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Abstract  
This work discusses the participation of CS_Morgan in the Concept Detection and Caption 

Prediction tasks of the ImageCLEFmedical 2023 Caption benchmark evaluation campaign. 

The goal of this task is to automatically identify relevant concepts and their locations in images, 

as well as generate coherent captions for the images. The dataset used for this task is a subset 

of the extended Radiology Objects in Context (ROCO) dataset. The implementation approach 

employed by us involved the use of pre-trained Convolutional Neural Networks (CNNs), 

Vision Transformer (ViT), and Text-to-Text Transfer Transformer (T5) architectures. These 

models were leveraged to handle the different aspects of the tasks, such as concept detection 

and caption generation. In the Concept Detection task, the objective was to classify multiple 

concepts associated with each image. We utilized several deep learning architectures with 

‘sigmoid’ activation to enable multilabel classification using the Keras framework. We 

submitted a total of five (5) runs for this task, and the best run achieved an F1 score of 0.4834, 

indicating its effectiveness in detecting relevant concepts in the images. For the Caption 

Prediction task, we successfully submitted eight (8) runs. Our approach involved combining 

the ViT and T5 models to generate captions for the images. For the caption prediction task, the 

ranking is based on the BERTScore, and our best run achieved a score of 0.5819 based on 

generating captions using the fine-tuned T5 model from keywords generated using the pre-

trained ViT as the encoder. 
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1. Introduction 

Generating accurate captions and concepts for biomedical images through automated processes 

poses a significant challenge in the field of artificial intelligence (AI). Successfully addressing this 

challenge necessitates the utilization of techniques from Computer Vision to comprehend the 

underlying concepts within the image, as well as the ability to grasp the relationships that exist among 

these concepts [1-2]. Additionally, techniques from natural language processing (NLP) are crucial for 

generating descriptive text that effectively represents the content of the image. 
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Over the past decade, remarkable advancements have been achieved in leveraging Deep Learning 

methodologies to automatically generate clinical reports and captions based on medical images. The 

primary objective of these advancements is to support healthcare professionals in making precise 

decisions and enhance the efficiency of the diagnostic process [3]. 

By employing Computer Vision techniques, AI systems can interpret the complex visual elements 

and structures within biomedical images, enabling them to identify and understand the key concepts 

and features depicted. This involves tasks such as object recognition, segmentation, and image 

classification [1-3]. 

Moreover, the AI system must possess the capability to establish connections and associations 

among the identified concepts within the image. This contextual understanding is vital for generating 

coherent and meaningful descriptions [4-5]. Natural language processing techniques come into play 

here, as they facilitate the conversion of the interpreted concepts into human-readable text [4-5]. This 

process involves tasks such as language modeling, semantic analysis, and text generation [4-5]. 

The integration of these techniques from both Computer Vision and NLP has proven instrumental 

in automating the generation of captions and concepts for biomedical images [4-5]. This advancement 

in AI technology provides valuable support to clinicians by assisting them in making accurate and 

informed decisions in a timely manner [5]. By reducing the time required for diagnosis and enhancing 

the comprehensiveness of medical reports, these AI systems contribute to improving patient care and 

overall healthcare outcomes [5]. 

2. Dataset and Task Overview 

The ImageCLEFmedical 2023 caption dataset [6-7] was divided into the training, validation, and 

test set. The training set contains 60,918 radiology images, the validation set contains 10,437 radiology 

images while the test set contains 10,473 radiology images. For the training and validation set, every 

image had a corresponding textual description (caption) that was provided. 

