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Abstract
This paper outlines the contributions of our team in the annual ImageCLEFmedical Caption Task, which
encompasses the Concept Detection and Caption Prediction sub-tasks. The concept detection sub-task
focuses on automatically assigning appropriate medical concepts, based on Clinical Concept Unique
Identifiers (CUIs), as tags of medical images. CUIs are unique identifiers assigned to medical concepts in
the Unified Medical Language System (UMLS). They are based on a hierarchical structure and represent
a standardized representation of various medical concepts, including diseases, anatomical structures,
procedures, and more, while the caption prediction sub-task generates preliminary diagnostic captions
for medical images, aiding medical professionals in preparing diagnostic reports. In the concept detection
subtask, our approach involved using deep learning models to perform feature extraction, employing
three distinct DenseNet models for feature extraction from the images. Subsequently, we utilized an
XGBoost gradient boosting model to predict the Concept Unique Identifiers (CUIs) associated with a
given image. In the caption prediction subtask, we used a model that utilizes a pre-trained InceptionV3
on the extended ROCO dataset to extract image features, which are then fed into a retrained LSTM model
for caption generation. The method preprocesses the input image, extracts features using InceptionV3,
and generates captions using the LSTM model through beam search.
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1. Introduction

The ImageCLEFmedical Caption 2023 task [1] is the 7th edition of the caption task as a part of
ImageCLEF 2023 [2]. Similar to the previous edition [3], the task consists of two subtasks: a
Concept Detection task and a Caption Prediction task. The Concept Detection subtask involves
recognizing and locating pertinent concepts within a vast collection of medical images. This is
done by identifying the various Concept Unique Identifiers (CUIs) from the Unified Medical
Language System (UMLS) [4]. The Caption Prediction subtask involved generating cohesive
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captions that encompass the entire image. This is done by generating suitable captions based
on the various CUIs generated from the first subtask.

Image captioning plays a crucial role in comprehending visual content. The groundbreaking
research paper by Vinyals et al. [5] demonstrate the transformative potential of image captioning,
showcasing how deep neural networks can generate accurate and coherent descriptions for
visual content. With the surge in digital images and the need for automated image analysis,
accurate and descriptive captions are essential. Image captioning enables improved searchability,
context-aware information retrieval, and enhanced user experiences. The paper by Karpathy
and Fei-Fe [6] demonstrates the effectiveness of the their proposed model, highlighting the
power of deep visual-semantic alignments in generating high-quality image descriptions.
In the medical field, image captioning has emerged as a valuable tool facilitating compre-

hensive understanding and analysis of visual medical content. The Unified Medical Language
System (UMLS) [4] plays a crucial role in solving the issue of concept detection in medical
image analysis. By providing a comprehensive and standardized vocabulary of Clinical Concept
Unique Identifiers (CUIs), UMLS enables accurate and consistent labeling of medical concepts
within images. This allows for automatic assignment of appropriate medical concepts as tags
to medical images, facilitating efficient retrieval, analysis, and interpretation of medical data.
Also, the UMLS resolves inter-observer variability arising from differing concept identifications
among doctors, providing a standardized vocabulary and unique identifiers. This promotes
consistency, harmonization, and effective collaboration in medical image analysis, enhancing
accuracy and reliability. Furthermore, generating error-free reports from medical images is of
utmost importance in healthcare. Caption prediction models, when applied to medical images,
can automatically generate textual descriptions or reports summarizing the content and find-
ings within the images. The accuracy of these reports is vital for accurate diagnosis, treatment
planning, and communication among healthcare professionals. By ensuring the generation of
error-free reports, caption prediction models enhance patient care by reducing the potential
for misinterpretation or miscommunication of critical information. This, in turn, improves the
efficiency and effectiveness of medical decision-making, leading to better patient outcomes.
Therefore, it is crucial for caption prediction models to generate error-free reports from medical
images, contributing to enhanced healthcare delivery, and patient safety.

