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Abstract
Generative models represent one of the most innovative and interesting applications of artificial in-
telligence (AI), able to generate realistic synthetic data by learning the characteristics of the training
samples. In medical imaging, they are widely used to generate high-resolution medical images belonging
to different modalities, improving diagnosis and patient care. However, the surprising performance of
generative models has raised concerns about the relationship between artificial and real instances in
terms of similarity, which may introduce privacy and ethical issues. To this aim, the ImageCLEFmed
GAN challenge has been organized, asking participants to evaluate the hypothesis that generative models
produce images containing the fingerprints of the samples used during the training. In this paper, we
describe the methodology implemented to take part in the competition, exploiting the ability of deep
neural networks to provide a high-level representation of the input data.
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1. Introduction

In recent years, the emergence of generative models in the field of Artificial Intelligence (AI)
has sparked significant interest and innovation. These models, powered by advanced Machine
Learning (ML) algorithms, have the remarkable ability to generate new synthetic data samples,
through a synthesis process that learns the characteristics of the distribution of the training
dataset. Generative models, such as variational autoencoders (VAEs) [1], generative adversarial
networks (GANs) [2], and diffusion models [3], have shown immense potential across various
domains.

In the realm of medical imaging, AI generative models represent a real revolution by enabling
the generation of synthetic images with exceptional realism and accuracy. These models
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can generate high-resolution images that mimic various medical imaging modalities, such
as computed tomography (CT), magnetic resonance imaging (MRI), and X-ray scans. The
application of AI generative models in medical imaging holds significant implications for
enhancing diagnostic accuracy, data augmentation for training Deep Learning (DL) algorithms,
and even aiding in the development of novel imaging techniques. However, as with any advanced
technology, it becomes crucial to address the considerations related to data privacy, ethical
implications, challenges associated with their use, and the interpretability of the generated
images.

In this context, the ImageCLEF2023 [4] conference organized the ImageCLEFmed GAN
challenge [5], focused on examining the hypothesis of an existing relationship between the
synthetic images and the samples used in the training of the generative model. The competition
resonates in the scientific community since, if this hypothesis is correct, synthetic biomedical
images may be subject to the same sharing and usage limitations as real data, while, on the
other hand, generative networks confirm their potential to create rich datasets free of ethical
and privacy regulations. The aim of the task is to identify in the artificially created biomedical
images distinctive patterns or characteristics known as "fingerprints", that help in determining
the set of images employed during the training phase of the generative model.

In this paper, we present the methodology implemented to take part in the ImageCLEFmed
GAN challenge [5]. In particular, we exploit the ability of the DL models to provide a repre-
sentation of the input data relying on Convolutional Neural Networks (CNNs) to extract the
features from the real and generated images. These features represent the fingerprints that
we then analyze, adopting a ML model for the identification of the samples used during the
development of the generative model among all the real instances. We propose two variants for
the features extraction step, introducing Vector-Net, a convolutional network that learns how
to map the input image in an efficient representation, and leveraging a Deforming Autoencoder
(DAE) [6], that provides a latent vector in an unsupervised manner.

The rest of the paper is organized as follows: Section 2 introduces the implemented method-
ology; Section 3 descrives the experimental set-up; Section 4 reports the obtained results; finally
Section 5 provides some conclusions.

2. Methods

In image processing, the generative model, or generator, is typically a deep network that learns
how to map a fixed latent distribution to the distribution of real data 𝑝𝑟 . Denoting with 𝑝𝑔 the
distribution of the artificial instances, the goal is to learn 𝑝𝑔 which approximates 𝑝𝑟 as closely as
possible [2] with the aim of creating new samples preserving the intrinsic characteristics of the
real ones. In the ImageCLEFmed GAN [5] challenge we are asked to evaluate the relationship
between 𝑝𝑔 and 𝑝𝑟 , investigating the possibility to distinguish among all the images belonging
to 𝑝𝑟 , the subset used during the training of the generative network. In other words, we asses
the partition of the set of real data 𝑅 into two subsets, 𝑈 and 𝑁𝑈 , corresponding to the images
used (𝑈 ) and not used (𝑁𝑈 ) during the development of the model, respectively.

