
PULSAR at MEDIQA-Sum 2023: Large Language
Models Augmented by Synthetic Dialogue Convert
Patient Dialogues to Medical Records
Viktor Schlegel1,2, Hao Li2, Yuping Wu2, Anand Subramanian1,3,
Thanh-Tung Nguyen1, Abhinav Ramesh Kashyap1, Daniel Beck4, Xiaojun Zeng2,
Riza Theresa Batista-Navarro2, Stefan Winkler1,3 and Goran Nenadic2

1ASUS Intelligent Cloud Services (AICS), Singapore.
2Dept. of Computer Science, University of Manchester, United Kingdom.
3Dept. of Computer Science, National University of Singapore, Singapore.
4School of Computing and Information Systems, University of Melbourne, Australia.

Abstract
This paper describes PULSAR, our system submission at the ImageClef 2023 MediQA-Sum task on
summarising patient-doctor dialogues into clinical records. The proposed framework relies on domain-
specific pre-training, to produce a specialised language model which is trained on task-specific natural
data augmented by synthetic data generated by a black-box LLM. We find limited evidence towards the
efficacy of domain-specific pre-training and data augmentation, while scaling up the language model
yields the best performance gains. Our approach was ranked second and third among 13 submissions on
task B of the challenge. Our code is available at https://github.com/yuping-wu/PULSAR.
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1. Introduction

With the recent successes of generative large language models (LLMs) on a variety of tasks [1]
and domains [2], even in the face of data scarcity [3], there is vivid interest in identifying
potential application scenarios that could benefit from the power of LLMs. One of the promising
domains is healthcare [4] as many administrative tasks involve the transformation of textual
data. LLM-based approaches that assist hospital staff in repetitive administrative tasks have
the potential to improve operational efficiency and documentation quality, optimise revenue
streams, reduce cognitive load on healthcare experts, and ultimately result in better and more
effective patient care [5].

A range of different scenarios have been investigated for the suitability of LLM-based assis-
tance, such as summarising patient progress notes as discharge summaries [6] or identifying
problems that need treatment during a patient’s hospital course [7]. One of the potential tasks
is summarising doctor-patient dialogue as medical records [8]. Dialogue summarisation, an
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established task in the Natural Language Processing (NLP) community, aims to identify salient
topics in a multi-turn dialogue [9]. State-of-the-art approaches typically formulate the problem
as abstractive summarisation, making the task a prime candidate for further investigation of
the potential of LLMs in clinical settings. In this scenario, conversations between patients and
doctors need to be transformed into (excerpts of) clinical documentation. For example, if a
27 year old female patient mentions that they are experiencing “Sore throat, runny nose, dry
cough and fever 37.5 ∘C”, the corresponding entry can be the “Subjective” section of a medical
record excerpt, e.g., “Patient is a 27 year old female who presents with sore throat, runny nose
dry cough and a fever of 37.5 ∘C.” This documentation is typically performed by the consulting
doctor or an attending nurse. Despite bearing potential impact for automation, with clinical
staff spending at least 35 minutes of their time every other day on writing such clinical notes
[10], this task was underexplored by the NLP community, compared to other hospital-related
tasks, such as clinical coding [11, 12], or generating radiology reports [13]. More recently, the
task has received more attention [14], however studies thus far have either focussed on narrow
department selections [15, 16], did not focus on medical documentation generation [17], or
have not released their data publicly [18].

To that end, the ImageClef 2023 MediSum shared task released a collection of dialogues
and corresponding clinical notes in an effort to spark interest and advance the state of the
art in dialogue as clinical note summarisation [8]. The task revolves around three core sub-
tasks: (A) identifying the topic of a conversation from a selection of possible medical note
sections (i.e., “Subjective” in the previous example), (B) summarising conversation snippets to
appropriate sections in medical records, and, finally, (C) summarising full conversations to full
medical records. While conversations are synthetic, the corresponding clinical notes are real,
doctor-written documentation.

Our guiding objective to participate in this task was to investigate, how well a recently
proposed LLM training framework can generalise to new tasks with as little adaptation as
possible [19]. At its core, the framework (i) fine-tunes a LLM with a pre-training objective that
learns to reconstruct a pseudo-summary consisting of automatically extracted medical terms
and (ii) employs data augmentation (DA) by instructing Black-Box LLMs to obtain task-specific
training data. As such, the DA framework supports any LLM, such as Bloom [20], GPT-3 [21]
or GPT-3.5 [22].