The accurate and descriptive captions generated by image captioning systems assist healthcare
professionals in interpreting complex medical images and aid in diagnosis, treatment planning,
and medical education. The paper by Selivanov et al. [7] contributed to the advancement
of medical image captioning by demonstrating the efficacy of utilizing generative pretrained
transformers, improving the generation of accurate and contextually relevant captions for
medical images.
From the 2022 edition of the ImageCLEFmedical Caption task, we found that with respect

to the first subtask, the AUEB-NLP-Group [8] achieved the highest primary F1-score with an
ensemble of EfficientNetV2-B0 backbones, CMRE-UoG [9] proposed an image retrieval system
with an ensemble of DenseNet-201, and the CSIRO group used an ensemble of DenseNet-
161 with top 1% threshold optimization for multi-label classification. With respect to the
Caption Prediction subtask, we found that the IUST_NLPLAB [10] team achieved the highest
scores in caption prediction subtask, surpassing competitors significantly, using a multi-label
classification system, while the AUEB-NLP-Group [8] and CSIRO [11] teams also presented



competitive results with their respective models based on Show and Tell and CvT-21 with
DistilGPT2. A Python implementation of the experiments described in this paper will be made
available at: https://github.com/karthik-d/ImageCLEFmedical-Captioning-2023.

2. Related Work

In the field of caption prediction, several notable works have explored innovative approaches to
generate descriptive and contextually relevant captions for images. The paper by Vinyals [5]
introduces an encoder-decoder framework using CNN and RNN for image captioning. It achieves
state-of-the-art performance by learning the correlation between image features and descriptive
captions. The paper’s contribution lies in automating accurate and contextually relevant caption
generation for images. The research paper by Karpathy and Fei-Fe [6] introduces a model that
utilizes deep neural networks to generate accurate and coherent descriptions for images. It
demonstrates the effectiveness of visual-semantic alignments in producing high-quality image
captions. The approach improves the searchability, context-aware information retrieval, and
user experiences related to image content. This paper showcases the transformative potential
of deep learning techniques in advancing caption prediction for enhanced image understanding
and analysis. The paper by Anderson et al. [12] introduces a two-stage attention mechanism
for image captioning. The bottom-up attention identifies salient image regions, while the
top-down attention generates contextually relevant words based on the visual and linguistic
context. This approach improves the quality of generated captions by focusing on relevant image
regions and incorporating both visual and language information. The model’s effectiveness has
been demonstrated through state-of-the-art performance on various captioning benchmarks,
showcasing its application in generating more accurate and descriptive image captions. You et
al. [13] proposed a novel approach to image captioning by incorporating semantic attention
mechanisms. The model dynamically attends to relevant regions in the image while generating
captions, resulting in more accurate and contextually rich descriptions. This paper enhances the
caption prediction process by improving the alignment between visual and semantic information.
In the research done by Xu [14], an attention-based model is introduced, leveraging techniques
from machine translation and object detection, to automatically generate descriptive captions
for images, achieving state-of-the-art performance on benchmark datasets and demonstrating
the model’s ability to focus on salient objects during caption generation.
Specifically in the medical field, the aforementioned paper by Selivanov et al. [7] addresses

the limitations of existing models in medical image captioning and proposes a new architecture
that combines two language models with image and text attention mechanisms. The proposed
approach outperforms current state-of-the-art models and introduces a new preprocessing
pipeline for radiology reports, leading to higher natural language generation metrics. The
results demonstrate the effectiveness of the proposed methods in generating descriptive and
informative captions for medical images, particularly in chest X-Ray image captioning. The
combination of language models and the use of the GPT-3 model show significant improvements
in text generation scores. Furthermore, it suggests that large language models (LLMs) can play
a crucial role in enhancing the performance of report generation from image features detected
through convolutional image models.

https://github.com/karthik-d/ImageCLEFmedical-Captioning-2023


In conclusion, the field of caption prediction has witnessed significant advancements through
innovative approaches proposed in several influential papers. These works have demonstrated
the effectiveness of various techniques, such as encoder-decoder frameworks, deep neural net-
works, attention mechanisms, and semantic attention mechanisms, in generating contextually
appropriate captions for images. The application of these methodologies extends to diverse
domains, including image understanding, content retrieval, and multimedia captioning systems.
These advancements open doors for improved image comprehension, content retrieval, and aid
in medical decision-making by providing precise and informative image captions.