In our methodology, we rely on CNNs to extract the features from the real and generated
images, thanks to their ability to autonomously learn the data representations well-suited for



the specific task to be solved. In particular, we explore two different approaches, where the
former leverages the features extracted by Vector-Net, a convolutional network aware bout
the hypothesis to be tested, while the latter considers the latent representation provided by a
Deforming Autoencoder (DAE) [6] trained in an unsupervised manner. The extracted features
vector represents the "fingerprint" that we propose to use to analyze the relationship between
𝑝𝑔 and 𝑝𝑟 by exploiting a ML model specifically trained for the distinction between elements
belonging to 𝑈 and 𝑁𝑈 .

2.1. Vector-Net for fingerprint extraction

Vector-Net is the proposed CNN that aims to provide a mapping function 𝑓 able to project the
input images in a latent space where the extracted fingerprints contribute to the identification
of the samples used for the training of the generative model among all the real instances. In
particular, denoting with 𝑥 a generic input belonging to one of the sets 𝐺, 𝑈 , and 𝑁𝑈 , 𝑓 is
applied to generate the representation �̃�, where �̃� = 𝑓(𝑥), whose characteristics are considered
for the distinction of the elements in 𝑅. Figure 1 shows an illustrative example of the effects of
the mapping function on the samples of 𝐺, 𝑈 , and 𝑁𝑈 , referred as 𝑔 (𝑔 ∈ 𝐺), 𝑢 (𝑢 ∈ 𝑈 ), and
𝑛𝑢 (𝑛𝑢 ∈ 𝑁𝑈 ). Indeed, it highlights that although it is extremely hard to discriminate 𝑔, 𝑢,
and 𝑛𝑢, the resulting fingerprints 𝑔, �̃� and 𝑛�̃� can be used to analyze the hidden relationship
between the three sets of images.

Figure 1: Illustrative example of the application of 𝑓 to the element 𝑔 (𝑔 ∈ 𝐺), 𝑢 (𝑢 ∈ 𝑈 ), and 𝑛𝑢
(𝑛𝑢 ∈ 𝑁𝑈 ).

The architecture of the implemented Vector-Net consists of six convolutional blocks, a Global
Average Pooling [7] operation and a fully connected layer. In particular, each convolutional
block includes a convolutional layer, with a 4× 4 kernel and values of padding and stride set
to 1 and 2 respectively, in order to provide a reduction of the dimensionality of the features
maps, followed by Batch Normalization and ReLU as activation function. The first convolutional
layer presents a one-channel input and 32 output channels, that are doubled by each step in the



chain of the six convolutional blocks. The Global Average Pooling is used to generate a features
vector which feds the last fully connected layer with 1024 input and 64 output neurons.

The 64-element vector represents the fingerprint �̃� extracted from a generic input 𝑥, that
embeds an image in a 64-dimensional Euclidean space. As suggested in the work proposed in
[8], we constrain this vector to live in a hypersphere ensuring that ‖�̃�‖2 = 1 in introducing a
normalization criterion among the generated fingerprints.

In our methodology, we evaluate the ability of the function 𝑓 in producing fingerprints that
enhance the supposed similarity between the sets 𝐺 and 𝑈 and make clear the distinction
with 𝑁𝑈 . To this aim, we consider the distance of the vector representations as a measure of
their similarity, adopting the Euclidean metric. Then, we use the triplet loss [9] to train the
implemented Vector-Net to minimize the distance between 𝑔, and �̃�, while maximizing the
dissimilarity with 𝑛�̃�. Indeed, the triplet loss [9] ensures that a reference element, denoted as
anchor (a), is located close to positive (p) samples and beyond a certain margin (𝑚) from the
negative (n) ones, guaranteeing that 𝑑(𝑎, 𝑝) + 𝑚 < 𝑑(𝑎, 𝑛), where 𝑑 denotes the Euclidean
distance, as represented in Figure 2.

