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Abstract
Finetuning Large Language Models helps improve the results for domain-specific use cases. End-to-end
finetuning of large language models is time and resource intensive and has high storage requirements to
store the finetuned version of the large language model. Parameter Efficient Fine Tuning (PEFT) methods
address the time and resource challenges by keeping the large language model as a fixed base and add
additional layers, which the PEFT methods finetune. This paper demonstrates the evaluation results
for one such PEFT method Low Rank Adaptation (LoRA), for Clinical Dialogue Summarization. The
evaluation results show that LoRA works at par with end-to-end finetuning for a large language model.
The paper presents the evaluations done for solving both the Subtask A and B from ImageCLEFmedical
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1. Introduction

It is important to record conversations between medical personnel and patients for compliance,
training, and evaluation purposes. To that end, summaries of such conversations serve as
valuable tools for medical personnel and patients to refer back to and comprehend their prior
interactions. Therefore, a concise summary must be produced to facilitate the next medical
consultation and provide a source for future reference. Currently, such summaries are created
manually; this summarization process is costly and labour-intensive. AI-based summarization
techniques can help here by reducing the time and cost associated with manual summarization
and facilitating the generation of more accurate representations of doctor-patient conversations
by human scribes in less time.

Sequence-to-Sequence (Seq2Seq) Architectures [1] have been at the forefront of creating
summaries. Transformers [2] further improved the performance of this architecture. Over
time, we have seen that the performance of these models have improved significantly 1 but
it comes at the cost of increased model size which made it very difficult to fit such models
on consumer grade hardware such as K80 or T4. Recently a couple of techniques such as
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LoRA [3], Prefix Tuning [4], P-Tuning [5], Prompt Tuning [6] have been introduced which are
collectively referred to as Parameter Efficient Fine Tuning (PEFT) techniques. These techniques
are used for efficiently adapting pre-trained language models (PLMs) to various downstream
applications without fine-tuning all the model’s parameters. PEFT methods only trains a small
number of (extra) model parameters, significantly decreasing computational and storage costs
because fine-tuning large-scale PLMs is prohibitively costly. For this paper, we use the PEFT
implementation from Huggingface 2.

This paper presents the experimental results of our explorations with LoRA on Clinical
Dialogs to accomplish both Subtask A and B of [7] Shared Tasks from [8]. The solution of
SubTask B presented in this paper was ranked first among all the submissions for SubTask B.
The paper uses LoRA based models for both assigning conversations to a pre-defined set of
clinical notes sections and summarization of conversations. Through this work, the paper also
compares the performance of fine-tuned Transformer based models with LoRA based models for
classification and summarization tasks. In addition to this comparison, we also evaluate impact
of ensembling outputs from multiple Seq2Seq models using [9]. Our simulations show that
LoRA works as well as finetuning of Transformer-based models. This is very important because
it shows that we can get the equivalent performance as we get after fine tuning Transformer
models while using only a fraction of parameters which means that such models could be fine
tuned on consumer grade hardware such as K80 and T4.

This paper is organized as follows. Section 3 presents a brief overview of SubTask A and
B - including available labeled data and evaluation metrics. Then the paper describes current
state-of-the-art for dialog classification and summarization in Section 2 that this paper builds
upon. This is followed by the description of the approach used to solve SubTask A in Section
4 and SubTask B in Section 5. Then the results of our solutions for both of these subtasks
are presented. Finally, the paper ends with a conclusion of the work. The paper includes an
appendix containing exploratory data analysis and material that will help to better understand
the solution presented in the paper.

2. Related Work

Finetuning large language models enables better performance for domain-specific use cases.
In-context finetuning performs well in few-shot scenarios enabling the end users to provide
examples with the prompt to enable LLMs to learn for the use case at hand. This approach does
not scales as it restricts sending multiple examples with the prompt. End-to-end finetuning of
LLMs is resource and time intensive and has the additional drawback of storing and managing
multiple copies of large-size models.