2.1. Previous Iterations of ImageCLEF for Medical Image Captioning

Since the 2021 edition of ImageCLEFmedical caption task [15], the team had noticed in the
concept detection subtask that different teams had employed deep learning models, such as
DenseNet, InceptionV3, and MobileNet-v2, either as multi-label classifiers or in information
retrieval-oriented solutions using image embeddings. In the 2021 edition, more modern architec-
tures like EfficientNets and Visual Transformers (ViT) were introduced, resulting in improved
F1-scores compared to previous years. In the caption prediction subtask, teams had utilized vari-
ations of the Show, Attend and Tell model, incorporated Transformer-based architectures, and
explored the use of general language models like GPT-2, while finding that simple architectures
outperformed pretraining with medically oriented datasets.
With respect to the ImageCLEFmedical Caption task 2022 [3], the following results were

inferred from the concept detection subtask :

• The AUEB-NLP-Group [8] achieved the best performance in the concept detection task
with an ensemble of two EfficientNetV2-B0 backbones and a single classification layer,
using the union of predicted concepts for the ensemble.

• The CMRE-UoG team [9] proposed an image retrieval system with an ensemble of five
DenseNet-201 models, retrieving 100 different images each and assigning the union of
predicted CUIs to each image.

• The CSIRO group [11] experimented with multiple backbones and their best approach
involved an ensemble of 43 DenseNet-161 models with top-1% threshold optimization for
multi-label classification.

• The SSN MLRG team [16] employed DenseNet for multi-label classification and an infor-
mation retrieval system for their caption prediction model.

In the second subtask, namely Caption Prediction, the following were the major takeaways
from the 2022 edition of the contest :

• The IUST_NLPLAB team [10] employed a multi-label classification system based on
ResNet-50, treating eachword as a label and assigning 26words in order of their probability
to each image, resulting in their superior performance with a BLEU score of 0.4828.

• The AUEB-NLP-Group [8] utilized the Show and Tell model, consisting of a CNN-RNN
encoder-decoder with an EfficientNet-B0 backbone, achieving a BLEU score of 0.3222,
demonstrating competitive performance in various evaluation metrics.



• The CSIRO group [11] experimented with different encoder-to-decoder models and
achieved their best results using CvT-21 as the encoder and DistilGPT2 as the decoder.
They obtained the overall best BERTScore of 0.6234, showcasing the effectiveness of their
chosen model combination.

• The SSN MLRG team [16] employed a Sparse Auto Encoder (SAE) with a Multi-Layer
Perceptron (MLP) and a Gated Recurrent Unit (GRU) for their caption prediction model.

Based on the above results, our team decided to use DenseNet models as feature extractors
as it gave promising results in the previous year and feed the feature vectors to a gradient
boosting model to detect the CUIs. For the caption prediction subtask, the team decided to go
with an InceptionV3 model pretrained and then finetuned to extract the feature vectors. An
LSTM-based caption generation model is employed to generate captions for the given images,
incorporating the beam search algorithm to explore multiple possible captions and select the
most probable one.

3. Methods

The following section explains in detail the systems that were utilized in our submissions for
the Concept Detection and Caption Prediction sub-tasks. A Python implementation of the
experiments described in this paper will be made available at: https://github.com/karthik-d/
ImageCLEFmedical-Captioning-2023.