Figure 2: Relation between the samples when the triplet loss is used

In accordance with which of the fingerprints 𝑔, �̃�, and 𝑛�̃� is treated as 𝑎, 𝑝, or 𝑛, it is possible
to include different constraints during the training of Vector-Net. When the representations of
the elements belonging to 𝐺 are considered as 𝑎, we propose to denote the fingerprints �̃�, and
𝑛�̃� as positive and negative vectors respectively, ensuring that:

𝑑(𝑔, �̃�) +𝑚 < 𝑑(𝑔, 𝑛�̃�) (1)

∀ 𝑔, �̃� and 𝑛�̃� generated by 𝑓 when applied to the samples of 𝐺, 𝑈 and 𝑁𝑈 . The Equation 1 is
required to make the network able to search for the supposed similarity between the images
𝑢 and 𝑔, extracting for them fingerprints that are close (or similar) in the Euclidean space,
when compared to those belonging to the 𝑛𝑢 elements. This allows the introduction of another
constraint treating the representations �̃�, 𝑔 and 𝑛�̃� as the anchor, the positive and the negative
samples respectively, and formalized as follows:

𝑑(�̃�, 𝑔) +𝑚 < 𝑑(�̃�, 𝑛�̃�) (2)

We need a CNN able to extract fingerprints from 𝑈 that allow the recognition of the used images,
exploiting their similarity with the representations 𝑔 and, at the same time, their diversity from
the 𝑛�̃�. The Equation 2 is introduced to explicitly separate the features vectors obtained from
𝑢 and 𝑛𝑢, while further ensuring the similarity between �̃� and 𝑔. We argue that the diversity
between �̃� and 𝑛�̃� should be preserved since it is the result of the absence of a relationship



between the sets 𝑈 and 𝑁𝑈 , which consist of independent samples representing the distribution
of the real data (𝑈 ⊆ 𝑅 and 𝑁𝑈 ⊆ 𝑅 ). Indeed, while 𝑈 and 𝐺 have been involved in the
development of the same generative model, thus explaining the need of testing the hypothesis
of their similarity, 𝑈 and 𝑁𝑈 are two separate sets extracted from the same distribution.

In general, the presence in the set 𝑅, including both 𝑈 and 𝑁𝑈 , of images belonging to
different and unrelated patients suggests the absence of a relationship among the real instances,
which is exploited in the definition of a third constraint focusing on the 𝑈 set and supporting
the training of the CNN for the extraction of the fingerprints. In particular, we propose to bind
the function 𝑓 to extract the vector representations from images in such a way as to minimize
the distance between 𝑔 and �̃�, and preserve the independence between the different elements of
𝑈 . Denoting with 𝑢1 and 𝑢2 two instances belonging to the set of used samples, with 𝑢1 ∈ 𝑈 ,
𝑢2 ∈ 𝑈 | 𝑢1 ̸= 𝑢2, we formalize the third constraint as follows:

𝑑(𝑢1̃, 𝑔) +𝑚 < 𝑑(𝑢1̃, 𝑢2̃) (3)

where 𝑢1̃ and 𝑢2̃ are the fingerprint extracted with the application of 𝑓 . The Equation 3, which
considers the representations extracted from 𝑈 both anchor and negative vectors, is introduced
to make the CNN focus only on the search of the similarity between 𝑔 and �̃�, minimizing their
distance, while maintaining the distinctiveness among the different and unrelated real images.

2.2. DAE for unsupervised fingerprint extraction

The Deforming Autoencoder (DAE) [6] is an unsupervised encoder-decoder architecture de-
signed to disentangle an image in its main components of shape and texture. It exploits the
basic notion that creating an image involves the combination of two processes: a synthesis of
appearance on a coordinate system with no distortion (referred to as a "template"), followed by
a second deformation that includes shape diversity. The network architecture is reported in
Figure 3, consisting of an Encoder (𝐸) and a set of two decoders (𝐷𝑠 and 𝐷𝑡), for the synthesis
of the shape (S) and the texture (T), respectively.