Our submission for task B was ranked second best overall among all participants. Although
we have not actively sought to compete in Task C, we observed that our data augmentation
technique could improve the performance, particularly when the training data is scarce. These
findings underline the potential of LLMs in various settings as well as the generalisability of
our proposed approach.

2. Task Definition

In this section, we describe and formalise the three tasks of the ImageClef 2023 MediSum
challenge.



Task A – Dialogue2Topic Classification In this task, participants need to identify the
topic of a conversation. The list of possible topics corresponds to the 20 different fine-grained
sections that can be part of a medical record, such as “Subjective”, i.e., the subjective description
of symptoms by the patient.

Task B – Dialogue2Note Summarization Here, participating systems need to convert a
conversation on a specific topic into a corresponding section in the medical record. This task
can be regarded as conditional generation, sequence-to-sequence translation or abstractive
summarisation. Approaches are evaluated on multiple natural language generation metrics,
both based on n-gram overlap, i.e., ROUGE [23], as well as semantic similarity [24, 25]. 1201
training and 100 validation examples are provided. 200 examples form the test set.

Task C – Full-Encounter Dialogue2Note Summarization This task is formulated similarly
to Task B, however here, the inputs are full notes and the evaluated systems need to generate
medical record outputs for the four general sections “Subjective”, “Objective Exam”, “Objective
Results” and “Assessment and Plan”. This task features only 67 training and 20 validation
examples, with 40 examples reserved for testing. The systems are evaluated based on their
output for each of the sections using the ROUGE metrics from Task B; the results are averaged
across all sections. An alternative mode of evaluation combines all outputs into one single
record and measures the n-gram overlap by means of the ROUGE score.

The tasks appear to be arranged as a progression, where, given a dialogue, a segmentation
and classification model could segment the topics of the conversation (Task A) to be used
as input for a Dialogue Snippet Summarisation Model (Task B), the output of which can be
arranged as a full medical record (Task C). However, as our goal was to evaluate how well the
proposed framework generalises to the tasks with as little adaptation as possible, we decide not
to make any task-specific adaptations even if they could provide beneficial given the particular
arrangement of the tasks. Thus, we do not rely on any additional information, treat tasks B and
C in isolation, and disregard task A for not being a generative task.

3. Methodology

3.1. Language model Pre-training

Motivated by the success of predicting masked words [26] and contiguous spans [27] as self-
supervised training objectives, we customised the pre-training objectives for the medical domain
generation task to concatenate “gap text spans (sentences)” into a pseudo-summary. Each
masked span is a medical term from the input text identified by the QuickUMLS [28] or a
NER model fine-tuned on a N2C2 dataset (i2b2-2010 challenge [29]). Specifically, as shown in
Figure 1, pre-training consisted of three different policies: first, when both QuickUMLS and
N2C2 NER models identified entities, the QuickUMLS results were used in 70% of cases and the
results of the N2C2 NER model were used in 30%. Second, when only one of them predicted any
output, that output was used for masking. Third, when neither had any output, then 15% of the



Infant remains on prong [MASK 1,2] of 5. Occaisional brief O2 [MASK 1] noted.
Breath sounds are clear and equal. Remains on [MASK 2], no spells thus far
tonight.  Infant remains in off isolette with stable temp. [Sentence].

UMLS N2C2

70%

30%

GSGMLM

CPAP

sat driftsCPAP
He is alert and active with cares.

caffeine

UMLS

N2C2

PULSAR-3B/11B

Policy: Inputs

Outputs

Figure 1: Example of the pre-train objective of PULSAR. Both Masked Language Model (MLM) and Gap

Sentences Generation (GSG) have been employed in this scenario. Red and orange arrows exemplify

the UMLS and N2C2 MLM masking strategy, respectively. Meanwhile, the black arrow shows the GSG

masking strategy, where a whole sentence has been masked.

sentences were masked at random. These text spans were replaced with “sentinel” mask tokens
< 𝑒𝑥𝑡𝑟𝑎 𝑖𝑑 𝑖 > to inform the model that input was masked. In order to provide the model with
sufficient medical knowledge, we used the MIMIC-III [11], a pre-trained corpus of 2 million
data, which consists of a large number of clinical records, such as admission notes, discharge
summaries or lab results.