3.1. Dataset

The current edition of the task consisted of a total of 60,918 images allocated to the training set,
10,437 images in the validation set, and 10,473 images in the testing set. These images were
selected from the extended and revised version of the Radiology Objects in Context (ROCO)
dataset, which is derived from biomedical articles available in the PMC OpenAccess subset.
The concepts used in the Concept Detection task were extracted from the UMLS 2022 AB

release, and applied to the images. These images were subsequently filtered based on their
semantic type. Building on a suggestion from the previous year, concepts with low frequency
were eliminated in the current implementation. The captions used in the study were obtained
from annotated medical literature, and any hyperlinks present in the original text were excluded
or removed.

3.2. Concept Detection

For Concept Detection, the team decided to use three different models of DenseNet [17] as
feature extractors, namely DenseNet-121, DenseNet-169 and DenseNet-201. The feature vectors
where then given as input to an XGBoost ensemble classifier to predict the class labels for a
given observation.
Feature extraction is a technique used in image processing to extract pertinent and distinct

visual elements from photographs. In order to discover and record characteristic patterns,
textures, shapes, or colours that are indicative of certain objects, structures, or concepts, image

https://github.com/karthik-d/ImageCLEFmedical-Captioning-2023
https://github.com/karthik-d/ImageCLEFmedical-Captioning-2023


data must first be analysed. When performing concept recognition or classification tasks, these
extracted features act as compact representations of the images and are put into a booster
method like XGBoost. In order to understand complicated patterns and correlations, the booster
uses the extracted features. This enables precise prediction and decision-making based on the
visual properties present in the images.

Multiple deep learning architectures were considered for the concept detection task. Deep
convolutional neural networks were first presented by Huang et al. in 2017 [17] and are
distinguished by their densely linked layers. By creating dense connections across layers,
the DenseNet design tries to solve the vanishing gradient issue and encourage feature reuse.
ResNet [18] , short for Residual Network, is a deep convolutional neural network architecture
introduced by He et al. in 2015. ResNet designs are renowned for their creative use of residual
connections, which, by overcoming the degradation issue that arises with adding more layers,
allow for the training of very deep networks. EfficientNet [19] is a family of deep convolutional
neural network architectures introduced by Tan et al. in 2019. The key idea behind EfficientNet
is to achieve state-of-the-art performance with high efficiency in terms of both computational
resources and model size. EfficientNet models have been designed using a compound scaling
method that balances the network depth, width, and resolution to achieve optimal performance.
Ensemble methods [20] are techniques employed to combine multiple models to produce

improved results. They boast higher accuracy scores than the individual models themselves.
Boosting is a prominent ensembling technique used wherein new models are added to the
existing features of the model to correct errors. Our solution adopted a gradient-boosting
ensemble approach for concept detection to identify the various labels for a given image.
XGBoost [21] is an implementation of gradient boosted decision trees designed for speed and
performance. The authors decided to implement the XGBoost library package above all the
other boosters because of its higher execution performance.

Table 1
Caption prediction models training scores.

Model Epochs Accuracy Loss

DenseNet121 85 0.212 65.361
DenseNet169 50 0.198 6752.75
DenseNet201 31 0.186 36.022
EffecientNetB2 28 0.191 77810.516
ResNet101 10 0.062 11320.178

The choice of DenseNet models as the base learners for the XGBoost ensemble was motivated
by several factors. Using the scores obtained from models trained on the training dataset found
in Table 1, it observed that EfficientNet and the ResNet models had significantly higher losses
and lower accuracy as compared to the DenseNet models. The superior performance exhibited
by the DenseNet models made them a compelling option for inclusion in the XGBoost ensemble.
The aim of constructing an ensemble model is to leverage the strengths of individual base
learners and mitigate their weaknesses through collective decision-making. The DenseNet
models were favored due to its architecture’s dense connectivity and its ability to encourage



complementary learning make it well-suited for ensemble learning. Since each of the models
have its own unique perspective on the data, the ensemble can exploit their diverse strengths
and compensate for individual weaknesses.