The Concept Detection Task is an important step in achieving automatic image captioning and scene 

comprehension in the field of medical images [6]. Its purpose is to identify and locate relevant concepts 

within a large collection of medical images. By analyzing the visual content of the images, this subtask 

lays the groundwork for understanding the various elements that make up captions. Furthermore, these 

identified concepts can be utilized for context-based image retrieval and information retrieval. The 

evaluation of this task is performed using set coverage metrics, including precision, recall, and their 

combinations. These metrics measure the extent to which the set of concepts detected by the system 

aligns with the ground truth. In the Concept Detection Task, a subset of the UMLS 2022AB release was 

employed to generate the concepts. UMLS offers a range of tools and resources that empower users to 

access, comprehend, and navigate diverse health-related terminologies, including medical codes, 

classifications, ontologies, and databases. Within the biomedical domain, the UMLS employs a Concept 

Unique Identifier (CUI) as a specific identifier to represent distinct concepts. Each concept present in 

UMLS is assigned a CUI, which ensures a standardized and consistent means to reference and establish 

connections among related information across various terminologies and resources within the UMLS 

framework. ImageCLEF medical 2023 training dataset [6-7] has 227,156 labels/concepts and the 

validation dataset combinedly has 40,042 labels/concepts. Among these, 2,125 unique concept 

identifiers are used once or multiple times, because each image is labeled by one/multiple CUIs. Figure 

1 illustrates the frequency of the most CUIs (both from train and valid dataset) and their corresponding 

medical terms. 



 
Figure 1: The most 10 frequent CUIs and their corresponding medical terms 

 

On the other hand, when making a medical inference or captions on medical images, it is not uncouth 

to identify key parts of the image that can be combined to make a meaningful deduction on its possible 

contents [6-7]. This approach to deducing meaning from images draws some similarities with how 

visual transformers process image data. In recent times, transformers, which are based on the attention 

mechanism [8], were primarily utilized in sequence modeling and machine translation tasks. However, 

Transformers have gradually emerged as the predominant deep learning models for many NLP tasks 

[9]. Visual transformers in a similar manner to the application of Transformers in NLP tasks place 

importance on certain parts of the image features when making inference on an image. This is different 

from legacy convolutional neural networks (CNN) models that make inference on an image based on 

the entire image feature space. The mechanism of action of visual transformers suit image captioning 

tasks better than CNN models since the words in the caption typically only describe a part of the image. 

This paper involves the annotation of medical images to generate textual descriptions (captions) using 

the dataset under the ImageCLEFmed 2023 caption prediction task [6-7], which is a subset of a larger 

Radiology Objects in COntext (ROCO) dataset [10]. Our last participation involved the use of a visual 

transformer that consisted of an encoder-decoder architecture where meaningful image representations 

were generated from the encoder region, attention was then subsequently placed on these image 

representations to iteratively generate a sequence of words in the decoder. This year’s participation 

builds on the previous work by replacing the trained decoder with a fine-tuned pretrained language 

model. The encoder was also replaced with pretrained models so the millions of mappings learned from 

the pretrained models can be leveraged for better results. This year, the evaluation criteria for the results 

obtained is given as the BERTScore between the generated captions and the ground truth captions. 

3. Methods 

We approached the Image Captioning and Concept detection tasks as two separate problems. The 

methods used in our participation are described below. 

3.1. Medical Concept Detection Task 

The task of concept detection is often viewed as a multi-label classification problem. This means 

that it involves predicting one or more concept labels for each instance of an image. In other words, an 



image can be associated with multiple classes or concepts simultaneously, and these concepts are not 

mutually exclusive. The goal is to identify and assign the relevant concept labels to the image 

accurately, allowing for the possibility that an image may be associated with zero or more concepts. 

The approach implemented here for the concept detection task can be illustrated by addressing the 

following steps. 

3.1.1. Data Preparation 

The dataset used for caption prediction tasks consists of radiology images along with their 

corresponding labels or annotations. You can refer to Figure 3 and 4 for visual representations of this 

dataset. During the data preparation phase, both the images and labels undergo preprocessing. For all 

the submission runs, the image preprocessing techniques involve reshaping, rotation (at 45 or 90 

degrees), and flipping (horizontally and vertically) augmentation techniques. Reshaping is performed 

to obtain two different image shapes, namely (224 x 224 x 3) and (331 x 331 x 3), as required by the 

pretrained Convolutional Neural Network (CNN) models used for the multi-label prediction task. This 

allows the images to be compatible with the CNN models and ensures consistent input dimensions for 

the network. As for the labels or annotations, they are transformed into a vectorized format using the 

Multi-label Binarizer method from the scikit-learn library. This method represents the multiple labels 

or Clinical Unique Identifiers (CUIs) as binary vectors. In this dataset, there are a total of 2,125 unique 

CUIs used in both the training and validation sets. 

