
BU-Pier Team @ CLEF JOKER 2023 Open Task: Slip of
the Tongue Generation to Improve Social Interaction
with Virtual Agents
Loïc Glemarec1,2, Fred Charles2

1Université de Bretagne Occidentale, FR
2Bournemouth University, UK

Abstract
We build on the work by [1] which tackled the problem of generating puns in French, by experimenting
to generate puns based on the data released for the CLEF 2022 JOKER and inspired by methods for
generating English puns with large pre-trained models. We propose, an adaptation of the previous French
generation sequence back in English, using an IMSdb modified dataset from [2].

Keywords
Computational Humour, Humour Generation, Wordplay, Computational Creativity

1. Introduction

Laugh and amusement are generally both a resulting effect of humour. In everyday life,
humour can lead to supporting social interactions [3] between humans by alleviating awkward,
uncomfortable, or uneasy feelings. Furthermore, using humour can enhance well-being and
help individuals manage anxiety and stress, as well as being effective at reducing distress [4].
According to the benign-violation theory [5], humour only occurs when something seems
wrong, unsettling, or threatening, but simultaneously seems okay, acceptable or safe.

Over the years, research into interactive storytelling has produced many prototype systems [6]
to engage human users in simulations where virtual agents act out a story [7] influenced by
human users’ interaction. One of the key characteristics of narratives is tension which has been
used as part of implemented systems [8] and it can be found in many dramatic film scripts.

In this paper, we propose a generation system that could be integrated into any other inter-
active dialogue system. The aim is to generate phonetic-based wordplays that could improve
engagement in this kind of interaction. We are giving a "lapsus" format to the puns [1]. Indeed
as we are interested in the generation of humour using phonetic composition, we also want to
integrate it a posteriori into interactive narration systems. We believe that lapsus is the perfect
form of humour, lying somewhere between dialogue and phonetics.

CLEF 2023: Conference and Labs of the Evaluation Forum, September 18–21, 2023, Thessaloniki, Greece
$ loic.glemarec3010@gmail.com (L. Glemarec); fcharles@bournemouth.ac.uk (F. Charles)
� https://staffprofiles.bournemouth.ac.uk/display/fcharles (F. Charles)
� 0000-0001-6207-912X (F. Charles)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:loic.glemarec3010@gmail.com
mailto:fcharles@bournemouth.ac.uk
https://staffprofiles.bournemouth.ac.uk/display/fcharles
https://orcid.org/0000-0001-6207-912X
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


Figure 1: Diagram illustrating which tools are used at which stages - please find in the text below
details of the different stages’ description (PICK; SWAP; SUBJECT; TOPIC; REBUILD).

2. Method

5-step wordplay generation Our goal is to generate wordplay based on paronyms from a
simple sentence without any sense of humour. Wordplay generation is built in 5 distinct steps.
To do this, we must first identify the word onto which to apply the wordplay: 𝑤𝑝𝑖𝑐𝑘 (PICK).
When we have selected a word, we then search the list of all its paronyms and select one: 𝑤𝑠𝑤𝑎𝑝

(SWAP). There is also a subject detection step: 𝑤𝑠𝑢𝑏𝑗𝑒𝑐𝑡 (SUBJECT). To accentuate the humour
effect, we need to change the topic to correspond to 𝑤𝑠𝑤𝑎𝑝 so that the context remains consistent:
𝑤𝑡𝑜𝑝𝑖𝑐 (TOPIC). Finally, once all these generated elements have been brought together, it is
possible to rebuild the sentence in the pun format (REBUILD). (see diagram in Figure 1).

PICK For the word selection stage, we start by listing all the adjectives and nouns of the
sentence. For this, we use TreeTagger, a part of speech tagger [9]. We then list all the paronyms
of the words from the first list. We proceed iteratively and look for paronyms with the same part



of speech (i.e. adjectives, nouns,...). If a noun or adjective does not have at least one paronym,
it is removed from the list. Finally, when several words are found to have paronyms in the
sentence, we select the word closest to the end. This choice is made in order to maximise the
surprise and thus the potential for comic effect [10].

