consisting in identity, fidelity, separability and time to compute 

an explanation. Furthermore, a qualitative comparison of post-hoc generated explanations is 

carried out on specific scenarios where the ML model predicted the outcome incorrectly, in the 

effort to debug potentially problematic model behaviour. The combination of the qualitative 

and quantitative results forms the basis for a critical discussion of XAI methods properties and 

desiderata for healthcare applications at large, advocating for more meaningful and extensive 

XAI evaluation studies involving human experts.   
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1. Introduction 

1.1. AI to predict Multiple Sclerosis progression 

Multiple sclerosis (MS) is a chronic, autoimmune disease of the central nervous system (CNS) that 

affects millions of individuals worldwide. It is characterized by the progressive destruction of myelin, 

the protective covering of nerve fibers, leading to impaired communication between the brain, spinal 

cord, and other parts of the body. MS exhibits a wide range of symptoms, including fatigue, muscle 

weakness, numbness, coordination and balance problems, and cognitive dysfunction. The etiology of 

MS remains elusive, with both genetic and environmental factors playing a role in its development.  

The BrainTeaser project uses Artificial Intelligence to better understand MS, predict disease 

progression, and suggest interventions to slow it down. By harnessing AI's potential, models can be 

developed to predict outcomes for different patient groups, aiding in patient care and clinical trials. 

BrainTeaser aims to create an interpretable approach that analyzes temporal data and predicts the 

likelihood of adverse events. Detecting complications during disease progression is crucial for MS 
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patients and clinicians, and including mechanisms that identify important clinical features helps predict 

and prevent adverse outcomes. 

As indicated in Faggioli et al. [1], “worsening” is mainly defined as an increase in the Expanded 

Disability Status Scale (EDSS) depending on the baseline value: if baseline EDSS < 1, worsening event 

occurs when an increase of EDSS by 1.5 points is first observed; if 1 ≤ Baseline EDSS < 5.5, worsening 

event occurs when an increase of EDSS by 1 point is first observed; if baseline EDSS ≥ 5.5, worsening 

event occurs when an increase of EDSS by 0.5 points is first observed. In the present work we aim at 

building an AI/ML-based predictive model to predict a worsening event in MS patients, and in turn use 

such model to investigate the most predictive factors for such task. 

1.2. Explainable AI 

The growing interest in eXplainable AI (XAI) has led to the development of methods that provide 

both local and global explanations for black-box Machine Learning (ML) models [3]. While global 

explainability deals with a general understanding of the model classification behaviour, local 

explainability focuses on understanding individual predictions, which is particularly important in high-

stakes applications like healthcare, and is as well put forward by regulations such as GDPR [4], the EU 

Artificial Intelligence Act [5], and the US Algorithmic Accountability Act. 

Among the post-hoc local explainability methods, SHAP (SHapley Additive exPlanations) is one of 

the most commonly used. SHAP utilizes a game theoretic approach to calculate the importance of each 

feature in a prediction task, decomposing the final predicted probability by assigning partial, additive 

contributions to each feature [6]. However, explaining a model’s behaviour through feature importance 

may be less intuitive for users with limited background in machine learning, such as clinicians. For this 

reason, in our previous work we introduced AraucanaXAI [7], [8], a post-hoc local explainer which 

uses decision tree surrogate models to provide more easily understandable local explanations, as 

illustrated in Figure 1. 

We believe that decision trees are more suitable for delivering local explanations because their 

structure can be easily converted in a chain of if-then rules that are easily comprehensible to a wider 

range of users. In this work, we aim to compare, combine and evaluate SHAP and AraucanaXAI on 

real-world clinical data from MS patients collected in the context of the Brainteaser project. Despite the 

relative abundance of new XAI methods proposed in the literature, in fact, studies have rarely performed 

a quantitative comparison among different approaches, and even less have evaluated their performance 

using real world clinical data [9], [10]. 

2. Materials and Methods 

2.1. Prediction Task 

The iDPP CLEF 2023 [1],[2] has offered two evaluation tasks focused on predicting the progression 

of MS, and one position paper task on the impact of air pollution exposure on the progression of 

Amyotrophic Lateral Sclerosis (ALS)2. We chose to adopt different XAI approaches to predict the risk 

of worsening (Task 1a) for each MS patient, i.e., how early a subject experiences the worsening event. 

In this task, a patient's condition has worsened if the patient crosses the threshold EDSS ≥ 3 at least 

twice within a one-year interval. 