The steps of reshaping the images to match the requirements of the CNN models and converting the 

multi-label annotations into a binary representation using the Multi-label Binarizer method from scikit-

learn ensure that the dataset is appropriately formatted and ready for use in the caption prediction tasks. 

3.1.2. Model Preparation 

To tackle the task of concept detection, we approached it by submitting five different attempts. For 

the first two runs, we utilized two pre-trained convolutional neural networks (CNNs) such as 

DenseNet169 [11] and DenseNet121 [11], which were trained on datasets like ImageNet [12] and 

CheXNet [13], respectively. On the fourth run we employed the Vision Transformer (ViT) [14] for 

image feature extraction followed by the k-nearest neighbors (kNN) algorithm to find the most similar 

training/validation images for a test image. 

Furthermore, we employed an ensemble method based on the weighted average technique, using the 

ConvNeXtLarge [15] and NasNetLarge [16] CNN architectures on the third run. This involved 

combining the predictions from these models in a weighted manner. Additionally, we applied a majority 

voting technique-based ensemble method on several ImageNet weight based pre-trained CNNs 

including ResNet50 [17], Xception [18], VGG16 [19], and InceptionResNetV2 [20] on our fifth run. 

For a more comprehensive understanding of these submission runs, you can refer to Section 4.1, 

which provides further details. 

3.1.3. Training and Prediction 

We adopted the Keras framework to carry out the training and prediction processes. All the models 

mentioned above were constructed by initializing the Adam optimizer and compiled using binary cross-

entropy. This choice was made instead of using categorical cross-entropy to treat each output label as 

an independent Bernoulli distribution, allowing for the possibility that the labels are not mutually 

exclusive. 

Once the training is completed, both the models and label binarizers are saved to a disk, specifically 

a cloud storage system, for future use. During the prediction phase on the test set, these saved models 

and binarizers are loaded to facilitate the prediction process. 

To ensure efficient computation and handle the high memory requirements of the training process, 

we acquired a high-performance computing infrastructure equipped with four NVIDIA® T4 GPU 



drivers (4-units) from a cloud service provider. These resources were utilized in parallel using the 

TensorFlow 2.11 mirrored strategy, which allows for distributed training across multiple GPUs. 

Furthermore, the training procedures were conducted on the VertexAI workbench, a component of 

the Google Cloud platform specifically designed for machine learning tasks. This choice of platform 

provided a convenient and robust environment for performing the necessary computations and 

managing the overall training process. 

3.2. Medical Image Captioning Task 

The methods employed in the image captioning task majorly involved the use of pretrained models. 

The first approach involved training a Stochastic Gradient Descent (SGD) [21] classifier that will return 

the most similar captions for a query image. The SGD classifier was trained on bottleneck features 

obtained from two types of pretrained models, Mask Region with Convolutional Neural Networks 

(MRCNN) [22] pretrained on the MSCOCO dataset [23] and Google Vision Transformer (ViT) [14] 

trained on ImageNet. The second approach was divided into two stages with the first stage involving 

training a transformer model to sequentially generate keywords based on an image input. The MRCNN 

[22] and ViT [14] pretrained model acted as the encoder part of the transformer while a decoder was 

trained to sequentially generate keywords based on the image embeddings and the previously seen 

keywords. The second stage involved fine-tuning different types of pretrained language models to 

generate meaningful captions from the keywords generated from the first stage. Generative Pretrained 

Transformer 2 (GPT2) [24] and Google T5 [25] were fine-tuned for this purpose. 

