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Abstract
Developing an effective automatic system for snake species identification has significant importance for
biodiversity, conservation, and global health. Snakebites result in over half a million deaths and disabilities
worldwide each year, highlighting the urgent need for a system to enhance eco-epidemiological data and
improve treatment outcomes, especially in remote regions that lack the necessary expertise and data
but have high snake diversity and a high incidence of snakebites. The SnakeCLEF challenge provide an
evaluation ground that helps track the performance of AI-driven methods for snake species recognition
systems on a global scale. The fourth edition of the SnakeCLEF challenge focuses on (i) evaluation of
gradual improvements in automatic snake species identification, (ii) testing worldwide generalization on
two specific scenarios, i.e., India and Central America, and (iii) evaluation with uneven costs for different
errors, such as mistaking a venomous snake for a harmless one. This paper showcases the vital role of a
robust automatic identification system for snakes, particularly in regions with limited resources, and
highlights the potential impact on biodiversity conservation and global health outcomes. We report (i) a
comprehensive description of the provided data, (ii) an evaluation methodology, (iii) an overview of the
submitted methods, and (iv) perspectives derived from the achieved results.
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1. Introduction

With the high number of annual deaths and disabilities exceeding half a million caused by
venomous snakebites, a robust image-based system for snake species identification might
play a crucial role not just in global health but also has the potential to significantly enhance
eco-epidemiological data and treatment outcomes, including the selection and distribution of
antivenoms [1, 2]. Most expert knowledge (herpetological) and snake data are accumulated
in developed countries (i.e., North America, Australia, and the EU) where snake diversity is
relatively low or snakebite is not a major public health concern. In contrast, remote regions of
developing countries often lack both expertise and data, even in areas with high snake diversity
and many snakebites [3, 4]. Therefore, assistance with snake species identification has great
potential for saving lives, particularly in those regions where it is needed most.
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The main challenge in snake species identification arises from the significant intra-class and
low inter-class variance in appearance, which can be influenced by factors such as geographic
location, color morph, sex, or age. Additionally, many species have evolved to look visually
similar to other species to protect themselves (i.e., mimicry). Interestingly, many snake species
resemble species found on different continents, with which they have no overlapping ranges (e.g.,
Figure 1). Therefore, exploiting information about an unknown snake’s geographic origin could
narrow the identification process, as only approximately 125 out of the roughly 4,000 snake
species co-occur in any given location [5]. It is known that species with a wider distribution
and a greater number of images are more frequently predicted than rare species with limited
images [6]. This can pose significant challenges when attempting to predict the identity of
species that are widespread across regions with sparse image data.

The primary objective of the SnakeCLEF 2023 challenge is to provide an evaluation ground
that helps track the performance of AI-driven methods for snake species recognition systems on a
global scale. Taking part in the LifeCLEF [7, 8], and FGVC-CVPR workshops, the SnakeCLEF 2023
competition was hosted on HuggingFace to attract participation from machine learning experts
and facilitate the presentation of their ideas. The fourth edition of the SnakeCLEF challenge
focuses on (i) evaluation of gradual improvements in automatic snake species identification, (ii)
testing worldwide generalization on two specific scenarios, i.e., India and Central America, and
(iii) evaluation with uneven costs for different errors, such as mistaking a venomous snake for a
harmless one. This paper showcases the vital role of a robust automatic identification system
for snakes, particularly in regions with limited resources, and highlights the potential impact on
biodiversity conservation and global health outcomes. We report (i) a comprehensive description
of the provided data, (ii) an evaluation methodology, (iii) an overview of the submitted methods,
and (iv) perspectives derived from the achieved results.

Figure 1: Medically-important venomous snakes. Top row: Daboia russelii (Russell’s Viper – Asia),
Bitis arietans (Puff Adder – Africa), and Crotalus adamanteus (Eastern Diamond-backed Rattlesnake –
North America). Bottom row: Bothrops atrox (Common Lancehead – South America), Acanthophis
antarcticus (Common Death Adder – Australia), and Vipera ammodytes (Nose-horned Viper – Europe).
Photos by ©chinmay_c_m, ©kevin_ulett, ©tom_slade, ©eduardo_navia, ©laylab11, and ©vojtechvita.