Figure 3: DAE architecture consisting of an Encoder (𝐸) and a two decoders (𝐷𝑠 and 𝐷𝑡)

Denoting with 𝑥 a generic input image, 𝐸 implements a function providing the latent repre-
sentation �̃� (�̃� = 𝐸(𝑥)) which is then used by 𝐷𝑠 and 𝐷𝑡. In particular, �̃� is then split into two



different parts �̃�𝑠, and �̃�𝑡 (�̃� = [�̃�𝑠, �̃�𝑡]), representing the latent shape and texture, thus introduc-
ing a clear image decomposition. Each of these parts is fed to a specific decoder generating the
disentangled components of the image. The DAE is trained according to its ability to reconstruct
the input starting from its main components using the loss function (𝐿𝐷𝐴𝐸) proposed in [6],
which consists of the sum of two elements: the reconstruction loss (𝐿𝑟𝑒𝑐), implemented as the
standard 𝑙2 norm, and the warping loss (𝐿𝑤𝑎𝑟𝑝) used to create visually realistic samples [6].

The encoder architecture consists of an initial convolutional layer with a 4× 4 kernel, values
of padding and stride set to 1 and 2 respectively, followed by a LeakyReLU activation function,
a chain of 𝑛𝑒 encoding blocks, and a last convolutional layer with a 4× 4 kernel and a Sigmoid
function. Each encoding block includes a convolutional operation, with a 4 × 4 kernel and
values of padding and stride set to 1 and 2 respectively, a Batch Normalization, and a LeakyReLU
function. The first layer presents an input channel set to 1, with 32 output channels, that are
doubled in each step of the chain of the encoding blocks. The last convolutional operation
provides a 128-element vector corresponding to the latent representation of the input.

The 𝐷𝑠 and 𝐷𝑡 present the same basic architecture, but differ for the activation functions. In
particular, both decoders consist of a chain of 𝑛𝑑 decoding blocks, followed by a transposed
convolution operation with a 3× 3 kernel, and activation function that is the HardTanh in 𝐷𝑡

and the Sigmoid in 𝐷𝑠. Each decoding block includes a transposed convolution layer with a
4× 4 kernel, a Batch Normalization, and a ReLU or hyperbolic (tanh) function for 𝐷𝑡 and 𝐷𝑤

respectively.
In our methodology, we train the DAE considering the samples belonging to the sets of

𝐺, 𝑈 , and 𝑁𝑈 . The encoder 𝐸 is then used to generate a 128-element vector for each input
image that is treated as the "fingerprint" of each instance, extracted in an unsupervised manner.
Indeed, the information about the source of the images is not exploited, with the aim of testing
if the decomposition in the shape and texture components generates elements highlighting the
similarity between 𝐺, and 𝑈 .

3. Experimental Set-Up

The datasets involved in the competition consist of axial 3D computed tomography (CT) images
of about 8000 lung tuberculosis patients, stored in the form of 8 bit/pixel PNG images with
dimensions of 256x256 pixels. The synthetic images are 256x256 pixels in size and are generated
using a Diffusion Model [3]. The training test provided to test the hypothesis of the similarity
between the artificial and the real samples includes 500 synthetic images (𝐺), 80 real instances
not used for the development of generative neural networks (𝑁𝑈 ) as well as 80 real images
taken from the image set used for training corresponding generative model (𝑈 ). In the test set,
a total of 10000 generated images and 200 real samples are provided.