3.2.1. Text Preprocessing (Generating Keywords from Captions) 

The ImageCLEFmedical 2023 caption training dataset [6-7] has a corpus of 23,237 words. An 

analysis of the distribution of these words shows that only about 295 words occur in more than 500 

captions with there being 19,877 words that occur in less than 20 captions out of the entire 60,918 image 

captions. The keywords were selected as the 500 topmost occurring words excluding English stop words 

like “and”, “when”, “if”, “a”, “the” etc. (See Table 1 for some instances). 

Table 1 
Example of Captions and corresponding Keywords 

# Caption Keywords 

1 epicardial vessel from the distal right coronary 
artery white arrow collateralize the diagonal 

branch black arrow 

vessel distal right coronary artery 
white arrow branch black arrow 

2 plain xray of the patient before surgery show an 
extensive soft tissue swell 

plain xray patient surgery extensive 
soft tissue 

3 computed tomography show a renal transplant lie 
in the right iliac fossa and a polycystic leave native 

kidney arise from within the patient’s pelvis 

tomography renal right iliac fossa 
leave kidney within pelvis 

3.2.2. Image Feature Encoding 

We chose MRCNN [22] and ViT [14] as our feature encoders to obtain region/object-based 

encodings of the images.  

The MRCNN [22] architecture was developed as an object instance segmentation model that adopts 

a two-stage approach which includes a first stage that proposes candidate bounding boxes for detected 

objects (Region Proposal Networks, RPN) and a second stage that predicts a class, bounding box offset, 

and a binary mask for each region of interest (ROI). The region proposal features just before the 

classification layer was adopted as the image encodings. These features were obtained from a version 

of the MRCNN [22] architecture pretrained on the MSCOCO dataset [23]. The encoded 16 x 1024-

dimension image embeddings are subsequently passed into other parts of the image captioning model. 



The ViT [14] architecture converts 16x16 patches of an image input into flattened linear projects 

that are combined with the positional embeddings and passed as a sequence of patch embeddings to an 

encoder. A classification multi-layer perceptron is placed on top of the encoder to map the encoded 

embeddings to predicted classes. 1,024-dimension features were obtained from the pooling layer just 

before the classification layer of the pre-trained ViT [14] model. These features represent the image 

embeddings. 

3.2.3. SGD classifier + pre-trained features 

The SGD classifier was trained using the scikit’s library [26]. This involved training a Multioutput 

Classifier using an SGD classifier wrapped in a OneVsRest Classifier as the estimator. The classifier 

was also trained with scikit’s adaptive learning rate option alongside the default options for the 

classifier. The same training parameters were applied to train the classifier on the MRCNN [22] and 

ViT [14] features. The results were generated from the classifier by obtaining the encoded features from 

the pretrained MRCNN [22] and ViT [14] models and querying the features on the classifier to return 

a caption that is most similar based on the query feature. 

3.2.4. Keyword Transformer Model (KTM) 

  The transformer model used in this task consists of an encoder and decoder model that receives a 

224 x 224 image alongside a tokenized text input padded up to a maximum length of 20 tokens including 

a start and end token. 

3.2.4.1. Encoder-Decoder 

The encoder model consists of a pretrained model that receives a 224 x 224 x 3 image input and 

gives bottleneck feature output of 16 x 1,024 for the MRCNN [22] model and 1,024 for the ViT [14] 

model. 

The decoder model learns to map the image embedding output of the encoder model to text 

embeddings. The text embeddings are an addition of the text tokens (which are the indexes of the 

caption word in the corpus) passed to a Keras text embedding layer and the positional encodings of the 

words in the generated captions. The decoder auto-regressively tracks the positions of the predicted 

words as the encoder output is passed as the keys and value to the decoder while the prior decoder 

predictions are passed as the decoder query for which a next word is predicted. 

The decoder architecture consists of an input layer (receives the encoder and text tokens) => the 

text tokens are passed to a text embedding layer (text embeddings + positional encodings) => the result 

of the text embedding layer is passed to a dropout layer => the result of the dropout layer and the image 

encoding output is passed to a decoder layer which consists of a causal self-attention followed by a 

cross attention layer, the text encodings are passed to the self-attention layer learn the relations between 

the words. The result of the self-attention is then passed to the cross-attention layer alongside the 

encoder output => the result of the cross-attention layer is then passed to a feed forward layer => the 

output of the decoder layer is passed to a dense layer with the number of neurons equivalent to the 

vocabulary size of the corpus. Figures 2 and 3 illustrate the corresponding decoder architectures. 

