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Abstract
This paper presents the main contributions of the VCMI Team to the ImageCLEFmedical Caption 2023
task. We addressed both the concept detection and caption prediction tasks. Regarding concept detection,
our team employed different approaches to assign concepts to medical images: multi-label classification,
adversarial training, autoregressive modelling, image retrieval, and concept retrieval. We also developed
three model ensembles merging the results of some of the proposed methods. Our best submission
obtained an F1-score of 0.4998, ranking 3rd among nine teams. Regarding the caption prediction task, our
team explored two main approaches based on image retrieval and language generation. The language
generation approaches, based on a vision model as the encoder and a language model as the decoder,
yielded the best results, allowing us to rank 5th among thirteen teams, with a BERTScore of 0.6147.
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1. Introduction

ImageCLEF 2023 [1] is a multi-modal challenge organised as part of the CLEF Initiative Labs1

(Conference and Labs of the Evaluation Forum, formerly known as Cross-Language Evaluation
Forum) set to promote the evaluation of technologies for annotation, indexing, classification
and retrieval of multi-modal data. The 2023 edition included four challenges from diverse
applications (i.e. medical, social media and Internet, and content recommendation).

Similarly to last year [2], our team, composed of members of the Visual Computing and
Machine Intelligence (VCMI) Research Group of the Institute for Systems and Computer En-
gineering, Technology and Science (INESC TEC) from Porto, Portugal, participated in the
ImageCLEFmedical Caption 2023 task [3] where the goal is to challenge the scientific commu-
nity to design and train automatic algorithms capable of interpreting and summarising the
insights gained from medical images. Once again, this challenge consisted of two independent,
but complementary, tasks: concept detection, which aims to identify the presence of relevant
concepts in a large corpus of medical images; and caption prediction, which aims to generate
coherent textual descriptions describing a medical image. We addressed both the concept
detection and caption prediction tasks.

For the concept detection task, we developed five different approaches: (i) baseline multi-label
classification, in which a convolutional neural network (CNN) simultaneously predicts all the
concepts from an image; (ii) adversarial approach, in which a multi-label classifier and a concept
discriminator are trained in an adversarial manner to promote the learning of admissible concept
combinations by the multi-label classifier; (iii) autoregressive approach, that aims to model
dependencies between concepts using autoregressive learning; (iv) image retrieval, in which a
model assigns concepts to an image based on its most similar images from the training data; and
(v) concept retrieval, in which a model learns to map concepts and images into a common latent
space where images are closer to the concepts they contain. We also developed three model
ensembles using the aforementioned approaches: (i) multi-label classification and concept re-
trieval, (ii) autoregressive model and image retrieval using autoregressive model, (iii) adversarial
model and image retrieval using autoregressive model. Our best submission (i.e.ensemble with
autoregressive model and image retrieval using autoregressive model) obtained an F1-score of
0.4998, ranking 3rd among nine teams.

For the caption prediction task, we relied on Vision Encoder-Decoder Transformer-based
architectures, since they worked well on last year’s competition [2]. We explored two different
categories of image feature extractors for the Encoder, namely a Vision Transformer and a
CNN. Furthermore, we introduced a caption-to-concepts classification branch as an additional
supervisory signal for the model, since the caption needs to contain enough information to
allow, to some extent, for the prediction of the concepts. Our best submission (i.e. the Vision
Transformer encoder model trained on both training and validation sets) achieved a BERTScore
of 0.6147, ranking 5th among thirteen participating teams.

The remainder of this paper is organised as follows: Section 2 provides an overview of the
data provided by the organisation to address the tasks and describes our exploratory data
analysis; Section 3 details the different proposals developed to solve the aforementioned tasks;

1http://www.clef-initiative.eu (accessed on: 02-06-2023)
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Section 4 presents the results and their discussion; and Section 5 concludes this paper and
recommends future work directions. The code related to this paper is publicly available in a
GitHub repository2.

2. Data

The dataset provided in this competition is an extended version of the Radiology Objects
in COntext (ROCO) dataset [4]. The data originates from biomedical articles of the PMC
OpenAccess subset [3]. The images provided to the participants are divided into training (60,918
images), validation (10,437 images) and test (10,473 images) sets.