Parameter Efficient Fine Tuning (PEFT) Methods attempt to solve the problems mentioned
above by finetuning a smaller number of existing or newly introduced parameters of the large
language model while keeping the rest of the parameters frozen. In [10], Lilian et al. divide
PEFT methods into the following four categories: additive, selective, reparameterization-based,
and hybrid methods. Additive methods such as adapters [11] introduce and train only a new
set of parameters or layers. Selective methods finetune only a few top layers of the network.

2https://huggingface.co/docs/peft/index



Reparametrization-based methods use a low-dimensional representation of the network to
reduce the number of parameters to be trained during finetuning. This paper evaluates Low-
Rank Adaptation (LoRA) a prominent example of this category of methods.

Parameter Efficient Fine Tuning (PEFT) methods reduce the need to host a large-sized model
for each use case. They enable users to use a frozen base model with a small layer of model
weights that vary with the use case. In [12], the authors compare the performance of four
different PEFT techniques for scenarios where low, medium and high counts of samples are
available for fine-tuning. The evaluation results show that LoRA gives near-best performance
when low to medium data samples are available for summarization tasks. In another similar
related study in [13], the evaluations demonstrate that the best summarization for radiology
reports is achieved using a model pre-trained on the clinical text and then fine-tuned using
LoRA. In this paper, the authors have used LoRA and ensembling for summarization.

3. Task Description

This Section provides a high-level overview of the MEDIQA-Sum 2023 Task (including both
SubTask A and B) from ImageCLEFmed MEDIQA[8]. The Section starts with a description of
different SubTask goals followed by basic counts of available labeled data. The metric used to
evaluate this task is arithmetic mean of ROUGE-1 [14], Bertscore F1 [15], and BLEURT [16].

3.1. Task Definition

Given a short conversation between a Doctor and a patient or another Doctor (Dialogue), the
goal of SubTask A is to create a system that automatically predicts the Section to which the con-
versation belongs to which is denoted by SectionHeader. There are twenty Sections Headers in
this dataset. Some examples of Section Headers are FAM/SOCHX, GENHX, PASTMEDICALHX,
CC. All of these Section Headers and their descriptions (Section Description) can be found
in Table A2. The goal of SubTask B is to create a system that generates a summary which
matches the human generated summary (Section Text) as closely as possible while optimizing
the metric for evaluation.

3.2. Labeled Data

In this paper we have used the labeled data provided by MEDIQA-Sum 2023 organizers for
training the models. A sample data point from the labeled data set for SubTask A and B can
be found in Table A1. The official data consists of a training and validation split. For SubTask
A and B, training data contains 1201 and validation data contains 180 <dialogue, section-text,
section-header> triplets.

4. SubTask A Methodology

Given a short conversation between a doctor and a patient, the goal of SubTask A is to predict
its Section Header. This Section starts with a description of the approach used to predict the
Section Header.
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Figure 1: SubTask A - Overall Architecture

We have achieved success using Bio-ClinicalBERT [17] for classification in the healthcare
domain. Hence we choose it as the backbone and initialize LoRA layer on top of it. We use
this architecture for classification of Dialogue to a Section Header in SubTask A. We limit the
number of input tokens to 300 tokens because that is the length of majority of dialogues, as
shown in Figure A1. We use a 3 Fold Cross Validation approach for modeling purposes. This
is to ensure that we capture all information in the data. For every fold, we split its test part
into validation and test. We do this so that we can use validation split to select best model
using Early Stopping and test split to calculate its performance. The hyper-parameters used for
training and performance for all folds can be found in Table A3. During inference, we pass a
given Dialogue through all three models, take an average of the logits for all the classes and
output the class with the highest logit score.

5. SubTask B Methodology

Given a short conversation between a doctor and a patient, the goal of SubTask B is to summarize
it while ensuring that the generated summary is as fluent and as close to Section Text as possible.
This Section starts with a description of the methodology used to summarize the conversation.
For Dialogue Summarization, we have trained a LoRA layer on top of Seq2Seq models. This
Section also describes the processed labeled data used for training these models, followed by the
actual training steps. Then this Section looks at the steps used to generate the summary from
the decoder. Finally, we discuss the approach used for ensembling the outputs of these models.