 

 
Figure 2: Image of the decoder layer used in the described model. 



 
Figure 3: Image of the decoder model used in the described model. 

3.2.4.2. Training 

All the images from the ImageCLEFmedical 2023 caption dataset [6-7] were resized to 224 x 224 

x 3 and normalized by dividing the pixel values by 255. The KTM was trained with an Adam optimizer 

[27] with a masked version of the sparse categorical entropy loss, a learning rate set at 0.001 and a batch 

size of 256.  The decoder model was trained using a 256-feature projection dimension and a feed 

forward dimension of 256. The decoder was also trained on 8 attention heads and a stack of 16 decoder 

layers. The training was set for 200 epochs with early stopping applied and the last best model restored 

after a patience of 10. 

3.2.5. Keyword to Caption Model (KTC) 

The KTC model involved fine-tuning pretrained language models to generate meaningful caption 

sentences from keywords. GPT2 [24] and T5 [25] were fine-tuned on the ImageCLEFmedical 2023 

caption dataset [6-7]. GPT-2 [24] is a transformers model that was pre-trained on a very large corpus 

of English data in a self-supervised manner [28]. The model largely follows after the OpenAI GPT 

model architecture [29] with few modifications including the layer normalization being moved to the 

input of each sub-block, an additional layer normalization being added after the final self-attention 

block, scaling the weights of residual layers at initialization by a factor of 1/ √ N where N is the number 

of residual layers, an expansion of the vocabulary to 50,257, an increase in the context size from 512 to 

1,024 tokens [24]. The T5 [25] architecture follows the general transformer approach as originally 

proposed [8]. This involves mapping an input sequence of tokens to a sequence of embeddings that is 

subsequently passed into the encoder, with the encoder consisting of a stack of “blocks”, each of which 

comprises a self-attention layer and a small feed-forward network. Layer normalization [30] is applied 

to the input of each subcomponent while a residual skip connection is used to add each subcomponent’s 

input to its output. Dropout [31] is applied within the feed-forward network, on the skip connection, on 

the attention weights, and at the input and output of the entire stack. The T5 [25] decoder has a similar 

structure to the encoder except that on top of the self-attention layer that attends to the output of the 

encoder [25]. 

3.2.5.1. Fine-Tuning 

The keywords were passed to the models as input while the captions were passed as the expected 

output. Both the input and output data were tokenized and padded, the input data was padded up to a 

maximum length of 20, while the output data was padded up to a maximum length of 50. GPT2 [24] 



was fine-tuned for 25 epochs with an Adam weight decay optimizer [27], a learning rate of 0.0005 and 

a weight decay rate of 0.01. T5 [25] was fine-tuned for 41 epochs with a Adafactor optimizer, a learning 

rate of 0.0001, decay rate of 0.8 and a clip threshold of 1.0. 

4.   Description of Runs and Results 

We submitted 13 runs in total for this year’s participation, 8 runs were submitted for the caption 

prediction task while 5 runs were submitted for the concept detection task as shown in Table 2 and 3. 

For Concept Detection, the primary evaluation metric was the F1 score, we obtained a best score of 

0.4834 for Run_2 and ranked 6th out of 9 participants. For the Caption Prediction task, the primary 

evaluation metric is the BERTScore, additional evaluation metrics used include ROUGE, METEOR, 

CIDEr, the BLEU score. The best score recorded was for Run_10 with a BERTScore of 0.2549. The 

best scores are in boldface. Overall, we ranked 6th out of 9 groups for the Concept Detection task and 

ranked 9th out of 13 groups for the Caption Prediction task. 

4.1. Medical Concept Detection Task 

Table 2 shows the summary of the run submissions for the concept detection task and respective 

F1 scores. 

