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Abstract
This paper describes our participation in the first two tasks of the iDPP@CLEF 2023 challenge focused on
providing clinicians with AI-based methods for better prediction of Multiple Sclerosis progression. We
evaluate several standard and transformer-based methods, e.g., Random Forest, Gradient Boosting, and
SurfTRACE transformer, to address the risk and cumulative probability of Multiple Sclerosis worsening.
The considerable performance increase was achieved by (i) hyper-parameter fine-tuning, (ii) validation
procedure, and (iii) data pre-processing. The best method based on the Random Forest algorithm scored
first place in Task 1 and 2 (sub-task A) with a C-Index of 0.834, and a mean AUROC score of 0.881,
respectively, while reducing the runner-up’s error by 16.2% and 2.3%, respectively. Our methods purely
designed and optimized for sub-task A and submitted into sub-task B showed considerable robustness
towards overfitting on a specific dataset as achieved third and second place and achieving 0.601 C-Index
and second in Task 2, sub-task B of 0.607 mean AUROC score.
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1. Introduction

Multiple Sclerosis (MS) is a chronic autoimmune disease characterised by progressive impairment
of neurological functions, leading to a patient’s gradual loss of motor, sensory, visual, or cognitive
capabilities [1, 2]. It can lead to various physical and mental symptoms, while the progression
and severity vary widely between individuals. The MS is widely spread and affects primarily
young adults, especially women. Most people diagnosed are between 20 to 50 years old [3]. To
provide context: Over 2.8 million people suffer from MS worldwide, and around 300 people
are diagnosed with MS daily. The overall costs related to MS treatment were estimated in 2019
at $85.3 billion [4]. The heterogeneity of each patient’s progression immensely increases the
difficulty of selecting a proper medical treatment and motivates further clinical research. It
urges a need for novel and reliable methods that should assist the clinical decision-making
process and help to advance the development of effective treatments, leading to better care of
patients.

The iDPP@CLEF 2023 [5, 6] lab aims to address this task by opening international challenges.
Proposed challenges aim to provide an evaluation ground for developing new Artificial Intelli-
gence (AI) and Machine Learning (ML) techniques which could detect patient complications
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early, stratify individuals according to their risk levels, and predict disease progression over
time. The 2023 edition of the iDPP competition offered three tasks:

1. Predicting risk of disease worsening.
2. Predicting the probability of worsening at different time windows.
3. Impact of Exposition to Pollutants – patients with Amyotrophic Lateral Sclerosis.

In this paper, we describe our submissions in the first two tasks. The first task requires
ranking subjects based on the risk of worsening, while the second task specifies the predictions
by explicitly assigning the cumulative probability of worsening at different time intervals. Both
provide pre-computed data of occurrence and time of worsening. These tasks are divided into
two sub-tasks: A and B, which differ in the definition of worsening based on the Expanded
Disability Status Scale (EDSS) [7].

To address the risk and cumulative probability of Multiple Sclerosis worsening, we evaluate
several AI-based standard survival analysis methods, which include Random Forest, Gradient
Boosting models [8], and a recent SurfTRACE transformer model [9]. Furthermore, we provide
an extensive overview of the hyper-parameter fine-tuning of these selected methods. In a few
cases, we combine these models to create our ensemble model methods.

To allow robust evaluation of overall performance, we use several metrics selected by the
competition organization, i.e. Harrell’s Concordance Index (C-Index) [10] for Task 1, AUROC
curve [11] and O/E ratio [12] for Task 2. We chose model runs with the highest validation score,
i.e., the highest C-Index, to make the final prediction for the submission files.

2. Data

In this section, we analyze the given data for each respective task and address their specific
issues. Subsequently, we provide a detailed description of the pre-processing steps taken to
maximize the prediction precision of ML models.

2.1. Data characteristics

The datasets provided by competition organizers [5, 6] consist of static and dynamic data. They
include the medical history of 1,192 patients from two clinical institutions in Italy located in
Pavia and Turin. The dynamic data span over a period of 2.5 years and are split into different
subsets. These comprise information on relapses, EDSS, Evoked Potentials (EP), MRIs, and the
MS course. The ground-truth data, i. e. the outcomes, include the actual occurrence of worsening
and the relative time of this occurrence. The provided datasets for both sub-tasks (A, B) were
split into training and test sub-sets in approximately 80/20 ratio. Unlike the training datasets,
the test datasets do not contain any information about the true outcomes. These remained
unpublished until the time after the submission deadline.

