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Abstract

We describe our participation in the ImageCLEFmedical Caption task of 2023. The task required par-
ticipants to automatically compose coherent captions for a set of medical images. To this end, we
employed a concise encoder-to-decoder model for caption generation. In addition, we leveraged Self-
Critical Sequence Training (SCST) to optimise our model on the primary metric of the competition,
BERTScore. CSIRO placed first amongst the participating teams—with a BERTScore of 0.643. The de-
coder of our best-performing submission was conditioned on the visual features of the medical image
via the self-attention rather than the cross-attention. Here, the visual features were mapped to the
token embedding space and used to prompt the decoder. Code and model checkpoints are available at
https://github.com/aehrc/imageclefmedical caption_23.
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1. Introduction

We detail our participation in the ImageCLEFmedical Caption task of 2023, the 7" edition of the
task [1, 2]. Specifically, we participated in the caption prediction subtask. Here, participants were
tasked with automatically generating captions for given medical images, where the image could
be one of many modalities, e.g., radiography, ultrasonography, computed tomography, magnetic
resonance, etc. The development of medical image captioning methods lays the groundwork for
potential multimodal medical image analysis tools that could assist with clinical documentation,
maintain and improve the consistency, quality, and efficiency of clinical reporting, produce rich
textual descriptions from medical images, provide fast and inexpensive second readers, and
help reduce teaching time.

For the 7™ edition, several issues with the dataset (lemmatization errors and duplicate
captions) were amended from the previous edition. The primary evaluation metric for the
caption prediction subtask was also changed to a metric that captures the semantic similarity
between generated and label captions, namely, BERTScore [3].
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Figure 1: Decoder conditioned on the visual features of the image via A) the cross-attention, and B)
the self-attention. The visual features are extracted with the encoder. CC BY [Muacevic et al. (2022)].
N is the number of Transformer blocks. [BOS] is the beginning-of-sentence special token.

Our proposed approach for the caption prediction subtask builds upon our participation in
previous editions where we used encoder-to-decoder model [4, 5]. As in the previous edition,
we employ the Convolutional vision Transformer (CvT) [6] as the encoder and DistilGPT2 [7]
as the decoder, forming the CvI2DistilGPT2 encoder-to-decoder model [8]. The novelty for this
edition lies in the use of reinforcement learning to optimise the model for the primary metric
and the means of conditioning the decoder on the visual features. For reinforcement learning,
we employed BERTScore as the reward for Self-Critical Sequence Training (SCST) [9].

Motivated by the Pre-trained Language Model (PaLM) with continuous observations of
modalities Embodied into the token embedding space (PaLM-E) [10], we investigated a different
method of conditioning the decoder on the visual features extracted via the encoder. The
standard approach of conditioning is through the cross-attention of the decoder. However, as
with PaLM-E, the visual features can be mapped to the token embedding space and used to
prompt the decoder. This has the advantage of requiring no cross attention, as shown in Figure
1. However, this at the cost of increasing the input sequence length, and thus the size of the



self-attention matrices of each head. We aim to determine if there is a performance difference
between conditioning via the self-attention, rather than the cross-attention.

2. Dataset

The dataset for the task is an updated and extended version of the Radiology Objects in COntext
(ROCO) dataset [11], which was formed from figures in open-access biomedical journal articles
from PubMed Central. All images in the dataset were accompanied by a caption, which form
the labels for the caption prediction task. Each caption was pre-processed by removing links
from the captions. The splits for the dataset are as follows:

+ Training set: 60 918 images and their corresponding captions.
+ Validation set: 10437 images and their corresponding captions.
« Test set: 10473 images and their corresponding captions.

3. Methodology

3.1. Models

The two encoder-to-decoder models that we used for our submissions are shown in Figure 1.
CvT-21 was the encoder (specifically, the microsoft/cvt-21-384-22k checkpoint) [6, 8].!
Layer normalisation was applied to its last hidden state, followed by a projection to the decoder’s
hidden state size. Each image was resized using bilinear interpolation so that its smallest side
had a length of 384 and its largest side maintained the aspect ratio. Next, the resized image was
cropped to a size of R3*384X384 The crop location was random during training and centred
during testing. During training, the image was rotated around its centre where the angle of
rotation was sampled from ¢/[—5°, 5°]. Finally, the image was standardised using the mean and
standard deviation provided with the CvT-21 checkpoint.