https://www.imageclef.org/LifeCLEF2023
https://sites.google.com/view/fgvc10/competitions/snakeclef2023
https://huggingface.co/spaces/competitions/SnakeCLEF2023
https://www.inaturalist.org/observations/166260229
https://www.inaturalist.org/observations/160888734
https://www.inaturalist.org/observations/169677727
https://www.inaturalist.org/observations/168188304
https://www.inaturalist.org/observations/153913346
https://www.inaturalist.org/observations/146517242


2. Objective

From previous SnakeCLEF editions [9, 10, 11] we have learned that "machines" can accurately
recognize snake species, achieving F𝐶1 ≈ 90% and Top1 Accuracy≈ 90% even in scenarios with
long-tailed distributions and 1,600 species. Thus, testing real Medically Important Scenarios
and specific countries/regions and integrating the medical importance of species is the next
step that will allow more comprehensive performance evaluation. Therefore, the main objective
for all participants of this competition is to create a machine learning model that can accurately
predict snake species for given observation data, i.e., images and location, and: (i) fits limits
for memory footprint (max size of 1GB), (ii) minimizes the danger to human life, i.e., the
venomous ←→ harmless confusion, and (iii) generalizes to all countries and geographic regions.

2.1. Test Scenarios

This year we focused on two geographic scenarios, both important for snakebite globally. First,
we emphasize a large, biodiverse country with historical emphasis on just a few species of
medically-important venomous snakes (MIVS). Second, we focus on a region composed of four
adjacent countries that differ in socio-economic status but overlap in snake fauna.

India: Estimates suggest that 1.1–1.7 million snakebites take place in India every year [12],
leading to 40,000–60,000 deaths from snakebite annually [13], more than any other country.
More than 75 MIVS occur in India [14], although the "Big Four"—spectacled cobra (Naja naja),
common krait (Bungarus caeruleus), Russell’s viper (Daboia russelii) and saw-scaled viper
(Echis carinatus)—have historically been considered responsible for the majority of dangerous
snakebites and have been the focus of almost all specific antivenom research, development, and
production [15]. In this challenge, we include 43 MIVS (Big Four + 39 others) and 49% (125/253)
of non-venomous snakes found in India, including several close lookalikes; e.g., venomous kraits
(genus Bungarus) and harmless wolfsnakes (genus Lycodon) (Figure 2).

Figure 2: Top row: Lycodon laoensis (Laotian Wolfsnake), a non-venomous species. Photos by ©seiha,
©bangtran, and ©Rueangrit Promdam. Bottom row: Bungarus fasciatus (Banded Krait), a dangerous,
venomous snake. Photos by ©alexericsonlee, ©hmheinz, and ©Lawrence Hylton.

https://www.inaturalist.org/observations/116505860
https://www.inaturalist.org/observations/5442687
https://www.inaturalist.org/observations/97007390
https://www.inaturalist.org/observations/166258701
https://www.inaturalist.org/observations/149269459
https://www.inaturalist.org/observations/101157559


Central America (Panama, Costa Rica, Nicaragua, and Honduras): Snakebite is a signifi-
cant public health problem in all four countries, mainly affecting people living in rural areas [16];
Panama reports the highest incidence of snakebite cases in the Americas [17]. Snakebite is a
reportable disease in Panama, Costa Rica, and Nicaragua [17], but there are few epidemiological
data from Honduras [18]. Detailed comparisons highlight significant advantages enjoyed by
Costa Rica [19], the regional leader in epidemiological data and healthcare quality as well as a
global leader in antivenom research, development, and production [20].

Collectively, 43 MIVS occur in these 4 countries, of which we cover 38 as well as 67% (147/218)
of non-venomous snake species. Central America is notable for its relatively high diversity of
venomous coralsnakes (genus Micrurus) and their harmless mimics [21] (Figure 3), which are
among the most frequently mis-classified of all snake species by both humans [22] and computer
vision [23]. Just as all antivenom used in Panama, Nicaragua, and Honduras is manufactured in
Costa Rica. [24], we anticipate that geographical bias can be reduced and regional sufficiency
achieved through sharing of training data and improved algorithm performance.

