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Abstract
This paper introduces the work conducted by the team "closeAI2023" in the ImageCLEFmedical Caption
2023 Image Caption sub-task. Medical image captioning poses unique difficulties due to the specialized
nature of the medical domain. It requires the generation of accurate and coherent captions that not only
describe the visual content but also capture the essential medical information conveyed by the images.
To leverage the abilities of pre-trained Large-Image Models, we utilise the state-of-the-art BLIP-2 with a
giant vision transformer (ViT-g) and Open Pre-trained Transformer Language Models (OPT2.7𝐵) as the
foundation of our caption prediction sub-task. To adapt the model to the medical domain, we employed
a two-stage fine-tuning process. The pre-trained OPT2.7𝐵 was fixed during the whole training process.
A step-wise fine-tuning of the ViT-g and the Q-Former modules was conducted to better align with
the characteristics of medical data. Our team’s approach yielded promising results, as we achieved a
second-place ranking among all participating teams with a BERTScore of 0.6281. Additionally, our model
performed well across various evaluation metrics: ROUGE of 0.2401 (4th), BLEURT of 0.3209 (1st), BLEU
of 0.1846 (3rd), METEOR of 0.0873 (3rd), CIDEr of 0.2377 (1st), and CLIPScore of 0.8074 (3rd).
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1. Introduction

ImageCLEF 2023 is a Multimodal Challenge organized as part of CLEF Initiative Labs[1]. Since
2003, ImageCLEF has been dedicated to investigating solutions for challenges involving mul-
timodal data across diverse domains. Medical image captioning, recognized as a significant
and demanding task within the medical field, has been featured in ImageCLEF for the seventh
consecutive year. ImageCLEFmedical Caption 2023[2] encompasses two subtasks, including
Concept Detection and Caption Prediction Task. Our team mainly focused on the latter task.
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Table 1
Number of images per modality in ImageCLEFmedical Caption 2023 training dataset.

Overall Modalities
X-Ray Plain X-Ray MRI Ultrasonography Angiogram PET PET/CT Radionuclide Imaging Radiographic Imaging Other

60,918 20,955 16,838 9,482 8,355 3,954 472 136 37 21 668

The Caption Prediction Task necessitates the generation of accurate and coherent descrip-
tions based on medical images. To accomplish this, the model must effectively recognize and
extract the semantic information embedded within the medical images, capture the inherent
relationships between these semantics, and proficiently express them using medical terms.
BERTScore[3] and ROUGE[4] are the primary and secondary evaluation metrics for this task.

The dataset used for ImageCLEFmedical Caption 2023 is an updated and extended version
of the Radiology Objects in COntext (ROCO) dataset[5]. ROCO dataset contains over 80,000
radiology images with various modalities including ultrasound, X-Ray, Computer Tomography
(CT), Magnetic Resonance Imaging (MRI) and so on. The statistics of images modalities in the
training set is shown in Table 1. All images in ROCO have corresponding caption, keywords,
Unified Medical Language Systems (UMLS) Concept Unique Identifiers (CUIs) and Semantic
Type. For caption prediction task, the ground truth captions were pre-processed by removing
all the links contained in original captions.

We employed BLIP-2[6], a vision-language pre-training method that bootstraps from frozen
pre-trained unimodal models, for the caption prediction task. BLIP-2 is a recently proposed
vision-language pre-training method by Li et al. building upon their previous work of BLIP[7]
and it has demonstrated superior performance compared to various other vision-language
pre-training methods, including Flamingo[8], across a range of vision-language tasks such as
visual question answering, image captioning, and image-text retrieval.

In this paper, our method is specifically introduced in Section 2, the experiments and results
are demonstrated in Section 3 and a brief summary is given in Section 4.

2. Method

The pipeline of our method is shown in Figure 1. Our method adopted the fine-tuned BLIP-2
ViT-g OPT2.7𝐵 model in [6] and a two-stage fine-tuning, i.e. concept-based fine-tuning and
overall fine-tuning, was performed to the model on the competition dataset.

2.1. Architecture

The framework of BLIP-2 consists of three main components: an image encoder, a lightweight
Querying Transformer (Q-Former), and a large language model (LLM). The pre-training process
of BLIP-2 comprises two stages: vision-language representation learning from a frozen image
encoder stage and vision-to-language generative learning from a frozen LLM stage. In deep
learning, the term "frozen" refers to a state where specific layers or parameters of a neural
network are set to be untrainable or unmodifiable. This implies that, during the training process,
the weights associated with these frozen layers or parameters remain constant and do not get
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Figure 1: The training pipeline of our method. The image encoder and Q-Former are in yellow boxes,
indicating that their parameters were updated during training, while the LLM in the green box had its
parameters frozen. In concept-based fine-tuning stage, both concept loss and caption loss were utilized,
but only caption loss was employed in overall fine-tuning stage.

updated. During the two pre-training stages of BLIP-2, image models and language models were
frozen, preserving their initial image understanding and text generation capabilities. In contrast,
Q-Former was trained exclusively in the pre-training to extract visual representations that
effectively corresponded to textual information and provided this information to the LLM. When
applying BLIP-2 models to downstream tasks such as image captioning, the LLM remained
frozen during the fine-tuning process, while the parameters of the image encoder and Q-Former
were updated[6].

