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Abstract
Generative adversarial networks (GANs) have emerged as powerful tools for generating realistic images
in various domains, including healthcare and medicine. However, concerns surrounding the privacy and
security of personal data have become prominent. This study investigates the presence of fingerprints in
synthetic medical images generated by GANs, which may indicate traces of the real images used during
training and raise concerns about the sharing and limitations imposed by sensitive medical data. To
address this, we analyze the texture characteristics of real and synthetic images from the ImageCLEF2023
Medical GANs challenge datasets, utilizing a range of texture descriptors and analysis methods to identify
discernible patterns within the synthetic image data and determine the source images employed for
training. We calculate the cumulative distribution function (CDF) of texture feature maps and apply the
Wasserstein distance to compare the CDFs of the query and generated images. A binary classifier is
trained to predict the utilization of the query image in generating each GAN image. The obtained results
demonstrate balanced performance across various evaluation metrics, with the model exhibiting good
generalization to the challenge test set, achieving an accuracy of 0.54 and an F1-score above 0.5. Our
findings provide valuable insights into the security and privacy considerations when generating and
utilizing artificial medical images in real-life scenarios.
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1. Introduction

Generative Adversarial Networks (GANs) [1] have revolutionized the field of image synthesis,
enabling the generation of highly realistic and diverse images across various domains. In the
context of healthcare and medicine, GANs have shown remarkable potential in generating
biomedical images that capture complex patterns and characteristics [2]. However, as the use
of GANs in medical imaging becomes more prevalent, concerns arise regarding the security
and privacy of personal source data [3, 4].

This study aims to investigate the hypothesis that GANs generate synthetic medical images
that bear discernible traces of the real images used during the training process. The presence of
these fingerprints [5, 6] would raise concerns about the potential sharing and usage limitations
that artificial biomedical images may inherit from real sensitive medical data. Conversely, if the
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hypothesis is proven incorrect, it suggests that GANs can be utilized to create vast datasets of
biomedical images that are free from ethical and privacy concerns, opening up new opportunities
for real-life applications.

2. Background

The increasing availability of large-scale medical image datasets, coupled with advances in deep
learning techniques, has fueled the development and utilization of GANs for medical image
synthesis. These generative models have shown remarkable success in generating realistic
images that capture the complex and nuanced characteristics of medical conditions. However,
with the potential integration of GANs into various applications, the concern over the source
image forensics and security of the generated images becomes paramount [7].

One line of research focuses on uncovering traces of the training dataset within the generated
images. Approaches based on DeepFakes Detection (DFD) have been proposed to identify
manipulated or synthesized images. For example, the video-based DFD method of [8] analyzed
the artifacts caused by the underlying GAN model to reveal inconsistencies between real and
generated images. Similarly, the style-based metrics proposed in [9] were used to distinguish
between real and GAN-generated images in the context of facial images.

Another approach involves analyzing the distributional properties and statistical characteris-
tics of real and synthetic images. Methods such as Kernel Density Estimation (KDE) have been
employed to detect deviations from the original data distribution. The effectiveness of KDE in
identifying synthesized medical images was demonstrated in [10] by comparing their statistical
properties with those of the training data. Additionally, approaches based on Wasserstein
distance or other generative models have been explored to quantify the similarity between real
and synthetic images [11].

Furthermore, advancements in deep learning interpretability have contributed to the de-
velopment of techniques that visualize and understand the internal representations of GANs.
These methods enable the identification of specific image regions or features that influence
the generation process. The method proposed in [12] used an attribution-based approach to
identify the most important regions in GAN-generated images, shedding light on the potential
sources of information within the generated data. Likewise, specific characteristics associated
with fake image generators were exploited in [13] to introduce a face generator representation
space that allows identification of the face-image source generator model.

By building upon the existing research, this study aims to detect fingerprints within synthetic
medical image data and determine the source images used for generation during the training
process. The objective of this study does not involve the identification of artificial images or the
binary classification of real-fake datasets. Our focus lies in detecting the presence of discernible
features or patterns within synthetic image data using various texture descriptors, aiming to
determine the real images utilized for training the GANs. The results of this study provides
valuable insights into the security of personal medical image data in the context of generating
and utilizing artificial images across various real-life scenarios.