After their training, the Vector-Net and the encoder of the DAE are applied to the all the
elements 𝑔 ∈ 𝐺, 𝑢 ∈ 𝑈 , and 𝑛𝑢 ∈ 𝑁𝑈 , generating the representation 𝑔, �̃�, and 𝑛�̃�. The
extracted fingerprints are analyzed by assessing their effectiveness in the distinction between
elements belonging to 𝑈 and 𝑁𝑈 . We leverage two ML models, namely the Support Vector
Machines (SVM) [10] and the K-Nearest Neighbours (KNN) [11], to detect among the real
instances, those used during the development of the generative model. In other words, we



perform a binary classification task, exploiting the fingerprint extracted from the networks,
associating the label "1" to those belonging to used images �̃� and "0" to the representations 𝑛�̃�.
The choice of the SVM and KNN relies on the fact that they represent two different models,
where the former aims to determine a hyperplane to separate the classes, while the latter applies
the distance metric that can be interpreted as a similarity score.

The experiments implemented for the ImageCLEFmed GAN challenge [5] vary according to
different aspects related to the characteristics of the networks used for the extraction of the
fingerprints, the involved ML model, and the set of features representations used to train the
SVM and KNN.

When the Vector-Net is used for fingerprint extraction, we evaluate the contribution of the
proposed constraints by adding them one at a time. As a consequence, we denote as Vector-
Net(1), Vector-Net(1,2) and Vector-Net(1,2,3) the approaches including the Equation 1, Equations
1 and 2, and Equations 1, 2, 3, respectively.

As aforementioned, the DAE is used to provide an unsupervised features vector definition.
We consider three different variants obtained by changing the set of images used during the
training of the network, with the aim of evaluating if their presence or absence affects the
fingerprints extraction. In particular, we denote as DAE(G,U), DAE(G,NU), and DAE(G,U,NU),
the experiments involving the DAE architecture and the sets of samples specified in brackets. It
is worth noting that after the training step, all the approaches are applied to all the elements
𝑔 ∈ 𝐺, 𝑢 ∈ 𝑈 , and 𝑛𝑢 ∈ 𝑁𝑈 .

Two different ML models are used for the identification of the subset of the real images
used for the development of the generative network. After a hyper-parameter optimization
step, we set the number of neighbors in KNN to 5, and explore both linear and the polynomial
(degree = 2) kernel in the SVM to investigate also more complex boundaries among the vector
representations, denoting with SVM-Linear and SVM-2 the two variants, respectively.

In our experiments, we also evaluate the impact of the fingerprints extracted from 𝐺 in the
classification task proposing two training strategies, referred as "REAL" and "FULL". The former
uses only the fingerprints generated from 𝑈 and 𝑁𝑈 , namely �̃�, and 𝑛�̃�, to train the two ML
models, while the latter includes also the representations of the elements of 𝐺 by associating to
the vectors 𝑔 the same label of �̃�. In both cases, we aim to evaluate the effectiveness of the CNNs
in the generation of features representations that enhance the supposed similarity between 𝐺
and 𝑈 , and the dissimilarity with 𝑁𝑈 . However, in the "REAL" strategy, we explicitly evaluate
how the extracted fingerprints are able to determine a separation among the elements of 𝑈 and
𝑁𝑈 , without relying on the presence of 𝑔. When the "FULL" option is explored, we apply the
adaptive synthetic sampling approach (Adasyn [12]) to handle the imbalance between the labels
"1" and "0".

During the experiments, we train the Vector-Net and the DAE using the loss functions
defined in Section 2. The DAE architecture is implemented following the work proposed in
[6], but modifying the networks to handle a 256× 256 input. In particular, we add encoding
and decoding blocks both in the Encoder and Decoder, considering 𝑛𝑒 and 𝑛𝑑 set to 5 and
7 respectively. The maximum number of epochs is set to 1000 and 500 for the DAE and the
Vector-net, respectively. The batch size is 32, the learning rate for the triplet loss is 10−5, and
2 · 10−4 for the 𝐿𝐷𝐴𝐸 . Adam optimizer is used with a decay set to 10−4.