2.2. Datasets and Preprocessing 

Two fully anonymized datasets of 440 training patients and 110 test patients, collected from two 

clinical institutions (in Pavia and in Turin, Italy) were provided for the challenge. Both training and test 

sets included static and dynamic data, with information on EDSS, relapses, evoked potentials, Magnetic 
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Resonance Imaging (MRI), and MS course. As a first preprocessing step, we excluded 37 EDSS 

observations where the EDSS score measured by the clinician was missing, resulting in one patient 

drop; we also removed patients with missing values, which are distributed over ethnicity, residence 

classification, and diagnostic delay, obtaining a final training set with 401 patients. 

2.3. Temporal EDSS Trajectories Analysis 

As a second step, we adopted the Latent Class Mixed Modeling (LCMM) approach in order to 

discover and extract temporal EDSS trajectories as an additional feature. LCMM simplifies 

heterogeneous populations into more homogeneous clusters or classes based on mixed-effects, which 

are used to account for the likely correlation of repeated measurements and include a random intercept 

for each individual [11]. We fitted the latent class model using the “hlme” function of the R package 

“lcmm”3, based on the framework described by Lennon et al. [11]. We trained the model with up to ten 

possible latent classes, using a linear link function and considering intercept and time 

(“delta_edss_time0”) as fixed, random and mixture components.  

Given the computational complexity, we decided to include in the model only two static features 

like patients’ sex and age at onset as additional fixed effects over classes. A grid search with 50 

departures and 10 iterations was used to set the initial values for the model parameters. For models 

selection, we considered both the Akaike Information Criterion (AIC), and we explored the distribution 

of the observations in the classes, excluding models with fewer observations in one of the latent classes. 

2.4. ML and XAI Methods 

XGBoost [12] was selected as the primary modeling technique for this study. XGBoost, short for 

Extreme Gradient Boosting, is an optimized implementation of gradient boosting that incorporates 

advanced features such as regularization, parallel computation, handling missing values, and early 

stopping. The hyperparameters (learning rate, gamma, maximum depth, column subsampling, and 

number of estimators) have been optimized through a random search with cross-validation, maximizing 

the area under the ROC curve. The risk of worsening for each patient has been calculated as the 

probability of the positive class (i.e., worsening). The algorithm was implemented using the “xgboost” 

Python library4.  
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Figure 1: Example of unpruned AraucanaXAI decision tree explaining why the XGBoost model 

predicts the worsening of a target multiple sclerosis patient through a set of hierarchical decision rules. 



For the explainability part, we employed two post-hoc, model-agnostic local XAI methods based on 

different paradigms: SHAP5 and AraucanaXAI6 (ARAU) and their open-source Python 

implementations available through the pip package manager for both approaches. 

2.5. Evaluation Metrics for Predictive and Explanation Performance 

The model’s predictive performance in terms of risk of worsening has been evaluated using the 

Harrell's Concordance Index (C-Index), while the F1, precision, recall and ROC-AUC metrics have 

been used to evaluate the model’s performance for the binary classification problem, selecting the 

optimal cut-off point through the Youden’s index. 

XAI approaches are evaluated and compared in terms of a set of metrics defined in previous research 

on XAI in healthcare [13]:  

• Identity: if there are two identical instances, they must have the same explanations. Since 

our real-word dataset does not include any duplicated instance, we randomly sampled 20 

examples from the test set and duplicated them to compute identity. 

• Fidelity: concordance of the predictions between the XAI surrogate model and the original 

ML model 

• Separability: if there are two dissimilar instances, they must have dissimilar explanations  

• Time: average time required by the XAI method to output an explanation across the entire 

test set, expressed in milliseconds (ms) 

3. Results 

3.1. LCMM 

We chose the LCMM model with five latent classes since it showed the lowest AIC value. As shown 

in Figure 2, these five trajectory groups included a stable-high trajectory (in red, 166 subjects), a stable 

medium trajectory (in khaki, 195 subjects), an increasing trajectory (in green, 23 subjects), a fast-

decreasing trajectory (in blue, 24 subjects), and a slow-decreasing trajectory (in magenta, 31 subjects).  

Clinical characteristics of subjects belonging to the different latent classes are reported in Table 1. 