3. Methods

To address the objective of identifying fingerprints and establishing relationships between real
(source) and fake (generated) medical image datasets, this study incorporates a range of texture
descriptors and analysis methods. These techniques are employed to effectively extract and ana-
lyze texture information from the images under investigation [14, 15]. Texture descriptors serve
as computational representations that capture pertinent patterns from the images, facilitating
the quantification of various texture aspects and enabling efficient comparisons across different
images. The selection of texture descriptors used in this study for image analysis is detailed
in the subsequent sections. It should however be noted that each of these approaches may
have limitations in capturing robust complex textures and struggle with variations in lighting
conditions and scale.

3.1. Statistical features

These features capture statistical relationships between pixel intensities by computing measures
such as contrast, entropy, or homogeneity [16]. In this context, we calculate the local range
of pixel intensities, local standard deviation, and local entropy of the intensities in a specified
neighborhood around the corresponding image pixel. We use 3×3, 3×3, and 9×9 neighborhoods
for extracting the range, standard deviation, and entropy feature maps (#3), respectively.

3.2. Filter-based features

These features employ filter banks to capture specific spatial-frequency domain information
from the images that characterize complex texture patterns at various scales and orientations.
Here, we create a bank of Gabor filters at different wavelengths and orientations [17] to later
capture texture information from magnitudes of the filter responses. For the construction of
the Gabor filter bank, we determined the minimum and maximum lengths as 𝐿𝑚𝑖𝑛 = 4/√2
and 𝐿𝑚𝑎𝑥 = 256/2, respectively. Accordingly, the wavelength parameter was discretized into
2[0,1,...,log2(𝐿𝑚𝑎𝑥/𝐿𝑚𝑖𝑛)]𝐿𝑚𝑖𝑛 pixels/cycle, while the orientation parameter was regularly sampled
at angles of [0, 45, 90, 135] degrees. These choices allowed us to define a comprehensive set of
Gabor filters (#24) that could effectively capture a range of spatial frequencies and orientations
in the images.

Besides, we use steerable filters of Gaussian derivatives [18], in which the basis filter bank is
composed of separable orthogonal kernels using the first and second-order Gaussian derivatives
at a specific scale (𝜎 = 1). The texture patterns can then be obtained by a linear combination
of the filter responses at different orientations. In order to generate the steerable filters, we
used a regular sampling at [0, 45, 90, 135] degrees for the orientation parameter. Besides, the
kernel window size was set to 2⌈2𝜎⌉ + 1. By employing these choices, we were able to construct
a set of steerable filters (#8) that would exhibit controlled directional selectivity and effectively
capture various orientations within the image data.

Furthermore, the Gaussian derivatives are used as basis functions to filter the images at differ-
ent scales, where the texture features are extracted from the gradient magnitude, eigenvalues of
the Hessian, Laplacian of Gaussian, Gaussian curvature, and Frobenius norm (eigen magnitude)



of the Hessian at each scale [19]. To construct the multiscale filters using Gaussian derivatives,
we applied standard deviations 𝜎 = [0.5, 0.75, 1, 1.25, 1.5] to the Gaussian function. The kernel
window size for each scale was determined as 2⌈2𝜎⌉ + 1, ensuring an appropriate spatial extent
for the filter. These choices enabled us to capture texture feature maps (#30) across multiple
scales, facilitating the comprehensive analysis of image content.

3.3. Deep features

Deep learning-based features such as convolutional neural network (CNN) representations
are high-level abstract information extracted using pretrained models like ResNet [20]. These
models are trained on large-scale image datasets [21] and can capture effective texture patterns
from images at different scales and levels of abstraction before the output classification layer.
We used the pretrained ResNet50 architecture to extract the features from the output of the
14th addition layer [22], which would result in 7 × 7 × 2048 texture maps.

3.4. Histogram descriptors

These descriptors capture the distribution of intensities obtained from the local statistical
features or filter maps by dividing the range of intensities into bins and counting the number of
pixels falling into each bin. Since the histogram bins need to be defined and adjusted for different
maps, we use the empirical cumulative distribution function (CDF) that provides information
about the accumulated probability of pixel intensities. It gives insights regarding dominant
intensities and their spread within the texture while allowing us to compare the intensities of
different maps at specified levels of probabilities.

3.5. Image classification

After obtaining the texture descriptors based on the CDF of each abovementioned feature map,
we measure the area between the texture CDFs of the query image and those of each generated
image using the Wasserstein distance [23]. These multivariate distances are then used to train
a binary classifier to predict whether the query image was utilized for the generation of each
fake image using GANs or not. The overall decision is made based on the probability score
fusion of the classifier outputs from all query-generated multivariate distance pairs.