We train LoRA based Seq2Seq models using labeled data (Dialogue + Section Header, Section
Text) as (Input, Output) pair. Section Text is a part of the labeled data and is a human subject
matter expert-created summary of Dialogue. As a preprocessing step, we replace all new line
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characters with whitespaces. The Dialogue is concatenated with the section description of its
Section Header by the SEP token of the Seq2Seq architecture. During training and inference,
we use the actual section description for the actual Section Header. No changes are made to
Section Text.

We use a 3-fold cross validation scheme as described in 4 and train LoRA on two Seq2Seq
architectures - BioBart-V2-Large [18] and Flan-T5-Large [19]. Here we need to select the number
of input tokens for encoder and decoder. For encoder, we have selected token length of 512
tokens and for decoder, we have selected token length of 400 tokens. All the hyper-parameters
used to train each of the above architecture can be found in Table A4. To select the best model,
we use early-stopping [20] based on Validation Negative Log Loss. Results on the test part of
each of these models can be found in Table A5. The distribution of tokens for Dialogue and
Section Text can be found in Figure A2 and Figure A3 respectively.

To generate summaries that match the human generated summaries, we need a way to
control the text generated by the decoder component of a Seq2Seq model. This can be done by
using decoding strategies such as Beam Search [21], Top-k Sampling [22], Top-p Sampling [23],
Contrastive Search [24] etc. In this module, we use Beam Search with TPESampler Algorithm
from Optuna3 to search for the optimal decoding strategy trying to maximize ROUGE-1, ROUGE-
2, and BertScore rather than relying on manual tweaking of these metrics. We use TPESampler
here because it supports multivariate optimization and also it handles Float, Integer, and
Categorical values better than other algorithms present in Optuna4. We use Optuna here due to
ease of implementing Hyper-parameter optimization algorithms. We did not use BLEURT during
search because it is extremely time consuming. For this module, we use four hyper-parameters

3https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.TPESampler.html
4https://optuna.readthedocs.io/en/stable/reference/samplers/index.html
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for Beam Search - Early Stopping, Number of Beams, No Repeat N-gram Size, Length Penalty.
The search space of each of these variables can be found in the Table 1.

The results from the different models are ensembled using Generating Best Summary by
semantic similarity - a post-ensemble method [9] to identify the summary which is closest to
all the generated summaries. The paper uses this output summary as the final summary for the
given Dialogue.

Table 1
Search Space for Beam Search Decoding

Variable Data Type Range
Early Stopping Categorical [True,False]

Number of Beams Integer 5-15
No Repeat Ngram Size Integer 5-15

Length Penalty Float [-2,2]

6. SubTask A Results and Analysis

This Section presents the results for SubTask A using the approach described in Section 4. We
have made only one submission for predicting Section Header whose Multi Class Accuracy was
73.5% on the test set given by the organizers, obtaining a rank of 8 among 23 submissions. In
this submission, we pass Dialogues through all three LoRA based Bio-ClinicalBERT models, take
an average of the logits for all the classes and output the class with the highest logit score. The
table containing our team’s standing can be found in the Tables A6. Standings of all the teams
have been calculated using multi class accuracy. We compared performance of Bio-ClinicalBERT
when it is fine-tuned end-to-end and when it is used as a backbone for LoRA. We observe that
Bio-ClinicalBERT with LoRA score 73.3% on validation data whereas end-to-end fine-tuned
Bio-ClinicalBERT score 72% on the same validation data.

7. SubTask B Results

This Section presents the results for SubTask B using the approach described in Section 5. We
have made three submissions (mentioned as runs in the result tables) for generating summaries
from Dialogues. For the summarization task, we have submitted results from three runs. In run
1 and run 2, we train LoRA on BioBart-V2-Large and Flan-T5-Large respectively while run 3
presents the results of ensembling summaries from both of these models. The details for each
run are as follows:

1. Run 1 - We generate summary from BioBart-V2-Large model trained on each fold and
ensemble output of all the models using 5

2. Run 2 - We generate summary from Flan-T5-Large model trained on each fold and
ensemble output of all the models using Generating Best Summary by semantic similarity.