A categorical characteristic like sex was compared using chi-square tests followed by Holm correction, 

while continuous variables like age at onset, time since onset, and EDSS scores at the baseline were 

compared using ANOVA with Tukey's post hoc test. Particularly, subjects in the stable-high trajectory 

differed significantly (p-value < 0.05) from the others in terms of time since onset (3200 days on 

average) and EDSS scores at the baseline (2.1 on average), showing higher values compared to all the 

other groups except for the fast-decreasing trajectory. 

3.2. Predictive Performance 

The results of our evaluation are reported in Table 2 for both the XGBoost (XGB) model and the 

XGBoost combined with LCMM (XGB+LCMM) model. Results refer to the test set provided by the 

challenge, consisting of 110 patients. Both models perform poorly on the evaluation metrics considered 

in the study. 
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Table 1 

Clinical characteristics of subjects in the latent classes, presented as frequency (percentage), and mean 

± standard deviation 

 Overall 
Phenotype 

1 2 3 4 5 

Sex, female 304 (69.2%) 114 (68.7%) 140 (71.8%) 14 (60.9%) 15 (62.5%) 21 (67.7%) 
Age at onset 

(years) 
30.6 ± 9.4 31.0 ± 9.6 31.2 ± 9.6 29.9 ± 9.9 26.9 ± 6.4 28.8 ± 8.8 

Time since 

onset (days) 
2520 ± 2450 3200 ± 3090 2340 ± 1870 1520 ± 1480 1220 ± 1160 1830 ± 2100 

Baseline EDSS 1.8 ± 0.9 2.1 ± 0.6 1.7 ± 0.6 0.2 ± 0.5 3.0 ± 1.2 1.0 ± 0.8 

 
 
Table 2 

Predictive performance comparison between XGB and XGB+LCMM models 

Model 
C-Index 

(CI) 
AUC-ROC Precision Recall F1 

Balanced 

Accuracy 

XGB 
0.46 

(0.31-0.61) 
0.45 0.11 0.06 0.08 0.48 

XGB+LCMM 
0.54 

(0.38-0.70) 
0.52 0.12 0.12 0.12 0.48 

 

  

Figure 2: Latent class mixed modeling trajectories (with confidence intervals) of EDSS score on the 

training set. 



3.3. XAI Explanation Performance 

Evaluation in terms of XAI shows that both the SHAP and AraucanaXAI methods achieved perfect 

fidelity and identity scores for the XGB and XGB+LCMM models. Results reported in Table 3 indicate 

that the explanations provided by both methods accurately represent the local behavior of the models. 

The separability scores were also perfect, indicating clear distinctions between different instances. 

In terms of computational efficiency, both SHAP and AraucanaXAI demonstrated low time 

requirements per instance, with a clear advantage for SHAP averaging 0.47 milliseconds and 

AraucanaXAI averaging 11.61 milliseconds for the XGB model. For the XGB+LCMM model, SHAP 

had an average time of 0.96 milliseconds per instance, while AraucanaXAI had an average time of 

10.45 milliseconds per instance. This implies the absence of significant additional computational cost 

when pairing the model’s predictions with an explanation. 

 

Table 3 
Predictive performance comparison between XGB and XGB+LCMM models 

 
Fidelity Identity Separability 

Time 

(ms/instance) 

SHAP ARAU SHAP ARAU SHAP ARAU SHAP ARAU 

Model 

XGB 1 1 1 1 .0024 .0028 0.47 11.61 

XGB+L

CMM 
1 1 1 1 .0000 .0002 0.96 10.45 

4. Discussion 

We adopted the LCMM approach to identify latent classes with different EDSS trajectories over 

time, extracting an additional informative feature that can be used to better predict the MS worsening. 

LCMM models are increasingly reported in the human epidemiology literature; indeed, they offer some 

advantages compared to using “one-off” exposure determinations, such as better informing aetiological 

associations by deeply phenotyping certain at-risk subpopulations. Furthermore, the trajectory approach 

allows a better understanding of the causes of between-individual variation in certain features by 

analysing the trajectory as an outcome rather than exposure. We chose a LCMM model with five latent 

classes, obtaining five well-separated trajectories. 

Overall, the quantitative evaluation of the two XAI approaches over the test set indicates that both 

SHAP and AraucanaXAI successfully provided faithful and interpretable local explanations for the 

models, with SHAP being more computationally efficient. However, the underlying models have been 

proven to be clearly inadequate for MS worsening prediction. Results indicate that both the models 

underperform in terms of predictive accuracy, although the integration of LCMM successfully 

improved the baseline model performance. The Harrel’s concordance index for both models is below 

the desired threshold, indicating limited ability to correctly rank the order of event probabilities. 