The sub-task A provides complete 440 unique patients for training and 110 for testing. In
the case of sub-task B, information on 510 unique patients is available for training and 128 for
testing. Even though the number of patients is relatively high, only a fraction of them includes
all types of medical records. For reference, there are only 103 (23.4%) unique patients in the
training dataset A and 155 (30.4%) in the dataset B with medical records from all dataset sub-sets.



Table 1
Numbers of unique patients and medical records in data sub-sets which are included in the provided A
and B datasets.

Dataset Static Vars. Outcomes EDSS EP Relapses MRI MS Type

Patients A 440 440 439 153 259 279 210
Records 440 440 2,661 1,211 481 960 310

Patients B 510 510 510 183 284 303 218
Records 510 510 3,069 1,522 553 966 325

Each medical record refers to a single entry (row) in the dataset. The number of unique patients
and the number of their medical records for the dataset subsets are listed in Table 1.

It is apparent that the amount of data present differs widely between patients, as it is indicated
in Table 1. This significant data imbalance poses an issue in the classification stage, as standard
classifiers face challenges when dealing with the class imbalance and often prioritize the larger
classes and disregard the smaller ones, reaching a sub-optimal solution [13]. Although, the
imbalance is likely inherent to the problem. Furthermore, severe time gaps between clinical visits
of many patients are present, leaving out important information about the time progression of
the disease.

2.2. Data pre-processing

The success of ML in achieving optimal performance on a given task relies on various factors,
with the representation and quality of the instance data being of critical importance. Effective
knowledge discovery during training phases becomes arduous when irrelevant and redundant
information or noisy and unreliable data are present. Data preparation and filtering steps,
including data cleaning, normalization, transformation, feature extraction, and selection, are
vital in achieving the best validation performance on the specific dataset [14].

In our case, the ruling factor for feature and pre-processing method selection, the C-Index
validation performance on the dataset A was employed. The premise is that the data should
be almost equivalent except for the EDSS feature definition, meaning the particular decision
considering pre-processing should be generally valid for both cases.

First, all available information in the medical records is loaded from provided dataset files
and subsequently grouped by unique patient id. To be precise, many patients have multiple
medical records based on the number of repetitions of different medical examinations. In this
manner, it is ensured that all the available information concerning each patient will be present.

The features are divided into several groups derived from their characteristics, e.g., static and
time-dependent features, and categorical and numerical features. Static variables represent the
time-invariant features. If these are likewise categorical, then the one-hot encoding is applied,
which elegantly solves the issue of missing values. Currently, these features are the patient’s
sex, residence, ethnicity, centre, MS diagnosed in pediatric age, and the record of the presence
of several symptoms derived from their physical location. Whereas, the "time_since_onset"
and "diagnostic_delay" features generally resulted in poorer performance, and were, therefore,
omitted.



Figure 1: Visualisation of segmenting time-window features of the dynamic, time-dependent data.
For each dynamic feature (e.g. EDSS score), five 6-month non-overlapping and four accumulative
(overlapping) time windows were created.

In the case of time-dependent features, it is crucial to extract the temporal context of measured
values. For this goal, a "sliding time-window" segmentation approach [2] is implemented, where
a 6-month-long non-overlapping time window, together with a series of gradually extending,
cumulative time windows (6, 12, 18, 24, and 30 months) are applied. This process is visualised in
Figure 1. Upon the segmented features, we apply various statistical functions, mainly mean, one
standard deviation, median, mode, and in some cases, the sum of all occurrences of a feature,
are calculated. In the case of the EDSS and Relapses dataset sub-sets, the mean, one standard
deviation, median, and mode of the EDSS score and the relapse occurrences are computed,
respectively. Meanwhile, in the Evoked Potentials sub-set, we calculate a sum of all occurrences
where the altered potential feature was positive and a sum of all occurrences where the altered
potential feature was both positive and negative. In this way, we aim to capture information
about the percentage of diagnosed altered potentials.