The concepts provided in the training and validation data were annotated according to the
Unified Medical Language System (UMLS) [5] 2022 AB release, wherein each concept is uniquely
identified through a Concept Unique Identifier (CUI). For additional details, please refer to [3].

Table 1 presents an analysis of the number of concepts contained in each training and
validation image. On average, each image has 3.7 concepts, and while there are 4716 images
with only 1 concept, there are also 233 images with more than 10 concepts, the maximum
number of concepts per image being 24 in the training set.

Table 1
Data analysis for the concept detection task, from the image-based perspective. “Avg.”, “Min.” and “Max.”
stand for “Average”, “Minimum” and “Maximum” number of concepts per image, respectively. The last
two columns refer to the number of images with only 1 concept and with over 10 concepts.

Subset Total Images Avg. Min. Max. With 1 concept With over 10 concepts

Training 60918 3.7 1 24 4716 233
Validation 10437 3.8 1 33 771 65

Table 2 presents an analysis of the concepts and their frequency in the training and validation
data. While the training set contains a total of 2125 concepts, only 1945 of these appear in the
validation data. Furthermore, each concept appears on average on 106.9 images in the training
set and on 20.6 images in the validation set. While there are concepts that appear in 1 or 2
images only, there are other concepts that appear in 20955 images, making this task highly
imbalanced. Moreover, the validation data contains a significant amount of concepts that appear
in 10 or less images. Since Deep Learning models require large amounts of training data to
achieve good performance, the existence of these less-frequent concepts raises the difficulty of
the concept detection task.

Regarding the data for the caption prediction task, which was obtained from the aforemen-
tioned biomedical articles, we present our analysis in Table 3. While the smallest captions
contain only 2 tokens, the biggest ones can have up to 995 tokens. The average caption length is
33.6 and 36.6 for the training and validation sets, respectively. Looking at the 98% percentile, we
conclude that only 2% of the dataset has captions with more than 100 tokens. This observation
led us to choose a maximum length of 100 for all our developed methods described in the next
section.
2https://github.com/TiagoFilipeSousaGoncalves/ImageCLEFmedical2023VCMI
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Table 2
Data analysis for the concept detection task, from the concept-based perspective. “Avg.”, “Min.” and
“Max.” stand for “Average”, “Minimum” and “Maximum” number of images per concept, respectively.
The last two columns refer to the number of concepts that appear in 10 or less images and that appear
in over 100 images, respectively.

Subset Total Concepts Avg. Min. Max. In 10 or less images In over 100 images

Training 2125 106.9 2 20955 397 272
Validation 1945 20.6 1 3740 1460 53

Table 3
Statistics of the training and validation data for the caption prediction task. “Avg.”, “Min.” and “Max.”
stand for “Average”, “Minimum” and “Maximum” caption length (i.e. number of tokens), while the last
three columns correspond to the 95%, 98%, and 99% percentiles, respectively.

Subset Avg. Min. Max. 95% perc. 98% perc. 99% perc.

Training 33.6 2 715 78 101 122
Validation 36.6 2 995 87 115 142.6

3. Methodology

The following sections describe the methods developed to fulfill the concept detection and
caption prediction tasks.

3.1. Concept Detection

The concept detection task was solved using two main approaches: modelling the concept
detection task as a multi-label classification problem and as an information retrieval problem.
We developed three models based on multi-label classification: a baseline model, a model trained
in an adversarial manner and a model trained using autoregressive learning. Furthermore, we
developed models to perform concept retrieval and image retrieval. The following subsections
describe, in detail, each of the proposed methods.

3.1.1. Baseline Multi-Label Approach

A conventional approach to address the concept detection task involves employing a multi-
label classification model, considering the inherent nature of images to encompass multiple
non-mutually exclusive concepts.

Specifically, we adapted the DenseNet-121 [6] architecture by modifying the classification
layer to have 𝑁 outputs, where 𝑁 is the number of concepts, i.e. 2125.

In the training phase, the model was trained using the binary cross-entropy loss function
and the adaptive moment estimation (Adam) optimiser [7] with its default hyperparameters.
The model was trained during 100 epochs with a learning rate of 1e-4. Concretely, we trained
the classification layer of the model while keeping the remaining layers frozen. Subsequently,
the model with the best validation loss was selected for the testing phase.