DistilGPT2, along with its tokenizer, was used for decoding [7]. Greedy search and beam
search with four beams were employed during validation and testing, respectively. The maxi-
mum number of tokens for the labels and the generated captions was 256. During testing, a
penalty was applied during caption generation to the probability of tokens to prevent trigrams
from appearing more than once in a caption (the penalty was realised by setting a token’s
probability to zero). Before training, both the CvI-21 and DistilGPT2 checkpoints were used to
warm-start the encoder and decoder, respectively.

For the model conditioned via the cross-attention (CA) in Figure 1 A (CvT2DistilGPT2-
CA), randomly initialised multi-head cross-attention modules were added to each Transformer
block. Here, the visual features from the encoder were passed as the keys and values to the
cross-attention heads. For the model conditioned via the self-attention (SA) in Figure 1 B
(CvT2DistilGPT2-SA), the visual features and token embeddings were concatenated before
adding the position embeddings. The visual features occupied the first 576 positions with the
token embeddings occupying the remaining positions (DistilGPT2 accommodates up to 1024

'https://huggingface.co/microsoft/cvt-21-384-22k (last accessed 03/07/2023).
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Table 1
Scores for each of the runs of team CSIRO. The primary metric is highlighted in grey.

Team Name Run BERTScore ROUGE BLEURT BLEU METEOR CIDEr CLIPScore
CvT2DistilGPT2-CA 1 0.622 0.243 0.305 0.206 0.090 0.213 0.815

+ SCST (BERTScore) 2 0.641 0.246 0.315 0.159 0.080 0.207 0.814
CvT2DistilGPT2-SA 3 0.619 0.235 0.306 0.192 0.084 0.197 0.813

+ SCST (BERTScore) 4 0.643 0.245 0.314 0.161  0.080 0.203 0.815

positions). Here, the encoder learns to map the visual features to the token embedding space, a
la PaLM-E [10]. The mapped visual features were then used to prompt the decoder.

Training: Two stages of training were performed: Teacher Forcing (TF) [12], followed by
SCST. Gradient descent optimisation was performed with AdamW [13] with a mini-batch size
of 32 at an initial learning rate of 5e-5 for TF and 5e-6 for SCST. The models were trained with
NVIDIA Tesla P100 16 GB GPUs and automatic mixed precision. For TF, early stopping with a
patience of eight was employed. For SCST, three epochs were completed and validation was
performed every %0 of an epoch. The validation BERTScore was the monitored metric for early
stopping and checkpoint selection. For SCST, the baseline was generated with greedy search,
while the sample was produced with top-k sampling (k = 50).

3.2. Metrics

The primary metric for this edition of the caption prediction subtask was BERTScore with
microsoft/deberta-xlarge-mnli as the model [3]. ROUGE-1 was the secondary metric
[14]. The following metrics were also included in the evaluation: METEOR [15], CIDEr [16],
BLEU-1 [17], BLEURT (BLEURT-20) [18], and CLIPScore [19]. For all metrics, both the generated
and label captions were pre-processed by converting to lower-case, replacing numbers with
‘number’, and removing punctuation.

4. Results & Discussion

The results for each of our four submissions are shown in Table 1. As expected, employing
BERTScore as a reward for SCST improved the BERTScore. Choosing BERTScore as the re-
ward positively impacted the scores for ROUGE and BLEURT, while negatively impacting
the scores for BLEU and METEOR, and had no noticeable impact on CIDEr and CLIPScore.
When comparing the method of conditioning on the visual features, conditioning via the cross-
attention outperformed conditioning via the self-attention on six out of the seven metrics with
TF (CvT2DistilGPT2-CA vs. CvI2DistilGPT2-SA). However, for SCST, conditioning via the
self-attention performed better than conditioning via the cross-attention for three of the met-
rics, while they performed equally for METEOR (CvT2DistilGPT2-CA + SCST (BERTScore) vs.
CvT2DistilGPT2-SA + SCST (BERTScore)). This indicates that there is no substantial difference
between their performance.

The leaderboard for the competition is shown in Table 2. Run 4 (CvI2DistilGPT2-SA +
SCST (BERTScore)) was compared to the runs of the other participants as it scored the highest



BERTScore. Team CSIRO ranked first based on the primary metric (BERTScore), with a score of
0.643. Team CSIRO also attained the highest CLIPScore, the third highest ROUGE, BLEURT,
and CIDEr scores, the fourth highest METEOR score, and the sixth highest BLEU score. The
lower rank of Run 4 for METEOR and BLEU could be attributed to optimising with SCST with
BERTScore as the reward.