In the MS-type dataset section, generally, no more than two different recordings were present
for each patient. These determine the diagnosed MS type and the time of the diagnosis. We have
attempted to one-hot encode each MS-type record and added the time of diagnosis. However,
this did not lead to any improvement in performance, and thus, the data were omitted. The
application of the MRI dataset section mostly led to similar results, and with a single exception,
the data were omitted too.

In the last step, the missing feature values were handled. The numerical features were
normalized to reduce the scale of the data, leading to an improvement in the numerical qualities
of the dataset. We decided to retain the maximum amount of data available. Therefore, all the
missing values were filled via the use of Fast.ai [15] functions, namely TabularPandas. This
function creates a new categorical feature for every feature with at least one missing value. In
this new feature, there are two categories representing missing or not missing values. In the
original feature, the missing values are filled with a median of the whole feature. Afterwards,
they are normalized by subtracting the mean and dividing by one standard deviation, which are
both derived from the newly filled feature. Additionally, we have attempted to use different
filling methods of time-dependent values for each patient. However, this led to worse overall
prediction performance.



Figure 2: Machine-learning workflow. Stages of method training and validation. Methods consist of
data pre-processing, selection of the specific model and k-fold validation based on C-Index performance
in 100 iterations. Afterwards, additional methods are created by ensembling the models of all types.

3. Methodology

In this section, we focus on describing the steps of assembling our Machine Learning pipeline
used to produce the predictions of the MS progression. To generate these predictions, it is
essential to undergo a data pre-processing step, followed by selecting appropriate ML models
capable of performing these predictions. Subsequently, we specify the methods employed
for training, validating, and fine-tuning the models’ hyper-parameters, which are crucial to
achieving the best and yet explainable results.

We selected several survival analysis models, as the prediction of worsening can fit in the
statistical branch of survival analysis, which focuses on studying the occurrence and time of a
specific event. Survival analysis offers significant value by addressing two common challenges
that conventional statistical methods often struggle with, namely censoring and time-dependent
covariates [16, 17]. Our workflow is visualised in Figure 2. The data analysis, data pre-processing,
and feature selection steps were already described in the previous section.

3.1. Models

To select the most viable method, several different approaches were tested, mainly various
survival analysis models like linear models, ensembles, or survival support vector machines from
the scikit-learn library – the scikit-survival [8]. From these, we have selected three ensemble
models with the most positive and stable performance:

• Random Survival Forest
• Gradient Boosting Survival Analysis
• Component-wise Gradient Boosting Survival Analysis (CGBSA)

Furthermore, we used a recent transformer [18] model suited for survival analysis, the Surf-
TRACE [9] transformer. A large, correctly trained transformer model should be able to contain



all the available information, i.e., data and their time context, in the features of the specified
topic. In theory, this should lead to increased prediction capabilities.

Additionally, we created an ensemble model of our own by combining the best run of every
model type and averaging their predictions. This should lead to a compensation of extreme
predictions made by these models, improving their stability. Likewise, we attempted to use the
maximal predicted values for prediction instead. However, this approach performed worse than
the averaged predictions and was omitted.

3.2. Training and validation strategy

The training and validation procedure is described as follows: Each model was trained and
validated in 100 iterations. In each iteration, the pre-processed dataset is randomly split into
training and validation sets in an 80/20 ratio (i.e., the same ratio as in provided training and
test datasets). The C-Index is measured for both training and validation sets. Afterwards, the
best model is chosen based on the achieved average and one standard deviation of the C-Index
calculated from all the iterations. Furthermore, we attempted to use the MinVal 95/5 split ratio
for several runs. Meaning, models are provided with an even larger proportion of available data
in the training stage. We perform multiple iterations to mitigate the effect of randomly split
data, as it is likely that some splits are easier for model fitting and can lead to unreasonably
high performance. Thus, it is better to evaluate model performance by averaging multiple runs,
reducing the effect of randomness. The transformer was trained with Adam optimizer for 40
epochs with 10-epoch early-stopping.

Finally, we select the run (one from 100 iterations) with the highest C-Index value to make
the final predictions, i.e., predictions for the submission. To remain unbiased, we used the same
seed for every run.