3.2. Data Augmentation (DA)

Both tasks suffer from scarcity of training data, specifically Task C, which requires generating
comprehensive clinical notes based on lengthy patient-doctor conversations based on only 67
training examples. These may be insufficient to train a model capable of performing well on the
task. To address this issue, we adopt data augmentation to generate additional examples for
training, as this has been shown to improve performance in data-scarce scenarios [30, 31].

Prompting Strategy We observed that Large Language Models (LLMs) such as ChatGPT
are proficient in understanding clinical context and manipulating clinical data. Therefore,
we utilise a pre-existing LLM to generate data for the model’s training. Ideally, the data
generation approach would involve providing conversations and requesting the LLM to produce
the corresponding medical note. However, we are limited by the fact that we only have 67
full-length conversations in our dataset. Nonetheless, we have access to a significantly larger
number of medical notes. Hence, we invert the task by prompting the LLM with a medical note
(or its snippet) and ask it to generate a hypothetical conversation between the doctor and the
patient. We then use the generated conversations as input to train our model to produce the
corresponding clinical note.

We employ the OpenAI ChatGPT API (gpt-35-turbo) for data augmentation, utilising a two-



stage prompting strategy to generate data effectively. In the first stage, we use in-context learning
with one-shot prompting to prompt the LLM to generate a fictitious conversation between
the doctor and patient based on the medical note, while adhering to important guidelines. We
provide only one example picked from the training set as we are limited by token context
windows for the API. In the second stage (only performed for task C), we prompt the model to
include conversational fillers such as “ums”, “uh”, and “hmm” to the generated conversation from
the first stage, as we noticed that the model did not include these fillers despite our instructions
in the first stage.

Dataset Utilised For task B, we extract matching subsection headings from the MIMIC-III
database [11], adapting the pre-processing method from Yang et al. [32] to identify section
headers. We rank the generations based on their average Rouge similarity to all training
instances and pick the top-scoring 𝑛 conversations.

For task C, we utilise a corpus of freely available medical notes scraped from MTSamples,
which is available on Kaggle1. Since the dataset contains medical transcriptions of notes from
various medical specialities, we devise a method to pick samples from the dataset that are the
closest to the medical notes in our training set. To do this, we identify and curate a list of the
section headers in the training set through a heuristic approach by exploiting the fact that
section headers are usually written in all capital letters. We split the document by newline
and extract the lines which are fully upper-cased and add these contents to our list of section
headers. We then score the medical notes in MTSamples based on the number of headers
that each document has based on the curated list from the previous step and pick the top 𝑛
documents from MTSamples with the highest scores to use as input for DA. We end up with
a corpus of 746 data samples due to the fact that some inputs were flagged as offensive by
OpenAI’s content moderating policy.

4. Empirical Evaluation

4.1. Experiments set-up

We aim to empirically evaluate, how well our framework can solve the problem of converting
patient dialogues to medical records. We pursue the following questions:

(i) How well can our proposed approach convert doctor-patient dialogues to Medical Records?
(ii) Does the domain-specific pre-training objective improve performance?

(iii) What is the impact of model scale on the performance?
(iv) Does synthetic data augmentation improve performance on the tasks?

To answer question (i) we empirically evaluate our proposed framework on the task B and
C test sets of the ImageClef Challenge. For evidence towards question (ii), we compare the
performance of PULSAR to that of equally-sized Flan-t5 models. Regarding question (iii), we
compare the performance of variously sized models of the same architecture and for question
(iv), we compare the performance of models trained on available data only to those fine-tuned
on synthetically generated conversation data.
1https://mtsamples.com/ and https://www.kaggle.com/datasets/tboyle10/medicaltranscriptions, respectively

https://mtsamples.com/
https://www.kaggle.com/datasets/tboyle10/medicaltranscriptions


Table 1
Validation set performance as measured by {1,2}-gram overlap Rouge-{1,2} and longest sequence overlap

Rouge-L Rouge-LSum. Models with the *-𝑛DG were augmented with 𝑛 synthetic examples. The *-

header suffix denotes that the section header was used as input.