Shown in Figures 2 and 3 are generated reports for given medical images from the validation
set. Here, we inspect the impact of SCST on the generated reports (compared to only using
TF), as this had the largest impact on performance. Here, we use CvI2DistilGPT2-SA. Shown
in Figure 2 are examples where SCST outperforms TF (in terms of the BERTScore). For image
000414, both TF and SCST identify that there is contrast. SCST identifies the correct plane
and provides more details about the modality. However, neither identifies the empty sella.
For image 002044, both identify the modality and body part correctly. TF does not identify
the opacity. While SCST correctly identifies the opacity, the location was incorrect. In Figure
3 are examples where TF outperforms SCST. For image 008243, both identify the modality.
TF identifies that there is an aneurysm of the Internal Carotid Artery (ICA), but incorrectly
identifies the left ICA instead of the right ICA. TF also identifies that there is damage to the
right ICA (pseudoaneurysm) which is semantically similar to what was described in the label
(aneurysmal rupture). SCST incorrectly identifies the artery and the abnormality. For image
000193, TF identifies the right coronal artery, which is connected to the mitral valve. While
SCST identifies the body part, it introduces a false positive abnormality and identifies the wrong
artery. It should be noted that SCST identified calcification in three out of the four examples
shown in Figures 2 and 3, which indicates that SCST could increase hallucinations. While this
is a small sample of the differences between SCST and TF, it is clear that SCST did not improve
performance across all examples.

Table 2
Leaderboard for the caption prediction subtask of ImageCLEFmedical Caption 2023. The primary metric
used to rank the participants is highlighted in grey.

Team Name Run BERTScore ROUGE BLEURT BLEU METEOR CIDEr CLIPScore
CSIRO 4 0.643 0.245 0.314 0.161 0.080 0.203 0.815
closeAl2023 0.628 0.240 0.321 0.185 0.087 0.238 0.807

7
AUEB-NLP-Group 2 0.617 0.213 0.295 0.169 0.072  0.147 0.804
PCLmed 5 0.615 0.253 0.317 0.217 0.092  0.232 0.802
VCMI 5 0.615 0.218 0.308 0.165 0.073  0.172 0.808
KDE-Lab Med 3 0.615 0.222 0.301 0.156 0.072  0.182 0.806
SSN MLRG 1 0.602 0.211 0.277 0.142 0.062 0.128 0.776
DLNU CCSE 1 0.601 0.203 0.263 0.106 0.056  0.133 0.773
CS Morgan 10 0.582 0.156 0.224 0.057 0.044 0.084 0.759
Clef-CSE-GAN-Team 2 0.582 0.218 0.269 0.145 0.070 0.174 0.789
Bluefield-2023 3 0.578 0.153 0.272 0.154 0.060 0.101 0.784
IUST NLPLAB 6 0.567 0.290 0.223 0.268 0.100 0.177 0.807
SSNSheerinKavitha 4 0.544 0.087 0.215 0.075 0.026 0.014 0.687
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Figure 2: Images 000414 (CC BY-NC [Murvelashvili et al. (2021)]) and 002044 (CC BY-NC [Ogamba et
al. (2021)]) from the validation set, their corresponding labels, and the corresponding generated captions
for both CvT2DistilGPT2-SA with TF and additionaly with SCST. The BERTScores for each generated
report are also given.

5. Conclusion

In this work, we detailed our participation in the caption prediction subtask of ImageCLEFmed-
ical Caption 2023. By leveraging SCST with the primary metric, BERTScore, team CSIRO was
able to rank first amongst participating teams. We also investigated conditioning the decoder
on the visual features via the cross-attention or self-attention. The results indicate that there is
no substantial difference in performance between the two configurations. This demonstrates
that there is no penalty when removing the cross-attention and instead using the self-attention
to condition the decoder on the visual features. While the selected metrics for this edition
have improved the evaluation process considerably, they are still general-domain metrics. The
evaluation process could be improved by including domain-specific metrics that better capture
the semantic similarity between captions. Such a metric could be derived from domain-specific
encoders, such as PubMedBERT [20] or CXR-BERT (general) [21].2

*https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-general (last accessed 02/07/2023).
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Figure 3: Images 008243 (CC BY [Muacevic et al. (2021)]) and 000193 (CC BY [Ruiz et al. (2021))
from the validation set, their corresponding labels, and the corresponding generated captions for both
CvT2DistilGPT2-SA with TF and additionally with SCST. The BERTScores for each generated report are

also given.
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