Additionally, the AUC-ROC values were around 0.5, suggesting poor discrimination between the 

classes. The precision, recall, and F1 scores also indicate low performance, with limited ability to 

correctly identify positive instances and achieve a balance between precision and recall. These findings 

indeed suggest the need for further investigation of the models' predictive capabilities, which can be 

analysed through the local explainers, to be used as a tool for model inspection and debugging. In 

particular, in the following we perform a more qualitatively-oriented analysis of the generated 

explanations for wrongly classified examples, employing both SHAP and AraucanaXAI, in the effort 

of understanding possible underlying reasons behind models’ unsatisfactory performance across the 

board. 



 

Table 4 
Predictive performance comparison between XGB and XGB+LCMM models 

Feature 
Average Ranking 

(SHAP/ARAU) 

SHAP  

Impact 

ARAU  

Average Value 

Diagnostic Delay 1st (2nd/2nd) Positive > 3 months 

LCMM 2nd (4th/1st) Positive Class 1 

Time Since Onset 2nd (1st/4th) Positive > 15 months 

Age At Onset 4th (3rd/5th) Negative < 29 years 

Supratentorial Symptoms 5th (8th/3rd) Positive FALSE 

 
 

Let’s consider the subset of 14 patients at high risk of worsening that have been misclassified by 

XGB+LCMM as negative (i.e., the false negatives). In Table 4, patients’ features are ranked based on 

their relevance according to SHAP (feature importance) and AraucanaXAI (distance from the root of 

the first appearance of the attribute in the tree splits). For each feature, we use SHAP to describe the 

impact of the feature, where a positive impact suggests that the variable pushes towards the positive 

class (MS worsening), while a negative impact suggests the opposite (no worsening). In the same way, 

we use AraucanaXAI to describe the most common decision rule associated with each feature. By 

combining SHAP and AraucanaXAI explanatory capabilities, we can identify a narrative describing 

what fools the model in predicting a lower worsening risk for positive patients. In particular, the 

XGB+LCMM model tends to be overconfident in associating longer latencies (diagnostic delay, time 

since onset) and younger ages at onset to a higher risk of worsening. Similar conclusions can be drawn 

for stable-high EDSS trajectories (i.e., Class 1) in LCMM combined with absence of supratentorial 

symptoms. 

Figure 3: AraucanaXAI (top) and SHAP (bottom) explanations of a target false positive instance with 

the XGB model (a) and the XGB+LCMM model (b). 



XAI methods can be employed in this sense also to evaluate qualitatively the differences between 

similar models, like XGB and XGB+LCMM. In Figure 3, we see the comparison of SHAP and 

AraucanaXAI explanations for the same false positive instance in both the models. In this case, adding 

the latent class trajectory of EDSS has a significant impact in AraucanaXAI on both the hierarchy of 

the rules and their split values, suggesting a drastic change in the predictive model decision boundaries 

that is not evident by inspecting only the SHAP values. On the other hand, it is worth highlighting how 

both the explanation strategies agree on giving LCMM a prominent role in the model’s decision process 

(i.e. most important feature in the ranking is indeed the LCMM latent class). 

 

5. Conclusion 

Despite the lack of success in accomplishing the task of predicting the worsening of MS patients, 

testing the classifiers provided a meaningful opportunity to delve deeper into the underlying reasons for 

their underperformance through the implementation of explainable artificial intelligence (XAI) 

techniques, aimed at model inspection. By leveraging SHAP and AraucanaXAI, we were able to gain a 

more comprehensive understanding of the shortcomings and limitations of our classifiers through 

feature importance and navigable decision trees, shedding light on the factors that may have hindered 

the models’ ability to effectively tackle the prediction task at hand. This insightful analysis therefore 

facilitated a deeper exploration of the intricacies and complexities involved in the classification 

problem, although we acknowledge that the lack of medical domain experts' involvement prevents us 

from drawing well-grounded conclusions about the clinical soundness of the explanations generated by 

the XAI methods. To this end, we emphasize the need for extensive evaluation studies of XAI in 

healthcare incorporating not only the model developers and clinical researchers’ perspective, but also 

the perspectives of patients, caregivers, ethics and legal experts, and other relevant stakeholders 

involved in AI-supported medical decision-making. 
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