ID Setting Rouge
R1 R2 RL RLSum

11B and 7B models
11B2 PULSAR-11B 49.20 22.25 41.36 45.57

11B1 Flan-T5-11B 50.75 27.92 44.93 47.58

7B1 LLaMA-7B-LoRA 39.3 15.7 33.1 33.1

3B models
3B4 PULSAR-3B-735DG 37.89 17.83 30.40 34.76

3B3 Flan-T5-3B-735DG 41.44 19.05 33.93 38.41

3B2 PULSAR-3B 37.92 16.64 30.64 34.58

3B1 Flan-T5-3B 41.91 19.41 33.76 38.04

Large models (< 1B parameters)
L4 Flan-T5-large-header 38.70 16.82 31.85 36.22

L3 Flan-T5-large-1000DG 39.41 17.04 31.85 36.78

L2 Flan-T5-large 39.27 17.42 31.95 36.49

L1 Clinical-T5-large 19.11 8.34 16.31 17.29

4.2. Implementation Details

Pre-training PULSAR-* is initialised with weights from the corresponding Flan-t5-* mod-
els [33] and pre-trained with four NVIDIA Tesla A100 80GB GPUs for 1 epoch on all MIMIC-III
notes. Huggingface Accelerate is used to optimise GPU memory usage with the Fully Sharded
Data Parallel (FSDP) paradigm. We set the training batch size per GPU device as 4 and the
gradient accumulation step as 8 to accelerate the training process.

Fine-tuning We fine-tune all models for 3 epochs. We experiment with encoder-decoder
Flan-T5, PULSAR and Clinical-T5 [34]models, with the configurations *-Large (0.9B
Parameters), *-3B and *-11B. Unless stated otherwise, the models are trained on two A100
80GB GPUs with cumulative batch size of 8 and the learning rate of 3−5. For the largest of them,
i.e., (Flan-t5-11B and PULSAR-11B), we use FSDP with CPU offloading. We also experiment
with a decoder-only model, LLAMA-13B, freezing and quantising the base model in eight bit [35]
and using the parameter-efficient LoRA [36] method. More details on hyper-parameter choice
are reported in the appendix.

4.3. Results and analysis

At a glance, Table 1 shows the results of our empirical study and Table 2 shows the final
ranking of all participating systems according to the official evaluation by task organisersIn the
following, we discuss our findings in context of the questions outlined in the motivation of this
empirical study.



Table 2
Test set performance as measured by {1,2}-gram overlap Rouge-{1,2}, longest sequence overlap Rouge-L

and Rouge-LSum and semantic similarity metrics BertScore-F1 and Bleurt; ranked by their aggregation.

submission R1 R2 RL RLSum BS-F1 Bleurt Agg
SuryaKiran_run3 43.98 18.44 35.01 35.01 72.31 55.67 57.32
Flan-T5-11B 42.99 20.04 35.69 35.69 72.18 55.49 56.89

PULSAR-11B 41.78 19.25 34.16 34.16 72.11 55.52 56.47

Tredence_run1 42.44 17.24 35.3 35.3 72.07 53.3 55.94

SuryaKiran_run2 42.09 18.83 34.2 34.2 71.37 54.23 55.90

SuryaKiran_run1 40.56 17.59 32.72 32.72 71.09 53.24 54.96

LLaMA-7B-LoRA 38.15 17.3 31.42 31.42 71.77 51.52 53.82

HuskyScribe_run1 37.67 15.04 31.26 31.26 70.54 50.37 52.86

Tredence_run2 36.21 13.84 29.66 29.66 68.82 47.29 50.77

uetcorn_run1 29.11 10.73 22.94 22.94 65.85 49.42 48.13

uetcorn_run2 28.75 10.69 23.09 23.09 65.96 49.22 47.98

uetcorn_run3 28.72 10.7 23.04 23.04 65.92 49.13 47.92

SKKU-DSAIL_run1 26.03 11.31 18.22 18.22 59.29 53.05 46.12

Our approach generalises well to the dialogue summarisation task. Overall, our ap-
proach generalises well to Task B, with our best model (Table 1, 11B1) surpassing the 50 Rouge-1
scores mark, which means that on average, half of the prediction tokens are found in reference
and vice versa. The high Rouge-L score of 44 suggests that most of these overlapping tokens
indeed form a sequence. However, these scores may be “boosted” by the presence of many short
target sequences in the evaluation data, such as “Noncontributory.” or “No known allergies.”,
when a dialogue revolves around a topic that does not contribute to the patients’ hospital visit.

