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Abstract
Multiple Sclerosis (MS) is an inflammatory disease of the central nervous system in which gradual de-
struction of the myelin causes interruption or disordered transmission of nerve impulses. its cause
remains uncertain and treatment is unsatisfactory. In the Intelligent Disease Progression Prediction
challenge, participants were offered two prediction tasks focused on the progression of Multiple Scle-
rosis by using demographical and clinical features. We employ machine learning methods for survival
analysis. All models were optimized through a cross-validation procedure and finally evaluated on an
internal test set. The three best performing methods, namely Elastic-net-penalized Cox model(CoxNet),
Component-wise Gradient Boosting Survival Analysis and and an hybrid method combining both, have
been submitted for evaluation. Our results show that linear survival-analysis models could reach C-
index values greater than 0.77 and 0.62 respectively in predicting MS worsening and cumulative risk of
worsening. However feature-importance analysis also suggests that usage of semi-quantitative features,
such as the EDSS scale, mask the importance, and potential usefulness, of most of the other features.
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1. Introduction

Multiple Sclerosis (MS) is a chronic diseases characterized by progressive or alternate impair-
ment of neurological functions (motor, sensory, visual, cognitive). Patients have to manage al-
ternated periods in hospital with care at home, experiencing a constant uncertainty regarding
the timing of the disease acute phases and facing a considerable psychological and economic
burden that also involves their caregivers. Clinicians, on the other hand, need tools able to sup-
port them in all the phases of the patient treatment, suggest personalized therapeutic decisions,
indicate urgently needed interventions.
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1.1. Predicting Risk of Multiple Sclerosis Worsening

The prediction tasks focused on ranking subjects based on the risk of worsening, setting the
problem as a survival analysis (SA) task, where the event of interest is the risk of MSworsening.
The event definition has been based on changes in the patients Expanded Disability Status
Scale (EDSS)[1] score, accordingly to clinical standards, for which different definitions have
been provided.

1.1.1. Tasks

Task 1 asks for the prediction of the risk of worsening according to different definitions. In
Subtask 1a, the worsening event is defined as the patient surpassing the EDSS threshold of 3
at least twice within one year interval. In Subtask 1b, the definition of worsening depends on
the baseline EDSS value accordingly to current clinical protocols, namely:

• if baseline EDSS < 1, worsening occurs when an increase of EDSS by 1.5 points is first
observed;

• if 1 ≤ baseline EDSS < 5.5, worsening occurs when an increase of EDSS by 1.0 point is
first observed;

• if baseline EDSS ≥ 5.5, worsening occurs when an increase of EDSS by 0.5 points is first
observed.

Task 2 required to explicitly assign a probability of worsening at different time windows
(after 2, 4, 6, 8 and 10 years) according to the worsening event definition provided for Tasks 1a
and 1b respectively.

For each sub-task, participants were given a dataset containing 2.5 years of visits, with the
occurrence of the worsening event and the time of occurrence pre-computed by the challenge
organizers.

For more details on the iDPP Challenge at CLEF 2023 and the tasks please refer to the
overview papers [2, 3].

2. Methods

All the methods tested are implemented within the scikit-survival [4] Python package.
We report results for three (linear) methods: Cox regression [5] with Elastic Net [6] regular-

ization (CoxNet), Component-wise Gradient Boosting Survival Analysis [7, 8] (CWGBSA), and
a hybrid method where the most important features selected by CWGBSA are used to build a
CoxNet model (EvilCox).
We also tested non-linear methods such as Random Survival Forest and Gradient Boosting

SA, but both showed a tendency to overfit the training data and never performed better than
CoxNet even after parameter optimization. Their results is not reported.
Model performance has been estimated by taking the average and standard deviation across

50 reshuffling rounds of five-fold cross-validation.
For some of the methods hyper-parameter optimization has been performed. See Table 1 for

their values.



Table 1
Non-default hyper-parameters.