3.3. Hyper-parameter fine-tuning

The selected models start with multiple available hyper-parameters, whose initial, general
settings are presumably inadequate for the current task performance. Meaning, optimal model
settings can be found through extensive iterative hyper-parameter search and lead to further
maximization of validation performance.

The Weights & Biases framework [19] was used for this task. We mainly used the "Sweeping
tool" with mixed random and grid search based on the C-Index performance on the dataset A.
To explain, first, the random search over a wider range of parameters was applied to localize
roughly optimal intervals. These intervals were then exhaustively grid-searched. The list of all
pre-selected search hyper-parameters is in Table 21. In total, approximately 3,500 separate runs
were performed.

After selecting the optimal hyper-parameter values, we achieved marginal improvements
for standard models, which likely indicates that the key part to achieving better performance
lies in proper data pre-processing. On the other hand, the fine-tuning proved critical for the
transformer’s performance. Although, the transformer predictions remained still quite volatile.
The complete results are available in Table 3.

1Default values were used for all non-mentioned Hyper-parameters. Please refer to Scikit-Survival documentation.

https://scikit-survival.readthedocs.io/en/stable/api/index.html


Table 2
Tested hyper-parameter values for selected methods. Evaluation of performance was based on achieved
C-Index values on the dataset A.

ML Method Hyper-parameters Values Search method

Random Forest

n_estimators [100, 300, 500]

Grid search

max_depth [6, 8, 10]
min_samples_split [8, 10, 15]
min_samples_leaf [4, 6, 8]

min_weight_fraction_leaf [0.0, 0.3]
max_features [sqrt, log2]

Gradient Boosting

n_estimators [100, 200]

Grid search

subsample [0.2, 0.5, 1]
dropout_rate [0, 0.2]

ccp_alpha [0, 0.1, 1]
learning_rate [0.1, 0.5]
max_depth [3, 5, 7]

min_samples_split [2, 4]
min_weight_fraction_leaf [0.0, 0.3]

max_features [sqrt, log2]

CGBSA

loss [coxph, squered, ipcwls]

Grid search
n_estimators [100, 200, 300, 500]
learning_rate [0.1, 0.5, 1]

subsample [0.2, 0.5, 1]
dropout_rate [0, 0.2, 1]

SurfTRACE

batch_size (48–128)

Random search

weight_decay (5e-5–1e-3)
learning_rate (5e-4–1e-2)
hidden_size [16, 32, 64]

intermediate_size [64, 128, 256, 512]
num_hidden_layers [2, 4, 6]

num_attention_heads [2, 4, 6]
hidden_dropout_prob (0.2–0.4)

attention_probs_dropout_prob (0.1–0.3)

Table 3
Improvement of the methods due to the hyper-parameter search measured by the average validation
C-Index performance on the dataset A.

Random Random Gradient Component-wise SurfTRACEForest Forest MRI Boosting Gradient Boosting

Before 0.731 0.738 0.741 0.719 0.561
After 0.741 0.747 0.750 0.725 0.698

Δ +0.95% +0.93% +0.92% +0.67% +15.36%



3.4. Validation results

Here we discuss the validation results of the best-performing methods measured by the C-
Index value on the validation set for both datasets (A, B). We used previously discussed models
(Random Forrest, Gradient Boosting, Component-wise G. B., SurfTRACE transformer, and
averaging Ensemble model) together with the Random Forest MRI. In this method, an extended
version of pre-processed data was used, which included specific MRI data. The overall validation
performance after 100 independent iterations is visible in Figure 3.
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Figure 3: Results of validation C-Index performance of selected methods after 100 iterations. The
dataset A (left) and B (right). Baseline (first row) and MinVal (second row) splits.

In the case of the dataset A, the averaging Ensemble model achieved the top performance.
This outcome is explainable by the fact that the model already consists of the pre-trained, most
well-performing models and is only tested for prediction accuracy. Compared to the others,
the transformer suffers from substantial deviation, likely due to insufficient convergence and
early stopping. The performance of the dataset B is generally worse than that of the dataset A.
Partially due to the optimisation being solely done on the dataset A, but the largest impact is
presumably caused by the definition of the EDSS score, or by the different data distribution.