Figure 3: Top row: Pliocercus elapoides (Variegated False Coralsnake), a non-venomous species. Photos
by © pnlosmarmoles, ©sonoran, and © davidruizdominguez. Bottom row: Micrurus nigrocinctus (Central
American Coralsnake), a dangerous, venomous snake. Photos by ©viperinus, ©arthurchp, and ©jo22nfrog.

3. Dataset

The dataset was constructed from three sources. Training, validation, and public testing (Public
Test), subsets are based on observations submitted to the citizen science platforms – iNaturalist
and HerpMapper. The competition test set (Private Test) is composed of private images from
individuals and natural history museums who have not put those images online in any form
and therefore is undisclosed, and participants do not have access to this data.

In total, all the subsets combine roughly 110,000 real snake observations with community-
verified species labels. The number of species was extended to 1,784 snake species (up from 1,572
in 2022 [11] and 772 in 2021 [10]). Besides the increase in the number of species, the number
of observations from remote geographic areas with no or just a few samples was increased

https://www.inaturalist.org/observations/128010324
https://www.inaturalist.org/observations/109055601
https://www.inaturalist.org/observations/117795954
https://www.inaturalist.org/observations/160439261
https://www.inaturalist.org/observations/59692934
https://www.inaturalist.org/observations/104318916
www.inaturalist.org
https://herpmapper.org/


considerably, and the uneven species distributions across all the countries were straightened.
Despite these improvements, there are still fewer observations and poorer species coverage

from remote parts of developing countries that tend to lack herpetological expertise and have
high snake diversity and snakebite incidence (i.e., southern Asia, Sub-Saharan Africa, and parts
of Central/South America) [3]. Unfortunately, snakebites are common in many of these same
areas [25]. In addition to image data, we have provided information about medical importance,
i.e., whether or not a species is a medically-important venomous snake (MIVS), for each species,
as well as a country-species relevance matrix. We list the dataset statistics in Table 1 and direct
comparison with previous editions of the SnakeCLEF datasets in Table 2.

Table 1
SnakeCLEF 2023 dataset statistics for each split and subset. Taxonomic and geographic coverage.

Subset Species Countries Images Observations

Training 1,784 212 168,144 95,588
iNaturalist 1,784 210 154,301 85,843
HerpMapper 889 119 13,843 9,745

Validation 1,599 177 14,117 7,816
Public Test 1,784 191 28,274 15,632

Private Test 182 8 8,080 3,765
India 76 1 2,892 2,395
Central America 107 4 5,188 1,370

Table 2
SnakeCLEF datasets statistics comparison. All editions. Taxonomic and geographic coverage.

Dataset Species Images Observation Countries min / max samples

SnakeCLEF 2020 783 259,214 × 145 19 / 14,433
SnakeCLEF 2021 772 386,006 × 188 10 / 22,163
SnakeCLEF 2022 1,572 318,532 187,129 208 5 / 6,472

SnakeCLEF 2023 1,784 218,615 122,801 212 3 / 2,079

4. Evaluation Protocol

To motivate research in recognition scenarios with uneven costs for different errors, such
as mistaking a venomous snake for a harmless one, this year’s challenge goes beyond the
0-1 loss common in classification. We make some assumptions to reduce the complexity of
the evaluation. We pretend that there exists a universal antivenom that is applicable to all
venomous snake bites1. Furthermore, we pretended that our hypothetical antivenom is not lethal
or seriously harmful when applied to a healthy human2. Hence, we penalize the misclassification
1In reality, there are hundreds of snake antivenoms [26], each with its own range of efficacy across species, and the
correct one is not always available in real snakebite cases [27].

2In reality, treatment with antivenom when unneeded is a waste of a limited resource at best and can cause severe
anaphylaxis or death at worst; e.g. [28]; although patient harm in the reverse case is more common [29].



of a venomous species with a harmless one more than the other way around. Although this
solution is not perfect, it is a first step into a more complex evaluation of snake identification
and snakebite treatment pipelines. We specify two metrics (𝑇1, 𝑇2) reflecting these different
scenarios.

4.1. Evaluation Metrics

To motivate research in recognition scenarios with uneven costs for different errors, such as
mistaking a venomous snake for a harmless one, this year’s challenge goes beyond the 0-1
loss common in classification. In addition to previously used metrics, e.g., accuracy and macro
averaged F1, we introduce novel metrics that consider venomous ←→ harmless confusion, and
different error cost.