3.1.2. Adversarial Approach

Ensuring that the multi-label baseline approach learns the correct combination of concepts is
not trivial (e.g. concepts related to different body parts should not be combined). Hence, we
propose adversarial training to learn a realistic combination of concepts per image, according
to the distribution of the training data. This model is composed of two blocks (see Figure 1):

• A multi-label classifier trained to predict the top-K most frequent concepts (𝐾 = 100) in
the database. This block uses ResNet50 [8] as a feature extractor along with a multi-layer
perceptron (MLP) with a sigmoid activation.

• A concept discriminator trained to distinguish between real (i.e. admissible) and fake (i.e.
inadmissible) combinations of concepts. This block is an MLP with two fully-connected
layers followed by a ReLU activation and a fully-connected layer with a sigmoid activation.

We trained this model for 20 epochs using binary cross-entropy as the loss function for both
the multi-label classifier and the concept discriminator, and Adam [7] as the optimiser. The best
model is saved according to the lowest validation loss.

Multi-Label
Classifier Predicted Concepts

Ground-Truth Concepts

Concept
Discriminator Real / Fake

CC BY-NC [Al Mulhim 
et al. (2022)]

Figure 1: Overview of the multi-label adversarial model.

3.1.3. Autoregressive Approach

The main limitation of the baseline multi-label classification approach is that it assumes that
the concepts are independent of each other. However, there may be dependencies between
concepts, as there are concepts that never appear together in the training data, or concepts
that only exist in the presence of other concepts. To overcome this limitation, we devised an
approach to model dependencies between concepts based on autoregressive learning.

The proposed model is a multi-label classification network that, instead of having a final
classification layer with 2125 units to predict all the concepts, contains several classification
layers, each predicting a subset of concepts. To model dependencies, each layer is conditioned
on the output of the previous layers. An overview of the autoregressive model is depicted in
Figure 2. As the feature extractor of the network, we used a VGG16 [9] network pre-trained
on ImageNet [10], followed by two fully-connected layers with LeakyReLU activations and
Dropout. All of the classification layers are fully-connected layers with sigmoid activation.

Since it is easier for a network to predict concepts that exist in more images, we organised
the concepts in the layers according to how frequent they are among the training images. The
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Figure 2: Overview of the multi-label autoregressive model.

most common concepts are predicted by the first while the rarest ones are predicted by the last
classification layers. Since there is a total of 2125 concepts, we used 17 classification layers,
each responsible for predicting 125 concepts.

In the training phase, the model was trained using binary cross-entropy as the loss function
and the Adam optimiser with a learning rate of 1e-5. We trained the model in two phases.
First, we trained the classification layers of the model for 50 epochs, with the feature extractor
frozen. Then, we fine-tuned the entire network by training it for 20 epochs. We selected the
best instance of the model by monitoring its loss on the validation data.

3.1.4. Retrieval Approaches

We implemented two main approaches to predict the concepts of an image based on information
retrieval techniques: concept retrieval and image retrieval. In concept retrieval, the method
maps images and concepts into a common latent space, retrieving the closest concepts to an
image. In image retrieval, the method assigns concepts to an image based on its most similar
images from the training data. Both these methods will be described in detail below.

In the concept retrieval approach, we use an image encoder and a concept encoder to map
images and concepts into a common latent space. Then, we compute the Euclidean distance
between the latent representations of the images and concepts, as depicted in Figure 3. During
training, we minimise the Euclidean distance between an image and the concepts it contains,
and we maximise the distance between the image and the concepts it does not contain.

In our implementation, the image encoder is a CNN with four blocks of convolutional layers
with Batch Normalisation and Max Pooling, followed by a layer that performs Global Average
Pooling and a fully-connected layer. The concept encoder is a Multi-Layer Perceptron (MLP)
with one fully-connected layer with Dropout and LeakyReLU as the activation function, followed
by a second fully-connected layer.

In addition to the Image-to-Concept (ITC) loss, we also performed some experiments where
we added the following loss functions to the training of the networks:

• Concept-to-Concept (CTC) loss: Minimises the distance between two different concepts
that exist in the same images, and maximises the distance between concepts that do not
appear together in any image. We apply a weight to the loss function by multiplying it
by the percentage of images that two concepts share (intersection over union).
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Figure 3: Overview of the concept retrieval model.