Performance is evaluated in terms of accuracy (ACC), F1-score (F1) and Recall (R), as suggested



in the competition. It is worth noting that the evaluation step is performed only considering the
images belonging to 𝑈 and 𝑁𝑈 as test set, thus evaluating the hypothesis of the competition.
All the experiments were run in a 10-folds cross-validation (CV) setting, to better assess the
generalization ability of each approach, using Pytorch for the training of the Vector-Net and
the DAE and MATLAB 2020b for the classification task involving the SVM and the KNN. A
Linux workstation equipped with Intel(R) Core(TM) i7-10700KF CPU, 64 GB of DDR4 RAM and
a Nvidia RTX 3090 GPU is used.

We took part in the ImageCLEFmed GAN challenge [5] with 10 different submissions. As a
consequence, we have a partial evaluation of the experiments using also the real samples of test
set provided by the competition.

4. Results and Discussion

This section reports the results of the implemented methodology, including different variants. In
particular, Table 1 shows the performance of the experiments in CV setting, thus exploiting the
dataset provided by the ImageCLEFmed GAN challenge [5]. It consists of six sections, that differ
according to the network used for the fingerprints extraction step as detailed in the column Net.,
while the training strategy and the ML exploited for the classification are reported in columns
Stretegy, and ML Model respectively. For each vector extractor, the best values are reported in
bold.

Table 1 highlights that the fingerprints extracted with Vector-Net are able to provide a better
separation between 𝑈 ad 𝑁𝑈 in comparison with those obtained with the DAE. We argue
that this characteristic depends on the introduction of task-specific constraints during network
training. Indeed, the results achieved involving the DAE reveal that relying solely on shape and
texture information is not enough to determine supposed similarity among artificial images
and the samples used during the training of the generative model. Moreover, the presence of
the 𝑔 vectors in the "FULL" strategy negatively impacts performance, as a consequence of the
evident difference among the distributions of real 𝑝𝑟 and generated 𝑝𝑔 data. Some preliminary
experiments (not reported in this paper) focusing on the distinction of the elements of 𝐺 from 𝑅
showed that it is possible to separate the synthetic images from the real ones with high accuracy
(0.9970). Therefore, merging the fingerprints 𝑔 with �̃� during the training makes the ML model
exploit the dissimilarity of 𝑝𝑟 and 𝑝𝑔 , determining a boundary that includes in the same region
the representations of 𝑈 ad 𝑁𝑈 . In addition, it is worth noting that in the "FULL" strategy
the presence of the features of 𝐺 generates a very unbalanced dataset. Othe other hand, in the
"REAL" strategy, the model is forced to determine a separation among elements belonging to
the same distribution 𝑝𝑟 . This aspect also explains the reduced gap in the performance when
the Vector-Net(1,2) is considered in comparison with the other experiments. Indeed, Equations
1 and 2 ensure that 𝑑(𝑔, �̃�) +𝑚 < 𝑑(𝑔, 𝑛�̃�) and 𝑑(�̃�, 𝑔) +𝑚 < 𝑑(�̃�, 𝑛�̃�), thus enhancing the
separation among 𝑈 ad 𝑁𝑈 .

A subset of the conducted experiments has been submitted to the ImageCLEFmed GAN
challenge [5]. It is worth noting that only a part of the proposed variants has been implemented
before the deadline of the competition. Indeed, we started to address the problem of the relation-
ship between 𝑈 and 𝑁𝑈 and we continued after the end of the challenge. As a consequence, we



Table 1
Performance of the implemented experiments evaluated in 10-fold CV setting.