For a few submissions, a MinVal strategy was tested, where the data were split into training
and validation sets in a 95/5 ratio during the K-Fold training. The rationale is that with a larger
size of the training set, more information is provided to the models in the training stage, possibly
decreasing the likelihood of over-fitting. The results are available in Figure 3.

From the before-mentioned methods, the runs with the best overall validation C-Index were
used to make predictions for final submissions for both tasks and their respective sub-tasks. In
total, 18 files for Task 1 and 10 files for Task 2 were submitted.

4. Results

In this section, we provided official results of the submitted runs for Task 1 and Task 2 and their
respective sub-tasks. The submissions were selected in part based on the best achieved C-Index
values and to test all the previously mentioned models and different strategies. We discussed



the achieved results and attempted to explain them. In the last part, we compared the best runs
of the top 5 teams participating in the competition.

The names of the displayed methods correspond to the model names. Concerning the
competition, the names correspond to the freefield part of the submission names described in
the competition naming convention. More precisely, survRf is the Random Forest, survGB is
the Gradient Boosting, and AvgEnsemble is Ensemble Avg. Rest remains more the same.

4.1. Task 1

Here we discuss the results of the prediction accuracies described by the C-Index values and
their 95% confidence intervals of the submissions made to the Task 1, the sub-tasks (datasets) A
and B. The results are displayed in Figure 4. Models are sorted descendingly, with the highest
score of 0.834 (0.741–0.927) achieved by the Random Forest MRI model. In the second place, the
Averaging Ensemble model scored 0.828 (0.739–0.917). Other models performed similarly well
too. In the first place for the dataset B comes the SurfTRACE transformer with a C-Index of 0.601
(0.482–0.721). The worst performance in both cases was achieved by the SurfTRACE transformer.
This is most likely due to a selection of badly converged model runs for the submission. The
sub-optimal convergence is explainable by a model over-fitting over specific data divisions.
Compared to the validation performance, the runs of the dataset B scored lower than expected.
A possible explanation would be that the test dataset consisted of data differing in distribution
from the training dataset.
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Figure 4: Achieved C-Index values and respective 95% confidence intervals for submitted methods on
both sub-tasks. Left sub-task A (Task 1), right sub-task B (Task 1).

4.2. Task 2

In this section, we provide the results of the prediction accuracies of the submission files in
the Task 2. The scores consist of cumulative AUROC values, O/E ratios, and their respective
95% confidence intervals of all submitted methods. These are separated into five columns for
both metrics. The first describes achieved scores of prediction of the cumulative probability
of worsening in the first 2 years, the second in the first 4 years, etc. Methods are sorted in

http://brainteaser.dei.unipd.it/challenges/idpp2023/


descending order based on the average AUROC score of all predicted time intervals. In the
tables, the following name enumeration is applied:

• I – Random Forest MRI
• II – Random Forest
• III – Gradient Boosting - MinVal
• IV – Gradient Boosting
• V – Component-wise Gradient Boosting

The Random Forest MRI method scored the highest, with an average AUROC of 0.881, while
scoring the best in Task 1. The O/E ratio, which represents the ratio of observed to expected
events at each time interval, is relatively high across all the predictions. This likely indicates a
practical issue when there is a greater portion of observed patient events than was expected.
All achieved scores in Task 2, sub-task A are displayed in Table 4.

Table 4
AUROC and O/E Ratio cumulative scores in each given interval for all submitted methods. Results of
submissions to sub-task A (Task 2), with the ID specified in the preceding text.

ID AUROC 0–2 AUROC 0–4 AUROC 0–6 AUROC 0–8 AUROC 0–10

I 0.924 (0.800–1.000) 0.907 (0.816–0.998) 0.896 (0.801–0.991) 0.838 (0.713–0.964) 0.839 (0.699–0.979)
II 0.914 (0.784–1.000) 0.893 (0.798–0.989) 0.898 (0.808–0.989) 0.828 (0.702–0.954) 0.820 (0.672–0.968)
III 0.894 (0.787–1.000) 0.898 (0.810–0.985) 0.901 (0.800–1.000) 0.818 (0.677–0.959) 0.808 (0.648–0.967)
IV 0.877 (0.745–1.000) 0.891 (0.796–0.986) 0.868 (0.753–0.984) 0.790 (0.641–0.938) 0.812 (0.654–0.969)
V 0.862 (0.731–0.993) 0.842 (0.713–0.971) 0.805 (0.670–0.941) 0.747 (0.597–0.898) 0.798 (0.649–0.947)