• Image-to-Image (ITI) loss: Minimises the distance between images that have some
concepts in common, and maximises the distance between images that do not share any
concepts. We apply a weight to the loss function by multiplying it by the percentage of
concepts that two images have in common (intersection over union).

We performed three experiments: (i) training the concept retrieval networks only with the
ITC loss for 2600 epochs, (ii) fine-tuning the network trained with the ITC loss using the CTC
loss for 100 epochs, and (iii) fine-tuning the network trained with the ITC loss simultaneously
using the CTC and ITI losses for 100 epochs. The networks were trained using the Adam
optimiser with a learning rate of 1e-5. We monitored the loss on the validation data to obtain
the best model.

In the image retrieval approach, we use pre-trained models to obtain latent representations
of the images, which are then used to measure the distance between the target image whose
concepts we want to predict and the images of the training data. We devised three strategies to
assign concepts to the target image, based on its most similar images:

• Strategy 1 (S1): Retrieve the closest image and assign its concepts to the target image.
• Strategy 2 (S2): Retrieve the Top-N closest images and assign to the target image the

concepts of the closest image that also exist in at least one other image from the Top-N
retrieved images. If no concept of the closest image appears in another image of the
Top-N, then all the concepts of the closest image are assigned to the target image.

• Strategy 3 (S3): Retrieve the Top-N closest images and assign the concepts that exist in
at least two of the Top-N retrieved images to the target image. Similarly to Strategy 2,
if no concept appears in at least two images of the Top-N, then all the concepts of the
closest image are assigned to the target image.

We empirically chose to retrieve the Top-4 closest images in strategies 2 and 3.
As the pre-trained models to obtain a latent representation of the images we used a ResNet50

[8] trained on ImageNet [10], and the image encoders of the previously described concept
retrieval and autoregressive models.



3.1.5. Ensemble

The multi-label classification-based approaches (baseline, adversarial and autoregressive) often
fail to predict any concepts for a given test image, leading to many images in the test dataset
with no predicted concepts. As such, we devise an ensemble strategy where, for each image
where the multi-label approaches fail to predict any concepts, we assign the concepts predicted
by one of the retrieval approaches.

3.2. Caption Prediction

The caption prediction task involves generating text that describes an image. To tackle this
task we considered two categories of approaches, retrieval and language generation, which we
describe in more detail below.

3.2.1. Retrieval Approach

We applied the image retrieval approach developed for the concept detection task to obtain
captions for the test images. We used the pre-trained ResNet [8], the concept retrieval network
trained using the ITC loss and the autoregressive network to obtain latent representations of
the images. These representations were then used to obtain the closest images from the training
and validation data whose captions were assigned to the test samples.

3.2.2. Language Generation Approaches

The language generation-based strategies used to tackle this task employ an Encoder-Decoder
framework, since it was our best performing approach in last year’s competition [2]. The
Encoder, typically a CNN or a Vision Transformer, is responsible for analysing the image
and extracting relevant features. The Decoder then receives the encoded image features and
generates the caption. Thus, it is usually an autoregressive model, such as GPT-2 [11].

We experimented with two different encoders: the small distilled version of the Data-efficient
image Transformer (DeiT) [12] from the Huggingface Transformers library [13], and, inspired
by the work of Hou et al. [14], DenseNet121 [6] from TorchXRayVision [15, 16] pre-trained
on all available datasets (densenet121-res224-all). The decoder consisted of the distilled
version of GPT-2 [11]. Both models were trained with an initial learning rate of 1e-4 using the
AdamW optimiser [17] for 25 epochs. We monitored the BERTScore on the validation data to
obtain the best model.

Since the UMLS concepts of the concept detection task are tightly related to the captions in
the caption prediction task, we hypothesise that it should be possible to predict the concepts
from the captions to some extent. Furthermore, predicting the concepts from the captions might
prove a good additional supervisory signal for training the caption prediction model. Therefore,
we explored the inclusion of a text classifier that takes the caption of a given image and predicts
its concepts (see Figure 4).