Table 2 
List of the Run Submissions with the corresponding F1-scores** 

Submissions Architecture Pretrained 
Weights 

F1 
Score* 

F1-Score 
Manual* 

Run_1 DenseNet 169 Imagenet 0.4368 0.8542 

Run_2 DenseNet 121 CheXNet 0.4834 0.8901 

Run_3 NasNetLarge and ConvNeXtLarge with 
Weighted Avg. Ensemble 

Imagenet 0.0060 0.1444 

Run_4 ViT (Feature Extraction) and kNN 
(k=14) 

Imagenet 0.1008 0.3728 

Run_5 ResNet50, Xception, VGG16, and 
InceptionResNetV2 with Ensemble/Late 

Fusion (Majority Voting Technique) 

Imagenet 0.4791 0.8582 

*The F1 Scores are found from https://fh-dortmund.sciebo.de/s/ZdPRXcPfMZ5cbUy 
** Source: https://www.imageclef.org/2023/fusion 
 
The submitted runs for the Concept Detect tasks are described as follows: 

1. Run_1_Dense169: Run 1 corresponds to a model that uses the DenseNet169 [11] architecture. 

DenseNet169 [11] is a convolutional neural network architecture that has shown promising 

performance in various computer vision tasks, including multi-label classification of medical 

images [6, 7]. It is characterized by its densely connected layers, where each layer is directly 

connected to every other layer in a feed-forward fashion. When using DenseNet169 [11] for 

multi-label prediction in Keras, it is common to leverage pretraining on the Imagenet [12] 

dataset. Imagenet [12] is a large-scale dataset that consists of millions of labeled images from 

thousands of categories [12]. By utilizing transfer learning and fine-tuning techniques, we have 

adapted the pretrained DenseNet169 [11] model to our concept detection task using Keras 

libraries. A Dense layer with 2,125 unique number classes is used on the top followed by a 

flatten layer and global average pooling layer. 

 

https://fh-dortmund.sciebo.de/s/ZdPRXcPfMZ5cbUy
https://www.imageclef.org/2023/fusion


2. Run_2_Dense121: Run 2 corresponds to a model that uses the pre-trained DenseNet121 [11] 

architecture with CheXNet [13] weights. The original paper of CheXNet [13] trained on 

ChestX-ray14 dataset [13] is an architecture of 121 CNN layers to detect labels for various 

pathologies based on more than 100,000 chest X-rays images. This fine-tuned model shows 

promising results among the five submissions we made for the task. Fig. 4 illustrates our 

implemented model for this run. 

               

 
Figure 4: Architecture of Run_2_Dense121 (CheXNet) 

 
3. Run_3_Ensemble_Convnext_Nasnet: Run 3 corresponds to a model that uses an ensemble 

of architectures, namely NasNetLarge [16] and ConvNeXtLarge [15], with a weighted average 

approach (Fig. 5).  

 
Figure 5: Architecture of Run_3_Ensemble_Convnext_Nasnet 

 

NasNetLarge is a neural architecture search (NAS) network that automatically searches for an 

optimal CNN architecture [16]. It utilizes a reinforcement learning-based approach to discover 

an architecture that is well-suited for a given task. On the other hand, ConvNeXtLarge is 

another CNN architecture that focuses on capturing complex patterns and relationships within 

images [15]. It employs grouped convolutions and split-transform-merge operations to enhance 

its representation power and performance [15]. We implemented weighted average ensemble 

technique to combine predictions from these two architectures. Each model's predictions were 

weighted based on their validation accuracy. The purpose of the weighted average ensemble 

was to leverage the strengths of these models. 