3.3. Caption Prediction

The UMLS utilizes standardized vocabulary (CUIs) to accurately label medical concepts in image
analysis, enhancing retrieval and interpretation. Caption prediction models generating error-
free reports improve patient care, facilitating precise diagnosis and treatment planning while
minimizing miscommunication risks. By bridging concept detection gaps and ensuring reliable
reports, UMLS and caption prediction models contribute to enhanced healthcare delivery and
patient safety.
For Caption Prediction, our team decided to use a fine-tuned InceptionV3 model to extract

the features, which were given as input to an LSTM model that generated captions based on
those features. Beam search was used to explore multiple possible sequences of words and
select the most likely caption based on the model’s predictions and the specified beam index.
InceptionV3 [22] is a convolutional neural network architecture that was introduced by

Google in 2015. Its primary purpose is to perform image classification tasks and it has gained
significant popularity in various computer vision applications. The fundamental concept
behind InceptionV3 revolves around utilizing inception modules, which enable the network
to effectively capture features at different spatial scales. These modules comprise parallel
convolutional layers with varying sizes, enabling the network to learn both local and global
features. Additionally, InceptionV3 incorporates techniques like batch normalization and
regularization to enhance training and generalization. The model is pretrained on a large
dataset, such as ImageNet [23], and can be fine-tuned for specific tasks by replacing the final
classification layer. InceptionLSTM is a neural network architecture used for image captioning
tasks. It combines the InceptionV3 convolutional neural network with a Long Short-Term
Memory (LSTM) recurrent neural network. The InceptionV3 model extracts visual features
from input images, while the LSTM generates a sequence of words as captions based on those
features. This architecture enables the model to capture both visual and semantic information,
resulting in meaningful and contextually relevant image captions.
Beam search is a decoding algorithm commonly used in sequence generation tasks, such as

machine translation and image captioning. It explores multiple possible sequences of words by
maintaining a beam of the most likely candidates at each decoding step. The beam width or
beam size determines the number of candidates retained at each step. Beam search is applied
during the caption generation process to select the most likely captions based on the model’s
predictions. It helps to generate more diverse and accurate captions by considering multiple
hypotheses simultaneously and choosing the one with the highest probability. The team used
beam search to generate captions based on the fine-tuned InceptionV3 and LSTM model’s
predictions, allowing it to produce more accurate and contextually relevant captions for the
given images.



4. Experiments

4.1. Concept Detection

The detection process was divided into two stages: Feature Extraction and Boosting. In Feature
Extraction, transfer learning techniques were used with pre-trained models such as ResNet-101,
EfficientNet-B2, DenseNet-121, DenseNet-169, and DenseNet-201. The Adam Optimizer was
used for all models, and the validation loss was monitored. Since each image had multiple labels,
a Label Encoder was used to assign a unique label to each CUI ID. This was then converted into
a multi-hot encoded array using a Multi-Label Binarizer. Both the input image and encoded
labels were given as input to all the models. However, ResNet-101 and EfficientNet-B2 had high
validation loss, so they were excluded as feature extractors. We continued with the DenseNet
models, where we extracted the core architecture and added an additional dense and flatten
layer with 4096 nodes to represent the feature vectors. The initial DenseNet models were trained
with input images, and the weights of the core architecture were frozen. Then, the models were
retrained after adding the new dense layer for all three DenseNet architectures. Categorical
Cross Entropy loss was used to monitor model performance.

In the second stage, XGBoost was used. The feature vectors extracted from DenseNet models
(DenseNet-121, DenseNet-169, and DenseNet-201) were fed into XGBoost. The predicted outputs
were plotted on a Receiver Operator Characteristics (ROC) curve, and a probability threshold
was determined. This threshold was used to truncate the predicted labels, resulting in the final
output labels.
The categorical cross entropy is a metric that quantifies the disparity between two discrete

probability distributions. The Softmax activation function is employed at the output layer to
generate a probability distribution across all classes. Softmax is a mathematical function that
transforms a vector of numbers into a vector of probabilities. Each probability corresponds
to the relative magnitude of its corresponding value in the vector. In essence, it normalizes
the outputs, converting them from weighted sums to probabilities that add up to one. Table 2
contains different training parameters used to train each model.