Track1 metric: The first track metric is the sum of (𝐿) over all test observations:

L =
∑︁
𝑖

𝐿(𝑦𝑖, 𝑦𝑖) (1)

Let us consider a function p such that p(s) = 1 if species s is venomous; otherwise, p(s) = 0. For
a correct species y and predictor species 𝑦, the loss 𝐿(𝑦, 𝑦) is given as follows:

𝐿(𝑦, 𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 𝑦 = 𝑦
1 if 𝑦 ̸= 𝑦 and 𝑝(𝑦) = 0 and 𝑝(𝑦) = 0
2 if 𝑦 ̸= 𝑦 and 𝑝(𝑦) = 0 and 𝑝(𝑦) = 1
2 if 𝑦 ̸= 𝑦 and 𝑝(𝑦) = 1 and 𝑝(𝑦) = 1
5 if 𝑦 ̸= 𝑦 and 𝑝(𝑦) = 1 and 𝑝(𝑦) = 0

(2)

Note: The costs were selected to illustrate a higher cost when a venomous snake is mistaken for a
harmless one. We do not claim the selected costs reflect the risks in a practical scenario: practical
costs would have to be determined by assessing what exactly follows after the recognition process.
One can imagine several aspects, e.g., the species of snake and potency of its venom, the cost and
side-effects of the antivenom, patient attributes, and so on.

Track2 metric: The second track metric includes the overall classification rate (macro averaged
F1) and the venomous species confusion error. The metric is a weighted average between the
macro F1-score and the weighted accuracies of different types of confusion.

𝑀 =
𝑤1F1 + 𝑤2Cℎ ˃ℎ + 𝑤3Cℎ ˃𝑣 + 𝑤4C𝑣 ˃𝑣 + 𝑤5C𝑣 ˃ℎ

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5
(3)

where 𝑤1 = 1, 𝑤2 = 1, 𝑤3 = 2, 𝑤4 = 2, and𝑤5 = 5 are the weights of individual confusions.
C𝑣 ˃ℎ is the percentage of wrongly classified venomous species as a harmless species.
Cℎ ˃𝑣 is the percentage of wrongly classified harmless species as a venomous species,
C𝑣 ˃𝑣 is the percentage of wrongly classified venomous species as another venomous species,
Cℎ ˃ℎ is the percentage of wrongly classified harmless species as another harmless species, and
the F1 is the macro averaged F1-score.



This metric has a lower bound of 0% and upper bound of 100%. The lower bound is achieved
if you misclassify every species and furthermore you misclassify every harmless species as
a venomous one and vice-versa. On the other hand, if F1 is 100% (every species is classified
correctly), every 𝑃𝑖 must be equal to zero by definition and 100% will be achieved.

4.2. Timeline

The SnakeCLEF 2023 competition was announced together with the dataset release on the 14th
of February 2023 through the LifeCLEF, HuggingFace, and FGVC challenge pages and anyone
was allowed to register and participate in the competition. The competition deadline was the
24th of May, arranging the competition for around 3.5 months. Differently from last year, the
test data was kept secret. However, we allowed one submission a day using the HuggingFace
evaluation platform and public test set. Two weeks prior to the deadline, five submissions
a day were allowed. The final evaluation was possible only via the "code+model submission"
submission. Therefore, one week prior to the deadline, we provided a dockerizer sample
"code+model submission" and we asked all the participants to provide their "models". Once the
submission phase was closed, all participants could submit post-competition submissions to
evaluate their ablation studies.

4.3. Working Notes

All participants were encouraged to provide code and a technical report ( Working Note) with
the information needed to reproduce the results of all submissions. All submitted Working Note
papers were reviewed by 2–3 reviewers with a decent publication history in Computer Vision
and Machine Learning, ensuring sufficient reproducibility and quality. The review process was
single-blind and provided up to two rebuttals.

5. Challenge Results

The official challenge results, based on Track 1 and Track 2 Metrics, are displayed in Figure 4.
Apart from that, we show the public leaderboard scores in Figure 5. The best-performing team
on the private leaderboard – word2vector – achieved 91.43% and 908 in terms of Metric 1
and Metric 2, respectively, on the private part of the test set. Interestingly, this team did not
achieve the best F𝑚1 score trailing behind by 1.36%. The top 3 teams achieved a competitive
performance, while the remaining two heavily underperformed. The differences in ranking
between public and private leaderboards revealed a small generalization capability to neglected
regions of BBracke team’s solution.