For our specific task, we adopted the BLIP-2 model for image captioning in [6] and chose
the ViT-g/14 from EVA-CLIP[9] as the image encoder. Regarding the LLM selection, while the
encoder-decoder-based FlanT5XL[8] exhibited superior performance in the zero-shot image
captioning task compared to decoder-based OPT models, the OPT2.7𝐵[10] demonstrated a
slightly stronger ability to generate normal captions[6]. As a result, we adopted the OPT2.7𝐵 as
the LLM.

2.2. Training Strategy

In the pre-training and fine-tuning phase of ViT-g and BLIP-2 ViT-g OPT2.7𝐵 , standard natural
image datasets such as ImageNet[11] and COCO[12] were employed. However, our task is
based on medical images, which exhibit a substantial domain shift from natural images, thus we
performed a two-stage fine-tuning process on the competition dataset with the LLM OPT2.7𝐵

frozen and simultaneously the Q-Former together with the image encoder ViT-g were updated.
The language modeling loss[7] was utilized during the fine-tuning, which acts on image-
grounded text to optimize the model’s ability to generate coherent captions according to visual
information.

Stage 1 - Concept-based Fine-tuning. In this stage, we used the concepts and captions of



images to jointly optimize the model. We designated the loss between the output of Q-Former
and image concepts as the concept loss, while the loss between the final output of OPT2.7𝐵 and
the image caption was termed the caption loss. Both of these losses were essentially language
modeling losses, albeit with distinct optimization objectives.

• Concept loss aims to encourage Q-Former to generate expressions that align closely
with professional medical terminology, leveraging the representative features extracted
from medical images. Since each image corresponds to specific concepts represented
by Concept Unique Identifiers (CUIs), we initially map these CUIs to English and then
organize them into language descriptions using the sentence structure: "The image shows
[concept 1], [concept 2], ..., [concept n]." These descriptions contain valuable
and accurate information. Our intention is to make the output of Q-Former as close as
possible to these descriptions.

• Caption loss calculates the difference between the final outputs of OPT2.7𝐵 and the ground
truth image caption, ensuring that Q-Former can generate informative and professional
prompts while also allowing OPT2.7𝐵 to generate accurate captions.

Stage 2 -Overall Fine-tuning. In this stage, the model was exclusively trained by minimizing
the caption loss, prioritizing overall optimization during fine-tuning.

3. Experiments

3.1. Implementation Details

Our framework was developed using PaddlePaddle1 version 2.4.2 and trained on 8 Ascend 910
NPUs. The adapter plug-in PaddleCustomDevice2 was utilized in order to be compatible with
the Ascend NPU. The size of image input were resized to 364× 364 and the batch size was 16
in both fine-tuning stage. The model was fine-tuned for 50 epochs and 20 epochs in the first
and second stage respectively. We use the AdamW optimizer with the weight decay of 0.05.
The initial learning rate was set to 10−5 with a warm-up of 1000 steps to gradually adjust the
learning rate.

In addition, based on the statistics depicted in Figure 2, the maximum output length of the
model was set to 128. It is evident from the data that the majority of sentence lengths fall below
this threshold. Our aim is to ensure the conciseness and adherence of the generated captions
to the sentence length distribution in the dataset by setting an appropriate maximum output
length.

3.2. Post-processing

Generative language models frequently face the problem of degradation, specifically, the quality
of the generated text gradually declines as its length increases. This degradation often leads

1https://github.com/PaddlePaddle/Paddle
2https://github.com/PaddlePaddle/PaddleCustomDevice



Figure 2: The frequency histogram regarding the sentence length of captions in the ImageCLEFmedical
Caption 2023 dataset. The horizontal axis represents the length of sentences.

Table 2
Comparisons of some predicted captions before and after the post-processing.

Data ID Before Deduplication After Deduplication

000034 transthoracic echocardiography view of a small aneurysm in the left atrial sep-
tum ao aneurysm aoa aneurysm aoa aneurysm aoa aneurysm aoa aneurysm
aoa aneurysm aoa aneurysm aoa aneurysm aoa aneurysm aoa aneurysm
aoa aneurysm aoa aneurysm aoa aneurysm aoa

Transthoracic echocardiography view of
a small aneurysm in the left atrial septum.

000047 anteroposterior radiograph of the left ankle at the end of the first year of
treatment showing the thickening of the tibia and fibula and the growth of
the distal end of the tibia into the distal end of the fibula note the thickening
of the distal end of the tibia into the distal end of the fibula and the growth
of the distal end of the tibia into the distal end of the fibula at the end of the
first year of treatment

Anteroposterior radiograph of the left an-
kle at the end of the first year of treat-
ment showing the thickening of the tibia
and fibula and the growth of the distal
end of the tibia into the distal end of the
fibula.