We find that the utilising the outputs of task A—the section headers—does not contribute to
improving the overall performance, compare Table 1, L2 and L4. We observed the same trend
across all model sizes (not reported here for brevity).

In the absence of established baselines, we interpret the official rankings of the shared task in
Table 2 as additional evidence towards the success of our approach.

There is no conclusive evidence that domain-specific pre-training is beneficial. Com-
paring 11B1 and 11B2, and 3B1 and 3B2 in Table 1, respectively, we observe that domain-specific
pre-training by learning to predict missing medical terms in MIMIC-III notes appears not bene-
ficial, with the gap being smaller for bigger models. One possible reason for this is the domain
mismatch between pre-training and application data. MIMIC-III is dominated by inpatient
progress notes which track the patients’ status along the hospital stay and contain abbreviations,
repetitions, incomplete sentences and medical jargon. Conversely, the medical records in the
challenge are well-written and stem most likely from admission notes or outpatient encounters,
where most of the initial documentation about a new patients’ particulars, such as their chief
complaint, medical history and drug allergies happens. Additionally, input dialogues have a
colloquial tone, further adding to the domain mismatch between pre-training and fine-tuning.



Model scale yields the biggest performance improvements. Comparing L*, 3B* and 11B*
results in Table 1, we can see a clear trend where larger models of the same family consistently
perform better. The biggest hike in performance is observed between the 3B and 11B models.
This observation is in line with most literature on model scale as driver of performance and the
reason for emergent abilities in LLMs [37].

We also find that the model trained with adapters can learn to perform on the task successfully,
despite the relatively small (around 1.1% of the full 7B model) number of trainable parameters.
However, our results suggest that updating all models’ parameters is more effective, as even
smaller models outperform the 7B adapter model (Table 1, L2, 3B* compared to 7B1).

Data Augmentation can be helpful if training data is extremely scarce. Larger models
obtain enough signal from the training data of Task B, as there is no clear improvement in
scores for the 3B models (Table 1, 3B1 vs. 3B3 and 3B2 vs. 3B4). Meanwhile, data augmentation
can lead to consistent, albeit minor, improvements for smaller models (Table 1, L2 vs. L3).
When training data is scarce (i.e., Task C) data augmentation helps with the performance.
Subjectively, models exhibit typical generation errors such as hallucination and input copying,
(see Figure 2 in Appendix) and data augmentation seems to alleviate this issue. Quantitatively,
data augmentation improves performance across all metrics (27.64 vs 29.41 R1, 9.79 vs 11.60
R2, 16.24 vs 19.18 RL and 23.63 vs 26.08 RLSum without and with DA, respectively). We find
the results promising, as the optimised model seems to perform well without any task-specific
adaptation. Ultimately, however, this simple approach does not compete with other, potentially
task specific information exploiting submissions, with the best of them scoring almost 20
Rouge-1 points higher (20.32 R2, 24.30 RL and 45.06 RLSum).

5. Conclusion

In this work, we present an LLM framework and adapt it to the task of dialogue note summarisa-
tion. While we find that the approach generalises well to this new task, there is mixed evidence
of the efficacy of both domain-specific pre-training and data augmentation. Our experiments
seem to align with the “bitter lesson of AI”2, in that model scale seems to trump domain-specific
adaptations. This, in turn, supports the narrative of the transformative potential of LLMs in
healthcare [38], as larger LLMs become more readily available.

Our findings suggest further avenues for future work: We argued that the pre-training
objective may suffer from domain mismatch. As such, experimenting with other domain-
specific objectives might improve the performance of the downstream tasks. Furthermore,
it is unclear how the choice of hyper-parameters for both training and inference stages (i.e.,
decoding arguments) impacts the overall performance. Finally, we have left it for future work
to investigate, whether data augmentation could provide beneficial with a more advanced
filtering strategy, for example by only augmenting examples with certain length or specific
section headers. As such, we will expand the work reported in this paper by experimenting with
different pre-training objectives, performing a more rigorous hyper-parameter optimisation
and investigating the impact of data augmentation more closely.