To accomplish this we originally trained a DistilBERT [18] model for caption-to-concept
multi-label classification. The model was trained with the binary cross-entropy loss on the CLS



token for 20 epochs with an initial learning rate of 2e-5 and the AdamW optimiser. This caption-
to-concept classifier was then used (but kept frozen) on top of the DenseNet-DistilGPT2 model
to provide an extra loss function for training. However, since the output of the Encoder-Decoder
module and the input of the caption-to-concept classifier (i.e. the generated text) is discrete,
Reinforcement Learning (RL) is needed, similarly to what is done in Self-Critical Sequence
Training [19]; thus, the whole sentence needs to be generated before classification can occur,
making this approach much slower compared to teacher forcing-only training.

We also experimented with simply adding a fully connected layer directly on top of the
latent representation of the Decoder’s last token and training the whole Encoder-Decoder plus
classification layer together. This approach has the advantage of not needing RL, thus making
it faster and easier to train.

Encoder

<SOS Token>

Decoder

Chest X-ray showing large…

Text Classifier

Predicted 
Concepts

CC BY-NC [Al Mulhim 
et al. (2022)]

Figure 4: Overview of the captioning model.

4. Results and Discussion

This section details the results obtained by the methods developed for the concept detection
and caption prediction tasks.

4.1. Concept Detection

The concept detection task is evaluated using the example-based F1-score between the predicted
and ground-truth concepts. Table 4 presents the results in terms of F1-Score obtained by each
proposed method on the validation and test data. Furthermore, it presents a secondary F1-score
metric (F1-Score Manual) that compares the concepts predicted on the test data with a subset of
manually validated concepts.

The baseline multi-label classification approach obtained an F1-score of 0.4469 on the test
set. Contrary to our expectations, the adversarial approach did not improve upon the baseline.
This might be explained by the fact that this adversarial model was only trained on the top-100



Table 4
Results of the concept detection task in terms of F1-score and Secondary F1-score computed on a subset
of manually validated concepts. The models identified with * were trained on the training and validation
data before being applied to the test data. The results on the validation dataset were obtained using
models trained only on the training set.

Run Model
F1-score F1-score F1-score Manual

(Validation) (Test) (Test)

1 Baseline Multi-label* 0.4364 0.4469 0.8305
4 Adversarial* (Top-100) 0.2816 0.2803 0.5999
5 Autoregressive* 0.4905 0.4928 0.9062

2 Concept Retrieval (ITC) 0.4523 0.4360 0.7582
- Concept Retrieval (ITC + CTC) 0.4404 - -
- Concept Retrieval (ITC + CTC + ITI) 0.2446 - -

3 Image Retrieval - S3 (ResNet) 0.4693 0.4676 0.8305
7 Image Retrieval - S3 (Autoregressive) 0.4793 0.4793 0.9014
10 Image Retrieval - S3 (Concept Retrieval) 0.4379 0.4387 0.8394

6 Ensemble (Runs 1 and 2) - 0.4728 0.8738
8 Ensemble (Runs 5 and 7) - 0.4998 0.9162
9 Ensemble (Runs 4 and 7) - 0.3327 0.7049

- Task Winners - 0.5223 0.9258

concepts. Thus, we leave as future work a more in-depth exploration of this approach. The
autoregressive approach achieved the highest performance among the multi-label-based models.

In the concept retrieval approach, we verify that adding the CTC and ITI loss functions to
the network trained only with the ITC loss leads to a lower F1-score.

Regarding the image retrieval method, we empirically found that Strategy 3 (S3) produced
the best results. This ablation study can be found in Table 5, that compares the different image
retrieval strategies on the validation data, using the concept retrieval model trained with ITC
loss as the base. We verify that assigning concepts that exist in at least two of the Top-4 most
similar images (Strategy 3) leads to the highest F1-Score. Among the three different base models
used (ResNet, autoregressive and concept retrieval), the best results were obtained by using
the autoregressive model. Nevertheless, these results do not surpass the values obtained by the
multi-label classification-based autoregressive model.