Net. Strategy ML Model Acc R F1

Vector-Net (1)

FULL
SVM-Linear 0.5694 0.4028 0.4833

SVM-2 0.6458 0.6250 0.6383
KNN 0.6111 0.6250 0.6164

REAL
SVM-Linear 0.7569 0.8750 0.7826

SVM-2 0.7639 0.8333 0.7792
KNN 0.7431 0.8333 0.7643

Vector-Net (1,2)

FULL
SVM-Linear 0.7987 0.9506 0.8221

SVM-2 0.7014 0.9444 0.7598
KNN 0.8264 0.9583 0.8466

REAL
SVM-Linear 0.9583 0.9444 0.9578

SVM-2 0.9653 0.9444 0.9645
KNN 0.9167 0.8889 0.9143

Vector-Net (1,2,3)

FULL
SVM-Linear 0.6181 0.8333 0.6857

SVM-2 0.5694 0.9861 0.6908
KNN 0.5764 0.7639 0.6433

REAL
SVM-Linear 0.8194 0.8472 0.8243

SVM-2 0.8056 0.8194 0.8082
KNN 0.7222 0.8611 0.7561

DAE (G,U)

FULL
SVM-Linear 0.4180 0.2773 0.3227

SVM-2 0.4805 0.6016 0.5366
KNN 0.5117 0.5781 0.5421

REAL
SVM-Linear 0.4512 0.4102 0.4277

SVM-2 0.6113 0.5391 0.5811
KNN 0.4824 0.2539 0.3291

DAE (G,NU)

FULL
SVM-Linear 0.4805 0.3477 0.4010

SVM-2 0.5215 0.6874 0.5896
KNN 0.5020 0.6836 0.5785

REAL
SVM-Linear 0.4785 0.5391 0.5083

SVM-2 0.5449 0.6133 0.5740
KNN 0.4805 0.7031 0.5751

DAE (G,U,NU)

FULL
SVM-Linear 0.5125 0.6375 0.5667

SVM-2 0.5875 0.9750 0.7027
KNN 0.6438 0.8875 0.7136

REAL
SVM-Linear 0.4625 0.4625 0.4625

SVM-2 0.4813 0.5000 0.4908
KNN 0.5000 0.5625 0.5294

only have a partial evaluation of the results considering the real images included in the test set.
Table 2 shows the performance obtained by submitting the variants with the SVM classifier, and
the "FULL" training strategy. The column Submission details the name of the submission file and
in the last row the experiment "PicusLabMed_submission10.csv" is generated by implementing
a voting strategy among the other results. As we expected from the results reported in Table 1,
the presence of the 𝑔 representations during the training of the ML models does not lead to
good results. Moreover, the experiments with the Vector-Net (1,2) present overfitting showing
good performance in Table 1, but low values in Table 2. We argue that this characteristic may
reflect the weakness of the models when applied to a test set with different characteristics, thus



highlighting the need for a more robust approach.

Table 2
Performance of the implemented experiments on the test set provided by the competition using the
training strategy "FULL"

Submission Net. ML Model Acc R F1
PicusLabMed_submission1.csv

Vector-Net (1)
SVM-Linear 0.5050 0.3800 0.4343

PicusLabMed_submission2.csv SVM-2 0.5050 0.4400 0.4706
PicusLabMed_submission3.csv

Vector-Net (1,2)
SVM-Linear 0.4750 0.3800 0.4199

PicusLabMed_submission4.csv SVM-2 0.5150 0.6000 0.5530
PicusLabMed_submission5.csv

Vector-Net (1,2,3)
SVM-Linear 0.4550 0.3900 0.4171

PicusLabMed_submission6.csv SVM-2 0.5250 0.7900 0.6245
PicusLabMed_submission7.csv DAE (G,U) SVM-Linear 0.5150 0.0500 0.0934
PicusLabMed_submission8.csv DAE (G,NU) SVM-Linear 0.5300 0.9400 0.6667
PicusLabMed_submission9.csv DAE (G,U,NU) SVM-Linear 0.5250 0.6100 0.5622
PicusLabMed_submission10.csv - - 0.5050 0.4700 0.4870