2http://www.incompleteideas.net/IncIdeas/BitterLesson.html

http://www.incompleteideas.net/IncIdeas/BitterLesson.html


Limitations

The results described in this paper should be interpreted within the following context:

• The language of the conversations is English. Due to the dominance of English data
during pre-training, it is expected that all LLMs that we inspected perform better on
English. It is unclear how well the approach will transfer to other languages.

• The conversations are synthetic in that they have been written based on existing medical
notes, rather than transcribed from real patient-doctor dialogues. While the quality has
been evaluated by medical professionals, it is unclear how well the performance would
translate to real-world scenarios.

• The obtained results should be regarded as preliminary, as robust empirical results such
as hyper-parameter optimisation for fine-tuning, pre-training policy selection, exhaustive
search for best-performing prompts for data augmentation and strategies for data selection
are often impossible given the time constraints of academic challenges and shared tasks.
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A. Hyper-parameters for training and inference

We initialise LoRA with 𝑟 = 16, 𝛼 = 16 on the query, key, value and output projection weights
of all layers of the base model (𝑄,𝐾, 𝑉 and 𝑂, respectively). The model is trained on a single
A100 80GB GPU with a learning rate of 3−4 for the adapter weights. For both encoder-decoder
and decoder only settings, during training, we optimise the parameters of the language models
to minimise the cross-entropy loss between each token of the prediction and the corresponding
token of the ground truth answer sequence using teacher forcing. For encoder-decoder models,
we limit the length of input dialogues to at most 496 and the length of output notes to at most
214 tokens, respectively (95th percentile). For the decoder model, we limit the length of input
and output combined to at most 696 tokens. During inference, we set no limits to input and
output sequence lengths and decode the prediction using beam search with 6 (4 for LLaMa),
temperature of 1.0, top k of 50 (40 for LLaMa) and top p of 1.0 (0.7 for LLaMa).

For task C, we use the same arguments as for task C, with the exception of limiting the input
length to 2048 and output length to 990 during training, in order to fit the GPU during training.

B. Qualitative example

Figure 1 shows qualitative examples generated by our models trained on task C training data
with and without data augmentation, respectively.

Flan-T5-3B Flan-T5-3B-746DG

Alexander is a 62-year-old male, with a past

medical history significant for reflux, who

presents for follow-up of his chronic problems.

He is so thankful you put him on that medicine

for his reflux. The protonix that he had, w-

made an amazing change in his life. He’s re-

ally comfortable now. He eats whatever he

wants, and he feels so much better. The doctor

is glad to hear that. Okay. How are you doing,

kind of, managing your diet? I know, you have

to do some lifestyle modifications, like cutting

back on caffeine and spicy foods and alcohol.

How are you doing with that? [patient] I’m
doing really well. I moved over from caffeine,
over to green tea. [doctor] Okay. [patient] and
it, it is so, m- it doesn’t cause as much problem
as it did with, when he was drinking so many
energy drinks a day...

HISTORY OF PRESENT ILLNESS: Alexander is

a 62-year-old male with a past medical history

significant for reflux. He presents for follow-up

of his chronic problems. He has a good support

system at home. He has a big family. All his

kids call and check on him every day. He does

not have any symptoms of chest pain, short-

ness of breath, belly pain, nausea or vomiting.

He does not have any symptoms of nausea or

vomiting. On physical examination, I do not

hear any carotid bruits in his neck. I do hear a

slight 2/6 systolic ejection murmur, which I’ve

heard in the past, so that’s stable. His lungs

are nice and clear, and he does have 1+ pitting

edema bilaterally in his lower extremities. I

think he is doing a good job watching his diet.

He could just be retaining a little bit of fluid,

maybe just from standing all day.

Figure 2: Example excerpts of outputs for Task C produced by models with and without data augmen-

tation. An instance of input copying is highlighted in italics.


	1 Introduction
	2 Task Definition
	3 Methodology
	3.1 Language model Pre-training
	3.2 Data Augmentation (DA)

	4 Empirical Evaluation
	4.1 Experiments set-up
	4.2 Implementation Details
	4.3 Results and analysis

	5 Conclusion
	A Hyper-parameters for training and inference
	B Qualitative example