3. Run 3 - We generate summary from BioBart-V2-Large and Flan-T5-Large model trained
on each fold and ensemble output of all the models using Generating Best Summary by
semantic similarity.

The table containing our team’s standing can be found in Table A7. Standings of all the teams
have been calculated by calculating arithmetic mean of Rouge-1, Bertscore, BLEURT for the
Dialogue summary.

The experiments show that Run3 performs the best scoring rank 1 out of 13 submissions.
This is also intuitive since it contains summaries from 3 models of BioBART-V2-Large and 3
models of Flan-T5-Large. Run2 scored 5th rank and Run1 scored 6th rank. This is an interesting
observation since Flan-T5-Large is an enhanced version of T5 that has been finetuned in a
mixture of tasks whereas BioBart-V2-Large has been trained solely on medical corpus so ideally
Run1 should have scored better than Run2 but it seems that bigger models work better than
domain specific models although this hypothesis needs to be validated.

Table 2
Results of runs on Test Data

Run ROUGE-1 Bertscore-F1 BLEURT Mean Score
Run 3 0.4398 0.7231 0.5567 0.5732
Run 2 0.4209 0.7137 0.5423 0.5590
Run 1 0.4056 0.7109 0.5324 0.5496

7.1. Analysis of different Transformer Architectures on SubTask B

We compare performance of BioBart-V2-Large and Flan-T5-Large when they are fine-tuned
end-to-end and they are treated as backbone for LoRA. We observe that the models trained with
LoRA perform better than the models which were fine-tuned end-to-end. The performance
was evaluated by calculating arithmetic mean of ROUGE-1, ROUGE-2, and BertScore-F1. We
do not use BLEURT here as it is extremely time consuming and based on our observations,
ROUGE-2 and BLEURT have a very strong correlation. The average score across all folds for
each architecture can be found in the Table A5.

8. Conclusion

The paper presents the solution and the results for SubTask A and B of ImageCLEFmed MEDIQA-
Sum task. The solution uses LoRA to finetune Transformer based models to classify and sum-
marise Clinical Dialogues, and our simulation results show that the performance of Transformer
based models finetuned using LoRA is equivalent to the performance of Transformer based
models finetuned using resource and time-intensive end-to-end finetuning. The success of
Transformer based model finetunes using LoRA implies organizations can easily finetune and
deploy domain-based models.

The authors observe that metrics such as ROUGE are ineffective for evaluating the per-
formance of models like OpenAI GPT3 as they focus on syntactic similarity. Metrics such



as Bertscore and BLEURT seem more suitable for such models since they focus on semantic
similarity. Finally, the paper also evaluates two different ensemble techniques, and the re-
sults demonstrate that the Post Ensemble technique performs the best while giving minimum
hallucinations.



A. Appendix

A.1. Data Exploration and Explanation

This section discusses data exploration and explanation so that audience can understand why
we made the decisions that we made. A sample data point from dataset for SubTask A and B
can be seen in Table A1.

Table A1
Sample data point for SubTask A and B

Variable Sample Value
Section Header FAM/SOCHX

Section Text The patient has been a smoker since the age of 10. So, he was smoking 2-3 packs
per day. Since being started on Chantix, he says he has cut it down to half a pack
per day. He does not abuse alcohol

Dialogue Doctor: Are you a smoker?
Patient: Yes. I do not drink if that is any constellation.
Doctor: How much do you smoke per day?
Patient: I just started taking Chantix and now I am down to a half a pack a day.
Doctor: How much did you smoke per day prior to starting Chantix?
Patient: I was smoking about two to three packs a day. I have been smoker since I
was ten years old.