Central America: In the Central America scenario where we cover snake species observations
from Costa Rica, Nicaragua, Honduras, and Panama, the top 3 teams achieved similar scores in
all measured metrics–around 93% in Track 1 and 250 in Track 2.

India: The Indian scenario seems to be a deal breaker. Even though first- and second-runner-up
teams performed slightly better in the Central America scenario in terms of all metrics than the
winning team, the error in Metric 2 in the India scenario doubled for those teams.

https://www.imageclef.org/LifeCLEF2023
https://huggingface.co/spaces/competitions/SnakeCLEF2023
https://sites.google.com/view/fgvc10/competitions/snakeclef2023
https://github.com/picekl/LifeCLEF2023-SampleSubmission
https://github.com/picekl/LifeCLEF2023-SampleSubmission


word
2v

ect
or

BBrac
ke

BAO
fan

tin
g

art
i00

SS
SA

MMMM
0

20

40

60

80

100

Tr
ac

k 
1 

M
et

ric
 [%

]

91
.4

3

90
.5

88
.3

63
.5

3

39
.8

8

89
.7

4

88
.1

3

85
.4

7

59
.9

1

39
.9

93
.2

5

94
.6

1

93
.8

72
.6

6

39
.7

9

Combined
India
Central America

word
2v

ect
or

BBrac
ke

BAO
fan

tin
g

art
i00

SS
SA

MMMM
0

2000

4000

6000

8000

10000

Tr
ac

k 
2 

M
et

ric

26
0

23
9

25
0

12
34

30
49

64
8 11

70 13
63

56
14

93
97Central America

India

BBrac
ke

word
2v

ect
or

BAO
fan

tin
g

art
i00

SS
SA

MMMM
0

10

20

30

40

50

60

70

80

m
ac

ro
 F

1 
[%

]

61
.3

9

53
.5

8

46
.7

1

9.
49

0

76
.9

2

61
.4

6 68
.0

4

12
.2

9

0.
02

44
.8

5

42
.0

7

27
.8

9

4.
29

0

Combined
India
Central America

Figure 4: Official SnakeCLEF 2023 competition results – 5 teams. Private Leaderboard.

BBrac
ke

word
2v

ect
or

BAO
fan

tin
g

he
ad

ach
eIs

Hea
da

che

MRBag
he

rifa
r

tra
nsf

rom

sam
ue

lise

tig
eu

10
0

Auti
sm

8
to-

be
0

20

40

60

80

100

Tr
ac

k 
1 

M
et

ric
 / 

M
ac

ro
 F

1 
[%

]

95
.1

93
.7

1

93
.2

7

89
.0

5

88
.9

7

87
.2

2

86
.8

2

80
.4

2

76
.3

2

74
.7

981
.9

1

76
.3

7

73
.8

1

62
.5

8

62
.8

9

60
.4

3

59
.4

5

43
.6

40
.6

9

32
.2

3

Track1
F1m

BBrac
ke

word
2v

ect
or

BAO
fan

tin
g

he
ad

ach
eIs

Hea
da

che

MRBag
he

rifa
r

tra
nsf

rom

sam
ue

lise

tig
eu

10
0

Auti
sm

8
to-

be
0

1000

2000

3000

4000

5000

6000

Tr
ac

k 
2 

M
et

ric

11
46 15

53

14
85

24
87

24
81 29

57

29
75

45
73

55
39 60

13

Figure 5: SnakeCLEF 2023 competition results – Top10 teams on public test set. Public Leaderboard.