SWAP Before proceeding with the exchange of words, we first list all the paronyms by
comparing their phonetic form which is provided by a dictionary on word pronunciations1.
We use the [11] heuristic to determine what are two paronyms, namely two words that are
phonetically close. Two words are considered orthographically similar if one word is obtained
with a single character deletion, addition, or replacement from the other one. Two words are
phonetically similar if their phonetic transcription is orthographically similar according to the
above definition. We also added a constraint to improve the selection: the homophone part of
speech must be the same as that of the initial word 𝑤𝑝𝑖𝑐𝑘. This allows to retain grammatical
coherence. When this condition is met, but there are still several possible homophones, the
𝑤𝑠𝑤𝑎𝑝 will be the homophone that is the most semantically distant from 𝑤𝑝𝑖𝑐𝑘. The choice of
a semantically distant word permits the selection of the word that will have the most distant
context possible. By doing this, the comic effect will be accentuated as the result of increased
surprise. To compare the semantic distance of words, we use the English version of fasttext [12]2.
This model allows mapping a word to a vector value. The comparison is done by measuring the
distance between two word-vectors. The greater the distance, the more semantically distant the
two words are. To calculate the distance, we compute the cosine value of the angle formed by
the two vectors.

When these operations are successfully completed, we end up with one paronym (𝑤𝑠𝑤𝑎𝑝) that
will provide a grammatically correct substitution and will maximise the potential for humour.
The next step is to provide a topic change in the sentence.

SUBJECT Before changing the topic in the sentence, we need to detect the subject (𝑤𝑠𝑢𝑏𝑗𝑒𝑐𝑡).
It is achieved through the GPT API3. To do so, we provide the model with several examples of
sentences while highlighting their subject. This information will be used in the next step and
will increase the precision of the generation.

TOPIC The sentence topic change is also operated through the GPT API. As in [1], the topic
change is made by changing a word in the sentence. As in the previous step, we provide the
model with several examples, then we request the prediction of a new topic. Intending to guide
the prediction towards what we are interested in, i.e. consistency between the new paronym
and the topic, we provide as information:

• The initial sentence
• The 𝑤𝑝𝑖𝑐𝑘 word
• The 𝑤𝑠𝑤𝑎𝑝 paronym
• The 𝑤𝑠𝑢𝑏𝑗𝑒𝑐𝑡 to change

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2https://fasttext.cc/
3https://platform.openai.com/



Table 1
There are a few examples of the 5-step generation.

input 𝑤𝑝𝑖𝑐𝑘 𝑤𝑠𝑤𝑎𝑝 𝑤𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑤𝑡𝑜𝑝𝑖𝑐 output

Be kind to your dentist because
he has feelings too

feelings filings dentist accountant
Be kind to your accountant because
he has filings too.

I may look busy, but I’m
just confused!

busy beery I The brewer
The brewer may look beery, but he’s
just confused!

The remedy is worse than
the disease

disease daisies The remedy The florist
The florist is worse than
the daisies.

I’d love to, but my patent
is pending

patent pattens I The shoemaker
The shoemaker would love to, but his
pattens is pending.

REBUILD Finally, it is now possible to reconstruct the pun. Again thanks to the GPT API
and providing the following information:

• The initial sentence
• The 𝑤𝑠𝑢𝑏𝑗𝑒𝑐𝑡 word
• The 𝑤𝑡𝑜𝑝𝑖𝑐 word

The pun is therefore similar with respect to the initial sentence, but the subject 𝑤𝑠𝑢𝑏𝑗𝑒𝑐𝑡 has
been changed to 𝑤𝑡𝑜𝑝𝑖𝑐 to ensure contextual consistency with the paronym 𝑤𝑠𝑤𝑎𝑝 of the word
𝑤𝑝𝑖𝑐𝑘.

See Table 1 for samples of generated outputs.

3. Experiment

Our experiment consists in generating funny dialogues by integrating puns. To do this, we used
dialogues from the IMSdb dataset. We selected scripts from films which systematically include
the staging of 2 characters and 2 to 3 utterances per dialogue. This provides a large enough
sample of dialogues which are realistic though manageable for our experiment. In this context,
a topic shift in the sentences would not make any sense, which is why we have decided not to
use the SUBJECT, TOPIC and REBUILD parts of the pipeline for this experiment. Furthermore,
the SWAP part will replace 𝑤𝑝𝑖𝑐𝑘 with synonyms and antonyms of "foolish", which leads more
easily to an incongruous situation. We can thus remain within the context of the dialogue, and
we can complete the modified utterances by repairing the slip of the tongue, i.e. by "I mean ..."
(See Table 2). m

4. Conclusion

We presented our approach for generating puns based on phonetics following a pipeline in the
English language. We moved from a generation using homophones [1] to the use of paronyms,
which considerably increases the possibilities. The GPT models seem to perform much better,
and we think that the three stages using this model successively can be combined into a single
stage, making it possible to go from three to a single request to the API. Furthermore, we aim
to integrate this system into the field of narrative interaction.