ID O/E Ratio 0–2 O/E Ratio 0–4 O/E Ratio 0–6 O/E Ratio 0–8 O/E Ratio 0–10

I 1.889 (0.937–2.842) 2.339 (1.391–3.287) 1.797 (1.068–2.525) 1.731 (1.065–2.396) 1.447 (0.875–2.019)
II 1.811 (0.879–2.744) 2.283 (1.347–3.220) 1.796 (1.067–2.524) 1.732 (1.066–2.398) 1.458 (0.884–2.032)
III 0.946 (0.272–1.620) 1.759 (0.937–2.581) 1.768 (1.045–2.490) 1.926 (1.224–2.628) 1.658 (1.046–2.270)
IV 0.919 (0.255–1.583) 1.831 (0.993–2.670) 1.739 (1.022–2.455) 1.906 (1.207–2.604) 1.644 (1.035–2.254)
V 3.106 (1.885–4.327) 1.975 (1.104–2.847) 1.366 (0.731–2.002) 1.312 (0.732–1.891) 1.467 (0.891–2.042)

The results for Task 2, sub-task B are available in Table 5. The Gradient Boosting - MinVal
method scored first with a mean AUROC of 0.607. There is observed a similar trend as in Task
1, sub-task B, where the scores worsen across all predictions. This is likely due to the same
reason as previously discussed. These were: optimisation for dataset A, different definitions of
the EDSS feature, and possibly different properties of the test sub-dataset.

4.3. Competition results

To evaluate the improvements provided by our work, we compared the achieved results with
other participating teams. We selected the runs with the best performance from the top 5
running teams for each task and their respective sub-tasks. For the first task, the scores are
sorted by the highest achieved C-Index in Table 6. Our methods managed to score first place in
sub-task A and third in sub-task B. These are great results, meaning we can provide the best
available performance for the optimized dataset. Moreover, the methods provide comparable
performance even for not-optimized datasets, leaving substantial space for further improvement.



For Task 2, the achieved scores are displayed in Table 7. In sub-task A, our method achieved the
best AUROC score with an average of 0.881, which is just slightly ahead of the next competitor.
In sub-task B, we scored second place with an average AUROC score of 0.607, which is about
5.24% worse than the first competing team.

Table 5
AUROC and O/E Ratio cumulative scores for sub-task B (Task 2). Method ID is described in the text.

ID AUROC 0–2 AUROC 0–4 AUROC 0–6 AUROC 0–8 AUROC 0–10

III 0.606 (0.437–0.776) 0.612 (0.468–0.756) 0.602 (0.451–0.754) 0.587 (0.433–0.742) 0.626 (0.465–0.787)
V 0.514 (0.311–0.717) 0.580 (0.423–0.737) 0.604 (0.452–0.756) 0.627 (0.477–0.777) 0.628 (0.463–0.793)
IV 0.569 (0.392–0.747) 0.597 (0.454–0.741) 0.589 (0.440–0.737) 0.580 (0.427–0.733) 0.594 (0.430–0.758)
I 0.596 (0.421–0.770) 0.561 (0.407–0.715) 0.559 (0.407–0.711) 0.525 (0.369–0.681) 0.491 (0.324–0.658)
II 0.590 (0.410–0.769) 0.552 (0.401–0.704) 0.549 (0.398–0.700) 0.522 (0.367–0.678) 0.506 (0.340–0.672)

ID O/E Ratio 0–2 O/E Ratio 0–4 O/E Ratio 0–6 O/E Ratio 0–8 O/E Ratio 0–10

III 0.920 (0.353–1.486) 1.228 (0.716–1.740) 1.375 (0.896–1.854) 1.430 (0.979–1.880) 1.489 (1.052–1.926)
V 1.818 (1.021–2.615) 0.774 (0.367–1.180) 1.515 (1.012–2.017) 1.295 (0.866–1.724) 1.166 (0.780–1.553)
IV 1.045 (0.441–1.649) 1.259 (0.741–1.778) 1.363 (0.886–1.840) 1.404 (0.957–1.850) 1.454 (1.022–1.885)
I 2.257 (1.370–3.145) 1.525 (0.955–2.096) 1.364 (0.886–1.841) 1.302 (0.872–1.732) 1.316 (0.905–1.726)
II 2.292 (1.398–3.187) 1.523 (0.953–2.093) 1.351 (0.876–1.826) 1.304 (0.873–1.734) 1.313 (0.903–1.724)