 
4. Run_4_ViT_kNN: Run 4 corresponds to a model that uses the pre-trained (ImageNet) Vision 

Transformer (ViT) architecture for feature extraction, combined with a k-nearest neighbors 

(kNN) approach with k=14. By leveraging self-attention mechanisms, ViT can capture global 

context and long-range dependencies within an image, leading to effective feature extraction 

and image understanding [14]. On the other hand, k-Nearest Neighbors (kNN) assigns labels to 

test samples based on the labels of the k most similar training and validation samples. In this 

case, kNN is applied to the features extracted by ViT. By finding the k nearest training images 

based on their feature similarity, the algorithm utilizes their known labels as the predicted labels 

for the test image. The value of k=14 has been determined through a process of experimentation 

and evaluation. The F1 scores for 100 different random values of k, ranging from 5 to 500, have 



been calculated and compared to identify the value that yields the best performance. This 

process ensures that the chosen value of k provides the optimal balance between capturing the 

diversity of similar images and minimizing potential noise or outliers. Figure 6 depicts the 

architecture used on this fourth run. 

 
Figure 6: Architecture of Run_4_ViT_kNN 

 
5. Run_5_Ensemble_ResNet_VGG_Xcep_Incept: Run 5 corresponds to a model that uses an 

ensemble (majority voting technique based) of multiple architectures (Fig. 7), including 

ImageNet [12] weight based pre-trained ResNet50 [17], Xception [18], VGG16 [19], and 

InceptionResNetV2 [20]. The ensemble approach utilizes a majority voting technique for 

decision-making. The ResNet50 architecture consists of residual blocks with skip connections, 

allowing the network to learn more complex representations. Xception is an extension of the 

Inception architecture that replaces the traditional convolutional layers with depth wise 

separable convolutions. VGG16 is a deep convolutional neural network architecture with 16 

layers. Ensemble methods combine the predictions of multiple models to improve overall 

performance and robustness. The majority voting technique is a simple ensemble approach 

where the final prediction is determined by selecting the label that receives the most votes from 

individual models. See Figure 7 for further illustration of the architecture. 

 

 
Figure 7: Architecture of Run_5_Ensemble_ResNet_VGG_Xcep_Incept 

4.2. Medical Image Captioning Task 

The submitted successful runs for the Caption Prediction tasks are described as follows: 



1. Run_4: Run 4 involved using the trained KNN classifier used to retrieve the most similar 

caption based on extracted features from the pre-trained ViT [8] model. 

2. Run_5: Run_5 involved using the trained KNN classifier used to retrieve the most similar 

caption based on extracted features from the pre-trained MRCNN [10] model. 

3. Run_6: Run_6 involved using the trained transformer model described in section 2.2.4 to 

generate keywords using the pre-trained ViT [8] as the encoder.  

4. Run_8: Run_8 involved using the trained transformer model described in section 2.2.4 to 

generate keywords using the pre-trained MRCNN [10] as the encoder. 

5. Run_9: Run_9 involved generating captions using the fine-tuned T5 [12] model from 

keywords generated in Run_8. 

6. Run_10: Run_10 involved generating captions using the fine-tuned T5 [12] model from 

keywords generated in Run_6.  

7. Run_12: Run_12 involved generating captions using the fine-tuned GPT2 [11] model from the 

keywords generated in Run_6. 

8. Run_13: Run_13 involved generating captions using the fine-tuned GPT [11] model from the 

keywords generated in Run_8. 

 

Table 3 shows the summary of the run submissions for the caption prediction task and the 

respective BERTScore, ROUGE, BLEURT, BLEU, METEOR, CIDEr, and CLIP Score values. Our 

best scores and explanations for the corresponding performance metrices are as follows. 

• BERTScore = 0.5819: BERTScore or Bidirectional Encoder Representations from 

Transformers measures the similarity between machine-generated text and reference text 

based on contextual embeddings. The BERTScore ranges from 0 to 1, with higher scores 

indicating greater similarity or better quality. In this case, a BERTScore of 0.5819 suggests 

that the machine-generated text has a moderate level of similarity to the reference text. 

• ROUGE = 0.1564: ROUGE or Recall-Oriented Understudy for Gisting Evaluation score 

indicates the level of overlap between machine-generated captions and reference captions, 

as measured by the ROUGE evaluation metrics (e.g., ROUGE-N (n-gram overlap), 

ROUGE-L (longest common subsequence), and ROUGE-S (skip-bigram co-occurrence)). 