000080 ultrasonographic view of the patellar tendon of the patellofemoral joint of
a 4-year-old domestic dog the patella patellar tendon lv patellar ligament
lp patellar tendon ap patella ap patellar ligament ap patella ap patella ap
patella ap patella ap patella ap patella ap patella ap patella ap patella ap
patella ap patella

Ultrasonographic view of the patellar ten-
don of the patellofemoral joint of a 4-year-
old domestic dog

to the emergence of repetitive patterns at various levels, including characters, phrases, and
sentences.

To address the problem of duplicate vocabularies in our model’s output, we implemented a
post-processing. Specifically, we provide a predicted caption which contains repeated words as
a prompt for ChatGPT 3, requesting it to generate a Python code snippet capable of removing
repetitive content. This generated code was then employed to perform text deduplication on
all predicted captions. Following the post-processing step, the BERTScore of our results on
validation data increased from 0.608 to 0.628. Table 2 demonstrates a comparison of some
predicted captions before and after deduplication.

3https://openai.com/blog/chatgpt



Table 3
Ablation studies on validation data of caption prediction task. BLIP-2 ViT-g Q-Former in the first row
indicates that this model is only composed of ViT-g and Q-Former, without LLM. ⋆ represents the results
of the model have been post-processed.

Model Image Size Trainable Params Total Params BERTScore ROUGE-1

BLIP-2 ViT-g Q-Former 224 1.1B 1.1B 0.541 0.160
BLIP-2 ViT-g OPT2.7𝐵 224 1.1B 3.8B 0.593 0.249
BLIP-2 ViT-g OPT2.7𝐵 364 1.1B 3.8B 0.608 0.255
BLIP-2 ViT-g OPT2.7𝐵

⋆ 364 1.1B 3.8B 0.628 0.253

Ground Truth: Chest X-ray showing enlarged cardiac silhouette
with cardiothoracic ratio of 70%, and mild pulmonary congestion.

Prediction: chest x-ray showing bilateral infiltrates

Ground Truth: A giant retroperitoneal tumor.

Prediction: computed tomography ct scan of the chest showing
a large lesion in the thoracic aorta
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Figure 3: Two examples of predicted results and ground truths in the validation set of caption prediction
task.

3.3. Results

3.3.1. Ablation Studies on Validation Set

Table 3 displays the results of ablation studies during our model selection process. We tested
different model compositions, input image sizes, and the effect of post-processing via these
studies. The result of BLIP-2 ViT-g OPT2.7𝐵 after post-processing (the last row of Table 3) was
ultimately chosen and submitted.

Figure 3 provides two examples of the validation data to visually demonstrate the performance
of our chosen model. Both examples showcase the input medical images alongside their
corresponding predicted captions provided by our model. In the two presented examples,
our prediction results successfully recognized the modality of the medical images, but fell short
in accurately detecting anomalies. In the first example, the description of "bilateral infiltrates"
relatively matched the presence of "pulmonary congestion"; however, it failed to identify cardiac
enlargement. The second example involved an incorrect diagnosis, misclassifying an abdominal
CT as a chest CT. Although a sizable lesion was identified, its localization was inaccurate.



Table 4
The results of the top five teams for the caption prediction task in ImageCLEF 2023[2].

Rank Team Name Run ID BERTScore ROUGE BLEURT BLEU METEOR CIDEr CLIPScore

1 CSIRO 4 0.642519 0.244618 0.313707 0.161486 0.079775 0.202512 0.814717
2 closeAI2023 7 0.628106 0.240061 0.320915 0.184624 0.087254 0.237704 0.807454
3 AUEB-NLP-Group 2 0.617034 0.213014 0.295011 0.169212 0.071982 0.146601 0.803888
4 PCLmed 5 0.615190 0.252756 0.316561 0.217150 0.092063 0.231535 0.802123
5 VCMI 5 0.614736 0.217545 0.308386 0.165322 0.073449 0.172042 0.808184

3.3.2. Results on Test Set

The ranking for the caption prediction task is determined based on the BERTScore. A complete
list of all runs for the caption prediction are now available in the results folder[2] and on the
official website4. Table 4 displays the best runs’ results of the top five teams. It shows that
our team "closeAI2023" achieved a second-place ranking with a BERTScore of 0.6281, which
is only 0.0144 lower than that of the first-ranked team. Among the seven listed metrics, we
have surpassed the first-ranked team in four of them, i.e. BLEURT, BLEU, METEOR and CIDEr.
Furthermore, our BLEURT and CIDEr metrics achieved top positions with scores of 0.3209
and 0.2377, respectively. These results demonstrate the consistent and strong performance
of our method across various evaluation criteria in the competition. However, despite the
commendable results attained by our model, Figure 3 suggests that there still remains room for
improvement.

4. Summary

This paper introduces the work of team "closeAI2023" in Caption Prediction Task of Image-
CLEFmedical Caption 2023. The model we used was obtained through a two-stages fine-tuning
based on BLIP-2 ViT-g OPT2.7𝐵 . To eliminate the impact of duplicate statements, we also
performed post-processing on the outputs of the model. Our team ultimately achieved second
place in this task, with a BERTScore of 0.6281. This points out the effectiveness of our approach
in generating high-quality captions for medical images. Codes and models will be open-sourced
at OpenMedIA5[13].
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