Table 6
Official competition results – risk of worsening – for top 5 teams for Task 1, Sub-task A and

Task 1, Sub-task B sorted by C-Index. Our results are in bold.

Rank Submissions C-Index

1. uwb_T1a_survRFmri 0.834
2. CBMUniTO_T1a_coxnet 0.802
3. fcool_T1a_RandomSurvivalForest 0.801
4. HULATUC3M_T1a_survcoxnet 0.774
5. sisinflab-aibio_T1a_RF2 0.771

Rank Submissions C-Index

1. fcool_T1b_FastKernelSurvivalSVM 0.690
2. CBMUniTO_T1b_coxnet 0.634
3. uwb_T1b_SurvTRACE 0.601
4. uhu-etsi-1_T1b_s02 0.598
5. sisinflab-aibio_T1b_GB2 0.587

Table 7
Official competition results – cumulative probability of worsening – for top 5 teams. Average AUROC
score for Task 2, Sub-task A and Task 2, Sub-task B . Our results are in bold.

Rank Submission 2 years 4 years 6 years 8 years 10 years

1. uwb_T2a_survRFmri 0.924 0.907 0.896 0.838 0.839
2. HULATUC3M_T2a_survcoxnet 0.864 0.898 0.938 0.859 0.831
3. CBMUniTO_T2a_coxnet 0.890 0.900 0.856 0.787 0.796
4. sisinflab-aibio_T2a_RF1 0.754 0.873 0.871 0.746 0.745
5. uhu-etsi-1_T2a_05 0.774 0.740 0.774 0.703 0.722

Rank Submission 2 years 4 years 6 years 8 years 10 years

1. CBMUniTO_T2b_cwgbsa 0.632 0.626 0.655 0.673 0.709
2. uwb_T2b_survGB_minVal 0.606 0.612 0.602 0.587 0.626
3. sbb_T2b_Cox 0.642 0.567 0.601 0.594 0.622
4. sisinflab-aibio_T2b_GB2 0.614 0.639 0.629 0.616 0.527
5. uhu-etsi-1_T2b_s02 0.644 0.590 0.610 0.567 0.609



5. Conclusion

In this work, we described our participation in the iDPP 2023 challenge focused on providing
clinicians with new ways of predicting the progression of Multiple Sclerosis. We provided an
extensive overview of the methods and the results. We fully described our data analysis, pre-
processing, and feature selection methods. Likewise, we described the steps taken to assemble
the Machine Learning pipeline. We selected the best-performing survival-analysis-based models
consisting of Random Forest and Gradient Boosting decision tree methods, together with the
recent SurvTrace transformer. To further improve baseline performance, we conducted an
extensive hyper-parameter search for selected methods and described the benefits of the fine-
tuning, i.e., 16% improvement of transformer predictions and around 1% improvement of the
others. The performance was measured by the achieved validation C-Index average after 100
separate iterations, which was a ruling factor for most of the decisions. The runs with the
highest value were then used to make the final predictions.

We provide achieved scores for all of our submissions in Figure 4, and in Table 6, and Table 7.
Furthermore, we compared our results with the top 5 teams. In terms of to C-Index and AUROC
average, we scored first place in both A sub-tasks with a C-Index of 0.834 and a mean AUROC
score of 0.881, respectively. In the case of sub-tasks B, we achieved results comparable with
others. In Task 1 we scored third with a C-Index of 0.601, and we scored second in Task 2 based
on the average AUROC score of 0.607. We showed considerable robustness towards overfitting
on a specific dataset, as we achieved third and second place, even though our methods were
purely designed and optimized for sub-task A. This likely implies the importance of the EDDS
score definition as in the first case, the methods performed on average much better than in the
case of the dataset B.
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