The description of each of the Section Headers present in the data can be found in Table A2
The Class distribution of Section Headers for SubTask A is give by Figure A1
The Dialogue Token Distribution for SubTask A and B is give by Figure A2
The Clinical Note Token Distribution for SubTask B is give by Figure A3
The hyper-parameters and performance metrics for Predicting Section Header i.e SubTask A

can be found in the Table A3.
The hyperparameters used to fine tune Seq2Seq Models and LoRA i.e. SubTask B can be

found in Table A4. Each of these models were trained on 150 epochs, Gradient Accumulation of
16, Learning rate of 1e-3, AdamW optimizer, and Linear Learning Scheduler.

The performance of different Seq2Seq Models using LoRA and Fine-tuning can be found in
Table A5



Table A2
Section Headers and their descriptions.

Section Header Section Header Description
FAM/SOCHX FAMILY HISTORY/SOCIAL HISTORY

GENHX HISTORY OF PRESENT ILLNESS
PASTMEDICALHX PAST MEDICAL HISTORY

CC CHIEF COMPLAINT
PASTSURGICAL PAST SURGICAL HISTORY

ALLERGY ALLERGY
ROS REVIEW OF SYSTEMS

MEDICATIONS MEDICATIONS
ASSESSMENT ASSESSMENT

EXAM EXAM
DIAGNOSIS DIAGNOSIS

DISPOSITION DISPOSITION
PLAN PLAN

EDCOURSE EMERGENCY DEPARTMENT COURSE
IMMUNIZATIONS IMMUNIZATIONS

IMAGING IMAGING
GYNHX GYNECOLOGIC HISTORY

PROCEDURES PROCEDURES
OTHER_HISTORY OTHER_HISTORY

LABS LABS

Table A3
SubTask A - Predicting Section Header. Base Arch: Base Architecture, BS: Batch Size, LR: Learning Rate,
LoRA-A: LoRA-Alpha, LoRA-D: LoRA-Dropout BVL : Best Validation Loss.

Base Arch Fold Epochs BS LR LoRA-R LoRA-A LoRA-D BVL
Bio-ClinicalBERT 0 150 16 1e-3 8 32 0.01 1.193
Bio-ClinicalBERT 1 150 16 1e-3 8 32 0.01 1.429
Bio-ClinicalBERT 2 150 16 1e-3 8 32 0.01 0.4961

Table A4
SubTask B - Hyperparameter Tuning for Different Architectures. Base Arch: Base Architecture, BS:
Batch Size, LR : Learning Rate, LoRA-A: LoRA-Alpha, LoRA-D: LoRA-Dropout, MaxSL : Maximum Source
Length, MaxTL : Maximum Target Length, MinTL : Minimum Target Length

Base Arch BS LR LoRA-R LoRA-A LoRA-D MaxSL MaxTL MinTL
Flan-T5-Large 1 1e-3 8 32 1e-3 512 400 8

Biobart-V2-Large 1 1e-3 8 32 1e-3 512 400 8

Table A5
SubTask B - Section Text Summarization Comparison

Base Architecture LoRA-Score Fine Tuning-Score
BioBart-V2-Large 0.4310 0.2877
FLAN-T5-Large 0.4276 0.1083
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A.2. Standing of our team

Our standings (in bold) for SubTask A - Section Header Classification is in Table A6. We omitted
several teams from these standings and represent them by Ellipsis (...). This is done only to
conserve space.

Table A6
SubTask A - Section Header Classification Standings

Team Run Accuracy Rank
Cadence run1 0.82 1
...
SuryaKiran run1 0.735 8
...
SSNSheerinKavitha run1 0.14 23

Our standings (in bold) for SubTask B - Summarization is in Table A7

Table A7
SubTask B - Section Text Summarization Standings

Team Run Rouge1 Bertscore_F1 Bleurt Aggregate_score Rank
SuryaKiran run3 0.4398 0.7231 0.5567 0.5732 1
...
SuryaKiran run2 0.4209 0.7137 0.5423 0.5590 5
SuryaKiran run1 0.4056 0.7109 0.5324 0.5496 6
...
SKKU-DSAIL run1 0.2603 0.5929 0.5305 0.4612 13
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