Table 2
Model training parameters used to train each of the convolutional neural networks used for this
classification task.

Parameter Optimizer Learning rate Batch size Epochs

DenseNet121 Adam 1𝑒−8 8 85
DenseNet169 Adam 1𝑒−8 8 50
DenseNet201 Adam 1𝑒−8 32 31
EffecientNetB2 Adam 1𝑒−5 8 28

4.2. Caption Prediction

For the Caption Prediction subtask, the proposed idea involved using a pretrained InceptionV3
model which was fine-tuned as feature extractor to give the feature vectors as input to an
InceptionLSTM model to generate the captions. Furthermore, the beam search algorithm was



employed to explore and evaluate multiple potential sequences of words for generating captions.
It involved considering different word combinations based on the model’s predictions and a
specified beam index. The aim was to identify the most probable caption by considering a
limited number of top-scoring candidates at each step of the caption generation process.
The training workflow began by resizing them to a fixed size of 299x299 pixels to ensure

consistency. The captions were tokenized into individual words and encoded into numerical
sequences using a tokenizer. Two models were utilized in the training procedure: a pre-trained
InceptionV3 convolutional neural network (CNN) and a Long Short-Term Memory (LSTM)
recurrent neural networks. The pre-trained InceptionV3 model was employed to extract visual
features from the input images. Each image was passed through the InceptionV3 model, and
the output of the second-to-last layer was extracted as the visual feature representation. The
training process involved generating captions for the input images. Initially, a start token was
provided as the input to the LSTM model, which then predicted the next word in the caption
sequence. This process was repeated iteratively, with the predicted word being fed back into
the LSTM model as input for the next iteration. The objective was to maximize the probability
of generating the ground truth captions for the given images. To train the LSTM model, a
loss function was defined to measure the discrepancy between the predicted captions and the
ground truth captions. The loss function utilized was typically the cross-entropy loss. The
weights of the LSTM model were updated through backpropagation using an optimizer, such as
Adam, to minimize the loss. The training procedure involved iterating over the entire dataset
multiple times, known as epochs. In each epoch, the dataset was randomly shuffled to introduce
diversity during training. The model was trained in mini-batches, where a subset of images and
their corresponding captions were fed into the model simultaneously. The gradients computed
during backpropagation were accumulated over the mini-batches, and the model’s weights were
updated after each batch. Various hyperparameters were tuned to optimize the performance
of the model. These included the learning rate, batch size, number of LSTM units, and the
maximum length of the generated captions. Different combinations of hyperparameters were
experimented with to find the optimal configuration. To prevent overfitting and determine the
optimal training stopping point, a validation set was utilized. After each epoch, the model’s
performance on the validation set was evaluated using evaluation metrics. If the model’s
performance on the validation set did not improve for a certain number of epochs, training was
stopped early to avoid overfitting.

5. Conclusion

The concept detection sub-task gave a F1-score of 0.0173 and F1-score manual of 0.1172. The
gradient boosting approach has a very low F1-score as the model predicted multiple CUIs for a
single image hinting at the fact that all feature vectors extracted from the images were given
equal importance. This can be overcome by choosing the most important feature vectors that
represent the data and generating the appropriate CUIs by feeding them to the XGBoost model.
The approach for caption prediction gave a BERTScore of 0.6019 which ranked seventh on the
leaderboards. The authors were able to achieve a very high CLIPScore of 0.7759. CLIPScore
tries to mimic human judgement and gives a score based on the compatibility of image and



caption pair. A very low METEORScore of 0.0615 indicated that the generated captions had
many grammatical errors and were not fluent. These shortcomings can be overcome by using a
more well trained Language model which has been trained on more data and by fine tuning
the architecture. Post editing and human feedback can also be given to train better Language
models. To improve the approach, more complex deep learning architectures can be used for
feature extraction and transformers can be deployed in the future.
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