Method Modified Hyperparameters
CoxNet none
CWGBSA n_estimators = 300, subsample = 0.75
EvilCox As CWGBSA + Permutation-importance selection threshold >= 0.001

2.0.1. EvilCox

During model development, we routinely performed Permutation-based Feature Importance
Analisys[9], as implemented in the scikit-learn[10] package, on each trained model. Feature
permutation importance is a general strategy to measure the contribution of each feature on
the prediction score by scrambling the analyzed-feature values to destroy correlation.
We observed that CWGBSA is very resistent to over-fitting and does implicit feature selec-

tion, as Coxnet does, but it appears to be more aggressive with respect to feature elimination.
Nonetheless CWGBSA cross-validated performance turned out to be almost on par with that
of CoxNet, despite using a rather smaller set of features. Since CWGBSA approaches a linear
least-square solution as the number of estimators grows, we tested a hybryd method where
CWGBSA acts as as a feature selector for CoxNet. This was done simply by selecting all fea-
tures whose average (over 50 runs) contribution to the score was larger than 0.001 and using
them to build a CoxNet model. In our tests, the cross-validated score of EvilCox outperformed
that of the CoxNet model.

2.1. Feature engineering

Each data set provided had a training set comprising a table of static features, a table of longi-
tudinal (temporal) features and a table of outcomes.
While static features are collected once for each individual, longitudinal features are col-

lected repeatedly at different time points for the same individual. A variable had thus a dif-
ferent number of values (possibly also one or zero) for each individual. Since we did not use
predictive methods that could handle longitudinal data directly, we re-coded the multiple val-
ues that were available for each individual for a longitudinal feature as several static features:
the number, the mean, the standard deviation, the maximum, minimum, first (earliest collec-
tion time), second-to-last and last (most recent collection time) value for both EDSS values and
time of EDSS evaluation. We also collected the number of EDSS evaluation above the three
thresholds of 1.5, 3.0 and 5.5 (over_t1,over_t2, over_t3) for each patient.
Categorical features and boolean features with missing values were one-hot-encoded. All

features with more than 40% of missing values in the training set were dropped. All the re-
maining missing values after feature dropping have been given a value equal to the median of
the corresponding feature value.
The predicted time-to-event 𝑡 > 0 risk was converted into a relative risk 0 < 𝑟 < 1 by

rescaling it to fall within the its maximum and minimum value

𝑟𝑟𝑒𝑙(𝑡) =
𝑟(𝑡) − 𝑟𝑚𝑖𝑛
𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛



3. Results

3.0.1. Task 1

As usual for survival-analysis tasks, Task 1 performance has been graded according to Har-
rell’s concordance index[11] (C-index), both by cross-validation on the training set and on the
challenge test set. Results are reported in table 2.
Our models performance are significantly better for task 1a than for task 1b, where the

definition of the event changes according to the patient first EDSS evaluation. Furthermore,
for task 1a, the training score is very consistent with respect to the testing results, showing
very good generalization. Both the CWGBSA and EvilCox methods perform very well even
when using a significantly smaller feature set.

Table 2
Task-1 results. The 90% confidence interval is reported within square brackets.

Task Method C-index (cross-validation) C-index (test)
1a CoxNet 0.727 0.802 [0.685-0.919]
1a CWGBSA 0.729 0.771 [0.624-0.919]
1a EvilCox 0.762 0.769 [0.631-0.908]
1b CoxNet 0.664 0.634 [0.528-0.739]
1b CWGBSA 0.673 0.613 [0.514-0.713]
1b EvilCox 0.696 0.623 [0.526-0.721]

3.0.2. Feature importance

Feature importance analysis shows *Fig1, somewhat unsurprisingly, that the most important
features for subtask a are different from those that describe subtask b, although all the methods
consistently select similar features for the same task. In particular, subtask a feature importance
is largely dominated by the most recent EDSS evaluation while the two most relevant feature
for the subtask b are 1) the difference between the two most recent EDSS values and 2) the
number of EDSS evaluation with score over 3.0.
In general, EDSS-related features dominate the feature-importance landscape.

3.0.3. Task 2

The survival methods we use in Task 1 can output their prediction both as a relative risk and as
survival curve. So we took the same models fitted in Task 1 and used their predicted survival
curve to get the Task 2 outcome.
Two metrics have been used in Task 2, namely the receiver operating characteristic area

under the curve (ROC AUC) at each time threshold and the observed/expected events (O/E)
ratio for each time interval.
Results are reported in table 3 and are in line with those from Task 1.
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Figure 1: Permutation importance in the CoxnNet models fitted for subtasks a and b. Features are
sorted by subtask a, error bars show the 95% confidence intervals.