4. Experiments and Results

4.1. Data

The data used in this study was sourced from the ImageCLEF2023 Medical GANs challenge
datasets [24, 25], which were divided into labeled training and unlabeled test sets. The training
set comprises 500 artificial images obtained by training diffusion neural networks using axial
slices of 3D computed tomography (CT) scans (8-bit/pixel images of dimension 256×256 pixels)
from 8000 lung tuberculosis patients, along with 80 real images that were not utilized during the
training of GANs, and another 80 real images that were used for training the model. The test
set consists of a total of 10,000 generated images and 200 real images, all of which are unlabeled.



4.2. Experimental setup

We partitioned the available training dataset into training and test sets, ensuring that the training
set is exclusively used for training and inference purposes before testing the optimized models.
To maintain clarity and avoid confusion between our test data split and the challenge test
dataset, we will henceforth refer to them as the inner test and challenge test sets, respectively.
The inner test set was generated through a stratified partitioning technique, comprising 10% of
the training dataset (160×500). The input data underwent a standardization process, normalizing
each feature dimension to zero mean and unit variance using the training set. The target and
predicted labels were assigned values of 0 for real data instances not involved in the generation
of artificial samples, and 1 for real data instances utilized in the generation of synthetic data.

We employed the support vector machine (SVM) classifiers [26] trained in a 5-fold cross-
validation fashion. To capture the non-linear relationships in the data, we utilized a radial basis
function (RBF) kernel in conjunction with a logistic function, yielding membership probability
scores as the output. The selection of the SVM classifiers were based on careful consideration of
various classical classifiers, including discriminant analysis [27], boosted ensemble of decision
trees [28], and feedforward neural networks [29]. We opted for the SVM classifiers due to their
favorable inference and generalization performance in this study.

4.3. Evaluation metrics

The total accuracy, precision, recall, specificity, and F1-measure were used as the evaluation
metrics for the classification tasks. Specificity measures the proportion of correctly predicted
negative instances out of the total actual negative instances. In addition, precision measures
the proportion of correctly predicted positive instances out of the total instances predicted as
positive, while recall or sensitivity quantifies the proportion of correctly predicted positive in-
stances out of the actual positive instances. Finally, the F1-score provides a balanced assessment
of both precision and recall by calculating their harmonic mean, offering a single value that
reflects the overall performance of a classifier.

4.4. Results

Table 1 presents the cross-validated classification accuracies obtained with the proposed GAN-
ISI texture analysis method for the inner test and challenge test sets. The results reveal a
consistent and promising performance, demonstrating the robustness and effectiveness of the
method. Notably, the proposed approach showcases a good balance between precision and
recall, indicating its ability to accurately discriminate between the real source and not-used
images.

Furthermore, the generalization of themodel to the challenge test set underscores its capability
to handle unseen data and reinforces its potential for real-world applications. The achieved
accuracies, which are better than random, contribute to the understanding of the proposed
method’s reliability and its potential to address the security and privacy concerns associated
with synthetic medical images generated by GANs.



Table 1
The cross-validated classification accuracies of the proposed GAN-ISI method for different test sets.

Data Accuracy Precision Recall Specificity F1-score

Inner test set 0.575 0.591 0.500 0.650 0.541

Challenge test set 0.535 0.540 0.470 0.600 0.503

5. Conclusion

In this paper, we proposed a method for identifying the source images used in the generation of
synthetic medical images using GANs. The approach leveraged texture descriptors extracted
from the images through the empirical CDF of texture feature maps, along with the measurement
of the Wasserstein distance between the CDFs of the query and generated images. A binary
classifier was then trained using these multivariate distances to predict the usage of query
images in the generation process.

Several binary classifiers and texture descriptors were evaluated, and the experimental
results revealed the superior performance of the SVMs and stacked classical texture descriptors
compared to other methods, including deep learning-based approaches. To ensure robustness
and avoid overfitting, cross-validation techniques were employed and applied to an inner test
set, resulting in a reasonably consistent performance that generalized well to the challenge test
set. The achieved performance surpassed random guessing, indicating the effectiveness of the
proposed method.

These findings offer valuable insights into the security and privacy aspects of personal
medical image data when generating and utilizing synthetic images in real-life scenarios. By
accurately identifying the source images, our method contributes to addressing concerns related
to the potential sharing and usage limitations inherited from sensitive medical data. The use of
classical texture descriptors and the balanced performance obtained demonstrate the potential
of our approach in practical applications involving the generation and analysis of artificial
medical images.
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