Table 2
Samples of input sentences and the generated outputs from our end-to-end pipeline.

Inputs Outputs

- One glass per man, sir, Captain’s orders.
- A mere thimbleful, Corporal, for scientific purposes only.

- One glass per mad, sir, Captain’s orders. I mean man !
- A mere thimbleful, Corporal, for scientific purposes only.

- I see you’re still conceited.
- Could you excuse us, Dottie?

- I see you’re still conceited.
- Could you excuse us, dotty? I mean Dottie !

- If you were tryin’ to surround’em, you sure succeeded.
- How far’s the river from here, Mose?

- If you were tryin’ to sound ’em, you sure succeeded.
I mean surround !
- How far’s the river from here, Mose?

- Excuse me, sorry I’m late.
- I’m sure you don’t have a good excuse, so I won’t force you
to come up with a bad one.
- Thank you, Isaac, that’s nice of you.
- Sit-down, this first one’s for you.

- Excuse me, sorry I’m late.
- I’m sure you don’t have a good excuse, so I won’t
force you to come up with a mad one. I mean bad !
- Thank you, Isaac, that’s nice of you.
- Sit-down, this first one’s for you.

TreeTagger is an old tool and we know that other more recent tools have better capabilities for
the same task, so we’re thinking of using the POS tagging tool from the NLTK library, especially
the one that uses Conditionnal Random Fields (CRF). We know that forcing replacement by
using a specific lexical field is a double-edged sword: on the one hand it increases the chances of
a funny context, but on the other it greatly limits the possibilities. We think it’s quite possible
to imagine building a custom list, which would group together several lexical fields identified
as being potentially effective from the point of view of the funny effect.

5. Online Resources

The sources are available via

• GitLab : https://gitlab.com/loicgle/computational-humour-pun-generation

References

[1] L. Glémarec, A.-G. Bosser, J. Boccou, L. Ermakova, Humorous Wordplay Generation in
French, CEUR Workshop Proceedings (2022).

[2] W. Xu, F. Charles, C. Hargood, Generating stylistic and personalized dialogues for virtual
agents in narratives, in: Proceedings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, 2023, pp. 737–746.

[3] J. P. Rossing, Prudence and racial humor: Troubling epithets, Critical Studies in Media
Communication 31 (2014) 299–313.

[4] N. A. Kuiper, R. A. Martin, Humor and self-concept, HUMOR International Journal of
Humor Research (1993).

[5] A. P. McGraw, C. Warren, L. E. Williams, B. Leonard, Too close for comfort, or too far
to care? finding humor in distant tragedies and close mishaps, Psychological science 23
(2012) 1215–1223.

https://gitlab.com/loicgle/computational-humour-pun-generation


[6] M. Cavazza, F. Charles, S. J. Mead, Developing re-usable interactive storytelling technolo-
gies, in: R. Jacquart (Ed.), Building the Information Society, Springer US, Boston, MA, 2004,
pp. 39–44.

[7] M. Cavazza, F. Charles, S. Mead, Ai-based animation for interactive storytelling, in:
Proceedings Computer Animation 2001. Fourteenth Conference on Computer Animation
(Cat. No.01TH8596), 2001, pp. 113–120. doi:10.1109/CA.2001.982384.

[8] A.-O. Petac, A.-G. Bosser, F. Charles, P. De Loor, M. Cavazza, A pragmatics-based model
for narrative dialogue generation, Proceedings of the 11th International Conference on
Computational Creativity (2020).

[9] H. Schmid, Probabilistic part-ofispeech tagging using decision trees, in: New methods in
language processing, 2013, p. 154.

[10] H. He, N. Peng, P. Liang, Pun generation with surprise, arXiv preprint arXiv:1904.06828
(2019).

[11] A. Valitutti, H. Toivonen, A. Doucet, J. M. Toivanen, “let everything turn well in your wife”:
generation of adult humor using lexical constraints, in: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 2013,
pp. 243–248.

[12] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, T. Mikolov, Learning word vectors for 157
languages, in: Proceedings of the International Conference on Language Resources and
Evaluation (LREC 2018), 2018.

http://dx.doi.org/10.1109/CA.2001.982384

	1 Introduction
	2 Method
	3 Experiment
	4 Conclusion
	5 Online Resources