4. Conclusion

We tried a series of standard with good results for subtask a and lower perforamces for subtask
b. While subtask a has a fixed threshold, subtask b outcome is a relative increment in EDSS
score, which seems to be more challenging to predict.
Beyond the methods we submitted to the challenge, which are all linear, we experimented

also with non-linear models such as Random Survival Forest. However, linear models consis-
tently outperformed non-linear ones, while non-linear ones suffered more from over-fitting.
While the best models were the CoxNet ones, it is possible to get a good model fit even

with very few features: CWGBSA and EvilCox models used only six features. In particular,
the feature-importance space is dominated by the EDSS most recent evaluations. While the
importance of previous EDSS evaluations is not surprising given that the outcomes are also
EDSS-derived, few non-EDSS features were found to be predictive. A rationale for this be-
haviour might be that, being EDSS a semi-quantitative feature, it summarizes the contribution
of the other features through the clinician judgement, making difficult to factorize other con-



Table 3
Task 2: Relative risk after N years. The 90% confidence interval is reported within square brackets.

Method Task Years ROC AUC O/E
Coxnet 2a 2 0.890 [ 0.739 - 1.000 ] 0.443 [ -0.018 - 0.904 ]

4 0.900 [ 0.779 - 1.000 ] 0.627 [ 0.136 - 1.117 ]
6 0.856 [ 0.722 - 0.991 ] 0.608 [ 0.184 - 1.031 ]
8 0.787 [ 0.626 - 0.948 ] 0.652 [ 0.244 - 1.061 ]
10 0.796 [ 0.640 - 0.952 ] 0.636 [ 0.257 - 1.016 ]

CWGBSA 2a 2 0.841 [ 0.618 - 1.000 ] 0.467 [ -0.007 - 0.940 ]
4 0.864 [ 0.691 - 1.000 ] 0.638 [ 0.143 - 1.134 ]
6 0.821 [ 0.658 - 0.984 ] 0.619 [ 0.191 - 1.047 ]
8 0.759 [ 0.587 - 0.931 ] 0.666 [ 0.253 - 1.079 ]
10 0.765 [ 0.594 - 0.935 ] 0.643 [ 0.262 - 1.024 ]

EvilCox 2a 2 0.854 [ 0.655 - 1.000 ] 0.449 [ -0.015 - 0.913 ]
4 0.867 [ 0.711 - 1.000 ] 0.620 [ 0.132 - 1.109 ]
6 0.816 [ 0.655 - 0.978 ] 0.605 [ 0.182 - 1.027 ]
8 0.749 [ 0.570 - 0.927 ] 0.649 [ 0.242 - 1.057 ]
10 0.757 [ 0.585 - 0.929 ] 0.634 [ 0.255 - 1.012 ]

Coxnet 2b 2 0.676 [ 0.514 - 0.838 ] 1.082 [ 0.467 - 1.697 ]
4 0.633 [ 0.486 - 0.780 ] 0.858 [ 0.430 - 1.286 ]
6 0.635 [ 0.488 - 0.782 ] 0.811 [ 0.443 - 1.180 ]
8 0.651 [ 0.503 - 0.800 ] 0.803 [ 0.465 - 1.141 ]
10 0.686 [ 0.526 - 0.847 ] 0.845 [ 0.516 - 1.174 ]

CWGBSA 2b 2 0.632 [ 0.477 - 0.787 ] 1.101 [ 0.481 - 1.721 ]
4 0.626 [ 0.484 - 0.768 ] 0.850 [ 0.424 - 1.276 ]
6 0.655 [ 0.512 - 0.797 ] 0.809 [ 0.441 - 1.176 ]
8 0.673 [ 0.530 - 0.816 ] 0.802 [ 0.464 - 1.140 ]
10 0.709 [ 0.556 - 0.862 ] 0.850 [ 0.520 - 1.180 ]

tributions.
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