ROUGE scores typically range from 0 to 1, with higher scores indicating greater similarity 

or better quality. The score of 0.1564 suggests a relatively low level of overlap between the 

machine-generated output and the reference text. 

• BLEURT = 0.2649: BLEURT or Bilingual Evaluation Understudy with Representations 

from Transformers score of 0.2649 indicates the moderate level of quality or similarity of 

a machine-generated translation compared to human reference translations, as measured by 

the BLEURT evaluation metric. BLEURT scores typically range from negative values to 

positive values, with higher positive scores indicating better quality or similarity. This 

metric utilizes a pre-trained transformer-based model to calculate the similarity score. 

• BLEU = 0.1331: BLEU or Bilingual Evaluation Understudy is an evaluation metric used 

to measure the quality of machine translations. BLEU scores range from 0 to 1, with higher 

scores indicating better translation quality. The score of 0.1331 suggests a relatively low 

level of translation quality. Moreover, it measures the precision of n-grams (commonly 

unigrams, bigrams, trigrams, etc.) in the machine-generated translation compared to the 

reference translations. 

• METEOR = 0.0568: METEOR or Metric for Evaluation of Translation with Explicit 

Ordering score of 0.0568 is an evaluation metric used to measure the quality of machine 

translations. METEOR scores typically range from 0 to 1, with higher scores indicating 

better translation quality. METEOR considers both lexical and syntactic aspects of 

translation quality. 

• CIDEr = 0.1731: CIDEr or Consensus-based Image Description Evaluation is used in 

image captioning tasks to assess the quality of generated captions. CIDEr scores typically 

range from 0 to 1, with higher scores indicating better caption quality. CIDEr considers the 

consensus among reference captions and encourages diversity in the generated captions. 

Here, the score represents a relatively low level of caption quality. 



• CLIP Score = 0.7771: CLIP (Contrastive Language-Image Pretraining) is a method 

developed by OpenAI to measure the proximity of encoded text and image vectors. The 

CLIP score-based Cosine similarity ranges from +1 to -1. Here the calculated score of 

0.7771 represents moderate identical vectors. 

 
Table 3 
List of the Run Submissions ranked by corresponding BERTScores** 

Runs BERTScore* ROUGE* BLEURT* BLEU* METEOR* CIDEr* CLIP Score* 

Run_4 0.5791 0.1541 0.2649 0.1331 0.0568 0.1731 0.7771 

Run_5 0.5508 0.1070 0.2373 0.1040 0.0351 0.0481 0.7165 

Run_6 0.5438 0.1107 0.1817 0.0026 0.0329 0.0925 0.7582 

Run_8 0.5087 0.0264 0.1205 0.0034 0.0107 0.0125 0.6819 

Run_9 0.5419 0.0924 0.1735 0.0406 0.0210 0.0187 0.6821 

Run_10 0.5819 0.1564 0.2242 0.0566 0.0436 0.0840 0.7593 

Run_12 0.5558 0.1272 0.2569 0.1199 0.0344 0.0164 0.7338 

Run_13 0.5481 0.1144 0.2435 0.1180 0.0323 0.0142 0.6910 

*The scores are found from  https://fh-dortmund.sciebo.de/s/ZdPRXcPfMZ5cbUy 
** Source: https://www.imageclef.org/2023/fusion 

5. Conclusion 

This working note paper describes the approaches and outcomes of the CS_Morgan group's 

involvement in the ImageCLEFmedical 2023 Caption task. We participated in both the Concept 

Detection and Caption Prediction tasks within this evaluation. Our most successful results were 

obtained by employing a Convolutional Neural Network (CNN) architecture for concept detection and 

transformer-based methods, specifically ViT and T5, for the caption prediction task. 

Looking ahead, we intend to further investigate Transformers that are tailored to the medical domain 

and utilize improved fusion mechanisms. This area of research has gained significant interest in the 

medical field as it enables the capture of global context, surpassing the capabilities of CNNs, which 

primarily focus on local receptive fields. We believe that exploring these domain-specific Transformers 

will enhance our future performance in the ImageCLEFmedical task. 
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