5. Conclusions

The surprising performance achieved by generative models in the creation of realistic synthetic
images has raised the need to address considerations related to data privacy and ethical implica-
tions, especially in sensitive domains, such as the medical one. To this aim the ImageCLEFmed
GAN challenge [5] has been organized, asking participants to test the hypothesis of the similar-
ity between the set of real images used during the development of the generative model and
the synthetic samples. In this paper, we described the methodology we implemented to take
part in the competition, designing experiments that analyze the impact of two diverse CNNs
in the fingerprints extraction step and the ability of the ML models in the classification with
different training strategies. Indeed, Vector-Net and the DAE represent two approaches where
the former explicitly exploits the constraints related to the hypothesis to be tested, while the
latter aims to investigate if information about the texture and the shape of the image contribute
to the evaluation of the supposed similarity. Despite the poor performance obtained from
some experiments, we argue that there is the need to explore other approaches before ruling
out all the concerns regarding the application of synthetic images in medical field. To this
aim, we will consider the obtained results as a baseline, improving in future works the set of
constraints required to extract fingerprints able to reveal the images used during the training of
the generative models.

Acknowledgments

This work is part of the POR FESR CAMPANIA 2014-2020 Synergy for COVID project (CUP
H69I22000710002).



References

[1] D. P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114
(2013).

[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
Y. Bengio, Generative adversarial networks, Communications of the ACM 63 (2020)
139–144.

[3] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, Advances in Neural
Information Processing Systems 33 (2020) 6840–6851.

[4] B. Ionescu, H. Müller, A. Drăgulinescu, W. Yim, A. Ben Abacha, N. Snider, G. Adams,
M. Yetisgen, J. Rückert, A. García Seco de Herrera, C. M. Friedrich, L. Bloch, R. Brün-
gel, A. Idrissi-Yaghir, H. Schäfer, S. A. Hicks, M. A. Riegler, V. Thambawita, A. Storås,
P. Halvorsen, N. Papachrysos, J. Schöler, D. Jha, A. Andrei, A. Radzhabov, I. Coman, V. Ko-
valev, A. Stan, G. Ioannidis, H. Manguinhas, L. Ştefan, M. G. Constantin, M. Dogariu,
J. Deshayes, A. Popescu, Overview of ImageCLEF 2023: Multimedia retrieval in medical,
socialmedia and recommender systems applications, in: Experimental IR Meets Multilin-
guality, Multimodality, and Interaction, Proceedings of the 14th International Conference
of the CLEF Association (CLEF 2023), Springer Lecture Notes in Computer Science LNCS,
Thessaloniki, Greece, 2023.

[5] A. Andrei, A. Radzhabov, I. Coman, V. Kovalev, B. Ionescu, H. Müller, Overview of
ImageCLEFmedical GANs 2023 task – Identifying Training Data "Fingerprints" in Synthetic
Biomedical Images Generated by GANs for Medical Image Security, in: CLEF2023 Working
Notes, CEUR Workshop Proceedings, CEUR-WS.org, Thessaloniki, Greece, 2023.

[6] Z. Shu, M. Sahasrabudhe, R. Alp Guler, D. Samaras, N. Paragios, I. Kokkinos, Deforming
autoencoders: Unsupervised disentangling of shape and appearance, in: ECCV, 2018.

[7] M. Lin, Q. Chen, S. Yan, Network in network, arXiv preprint arXiv:1312.4400 (2013).
[8] F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face recognition

and clustering, in: Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 815–823.

[9] G. Chechik, V. Sharma, U. Shalit, S. Bengio, Large scale online learning of image similarity
through ranking., Journal of Machine Learning Research 11 (2010).

[10] C. Cortes, V. Vapnik, Support-vector networks, Machine learning 20 (1995) 273–297.
[11] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE transactions on information

theory 13 (1967) 21–27.
[12] H. He, Y. Bai, E. A. Garcia, S. Li, Adasyn: Adaptive synthetic sampling approach for

imbalanced learning, in: 2008 IEEE international joint conference on neural networks
(IEEE world congress on computational intelligence), IEEE, 2008, pp. 1322–1328.


	1 Introduction
	2 Methods
	2.1 Vector-Net for fingerprint extraction
	2.2 DAE for unsupervised fingerprint extraction

	3 Experimental Set-Up
	4 Results and Discussion
	5 Conclusions