However, the retrieval-based approaches proved very useful as complements to the
classification-based methods. As expected, the ensemble methods, which combine both tech-
niques, improved the results of all three multi-label classification networks (baseline, adversarial
and autoregressive). We obtained the best results by merging our two best models from each
category, the autoregressive multi-label classification network and the image retrieval approach
using the autoregressive model, achieving an F1-Score of 0.4998 and a Manual F1-Score of 0.9162.
This allowed us to rank 3rd in the competition among nine teams.



Table 5
Comparison (on the validation set) between the different strategies of image retrieval using the concept
retrieval model with the Image-To-Concept loss.

Strategy Retrieved Images F1-score

S1 1 0.3314

S2 3 0.4030
S2 4 0.4232
S2 5 0.4234
S2 10 0.4176

S3 3 0.4354
S3 4 0.4379
S3 5 0.4345
S3 10 0.3887

4.2. Caption Prediction

The caption prediction task is evaluated in terms of BERTScore [20] and ROUGE [21]. We present
the obtained results in Table 6 for both retrieval and language generation-based approaches.

All retrieval approaches ranked below the language generation-based approaches, which
confirms that simply using the captions from similar images is not enough to accurately describe
a different image.

Regarding the generation-based approaches, using the DeiT encoder yielded slightly improved
results when compared to using DenseNet-121. As expected, adding the classification loss
improved the corresponding base architecture, but it was not enough to surpass the DeiT +
DistilGPT2 model. This suggests that, had time permitted, adding the classification loss to
the DeiT instead of the DenseNet-based model would have further improved our results. We
would like to point out that we do not report the results obtained by our model with the RL
concept-to-caption classifier because we were not able to train it in a reasonable amount of
time given the computational resources available.

Thus, our best results were obtained by the DeiT + DistilGPT2 model trained on both training
and validation sets. This also suggests that our other developed methods could have better
results if trained on both sets, something we leave as future work. In the end, these results
awarded us the 5th place in the competition among thirteen participating teams.

5. Conclusions and Future Work

This work described the methods developed by the VCMI team in the ImageCLEFmedical
Caption 2023 task. We developed approaches based on multi-label classification and retrieval to
assign concepts to medical images, obtaining an F1-Score of 0.4998 that granted us 3rd place
among the nine teams that participated in the challenge. For caption generation, we focused on
encoder-decoder approaches with Transformers, obtaining a 5th place among thirteen teams,
with a BERTScore of 0.6147.



Table 6
Results of the caption prediction task on the validation and test sets in terms of BERTScore and ROUGE.
The models identified with * were trained on the training and validation data before being applied to
the test data. The results on the validation dataset were obtained using models trained only on the
training set.

Run Model BERTScore ROUGE BERTScore ROUGE
(Validation) (Validation) (Test) (Test)

1 Image Retrieval (ResNet) 0.5738 0.1417 0.5734 0.1427
2 Image Retrieval (Concept Retrieval) 0.5653 0.1268 0.5647 0.1284
8 Image Retrieval (Autoregressive) 0.5756 0.1464 0.5750 0.1464

3 DeiT + DistilGPT2 0.6133 0.2167 0.6138 0.2181
5 DeiT + DistilGPT2* 0.6133 0.2167 0.6147 0.2175
4 DenseNet-121 + DistilGPT2 0.6108 0.1935 0.6096 0.1938
6 DenseNet-121 + DistilGPT2 + Clf loss 0.6113 0.1947 0.6103 0.1948

- Task Winners - - 0.6425 0.2446

In the concept detection task, the experiments show that training an autoregressive multi-
label classification network to model dependencies between concepts is a promising approach
capable of achieving high performance. As such, future work includes the further development
of autoregressive models, potentially with the integration of more advanced autoregressive
networks from the literature, such as Transformers [22]. We also intend to continue developing
the concept retrieval approach by pre-training the concept encoder using the concept-to-concept
loss before training the whole model. Finally, we consider the application of the adversarial
approach to predict all concepts, rather than only the Top-100 most frequent concepts, and
the potential integration between the adversarial and the autoregressive approaches into one
model.

In the caption prediction task, future work involves exploring different and more powerful
image encoders, as well as more recent language models. We also intend to explore more
in-depth the inclusion of the concept classification loss into our base encoder-decoder approach,
not only by applying it to all our model configurations, but also by investigating the best way
of integrating it during training, e.g. only after the captioning module is sufficiently trained.
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