6. Participants and Methods

This year a total of 16 teams participated in the SnakeCLEF challenge. However, just five teams
submitted their models for private evaluation together with the working notes. An overview of
the methods used just by teams that passed the review process is synthesized below. More
details can be found in their individual working notes [30, 31, 32, 33].

word2vector [30]: The team uses textual input to help with the classification process. They
input the textual representations of the geographical locations (e.g. country codes) into the



CLIP [34] model. The output embedding vectors are used to compute a PCA model and their
dimension is reduced. Although the experiments are not provided, the reduction seems
like a logical step, because the variety of textual inputs is very limited. The output of this
procedure is used to train a small neural network to predict the geographical prior given
the observed image and its prediction from the visual model. In this regard, the authors
experiment with several architectures of neural networks including ResNet [35], BEiT [36],
EVA [37], Swin Transformer [38], VOLO [39], and ConvNeXt [40]. The last one was used for
further experimentation, although the baseline experiments did not show any clear winner
regarding the backbone. The only takeaway is that ResNet50 underperformed when compared
to the other models. The authors also use features from the penultimate convolution stage of
the ConvNext and after applying MaxPooling they concatenate them with the final features.
The authors used Seesaw Loss [41] to handle the long-tailed distribution of training data and
Real-World Weighted Cross-Entropy [42] in the last three epochs to accommodate for the
weighted penalization in the challenge metric. They report that CutMix [43] augmentation
outperforms others such as RandomMix [44]. As a last step, the authors want to make sure that
they do not classify a venomous species as a harmless one. That is why when the model exhibits
uncertainty in its predictions for a particular observation, they classify it as a venomous snake
species if any venomous species appears in the top-5 predictions. This approach resulted
in the best Track1 metric of 91.31%. However, they achieved the second best F1 score of 53.58%.

BBracke [31]: The team used ConvNeXt as the visual backbone. The model pre-trained on
iNaturalist21 had better performance than the one pre-trained on ImageNet21k. The model is
trained by optimizing a loss combining Focal Loss [45] and ArcFace Loss [46]. The authors
incorporate the metadata in the form of a learned embedding of the alphabetically sorted
region codes and endemicity flag. They are handled as separate inputs and combined in a small
neural network. The embedding is learned end to end together with visual species classification
network. The authors make use of several images in a single observation by applying
Multi-Instance Learning methods. The authors achieve the second-best Track1 result of 90.19%
and the best F1 score of 61.39%. This shows that optimizing the F1 score might not lead to the
best results when analyzing in a more realistic scenario when different errors have different costs.

BAOfanting [32]: The authors use Metaformer [47], which naturally combines the visual
and textual information. The textual information represents the meta-data in the form of
country code, endemicity, and binomial name, which are one-hot encoded and passed through a
non-linear embedding layer. The model is trained using the ArcFace Loss function. Each image
in the test set is augmented five times and the predictions are averaged. The final decision
about an observation is obtained by three differently trained Metaformers with or without the
SimCLR [48] method. The method achieved 88.30% in the Track1 metric and F1 score of 46.71%

arti00 [33]: The author uses a method for detecting region of interest in the image based on
the activations of neurons in a classification neural network. Three architectures were tested
– EfficientNet_B0, Dino v2 [49], and DEiT [50]. The DEit model trained with Equalized Focal
Loss [51] achieved the best results which resulted in fifth place in the competition with Track1
metric of 38.13% and F1 score of 9.49%.

https://github.com/chamidullinr/fine-grained-visual-recognition


7. Conclusions and Perspectives

This paper presents an overview and results evaluation of the fourth edition of the SnakeCLEF
challenge organized in conjunction with the CLEF LifeCLEF lab, and CVPR-FGVC10 – The
Tenth Workshop on Fine-Grained Visual Categorization organized within the CVPR conference.
The main outcomes we can derive from this year’s evaluation are as follows.

NLP model encoded metadata might be the next big thing. As in previous years, most of
the teams used the provided metadata and showed that by doing so the competition metric
improves. CLIP [34] – a strong multi-modal descriptor, was used for the first time in this
competition to encode the metadata. This trend may lead to the utilization of bigger NLP models.

Transformers for the win. But do not rule out CNNs yet. On the vision part, con-
volutional models (ResNet [35], EfficientNet [52], ConvNext [40]) and Transformer models
(MetaFormer [47], Swin [38], VOLO [39]) were used to extract the visual features. When
teams compared the architectures side-by-side, most of the time the Transformer architecture
performed better. However, the winning team used ConvNextv2. Due to the lack of a fair and
exhaustive ablation study, it is not clear how a Transformer model would fare.

Task-tailored losses and self-supervision are the keys to learning. Traditionally,
Seesaw loss [41] and SimCLR [48] were used to cope with the long-tailed data. Some teams
introduced a weighted version of the loss functions tackling the different penalization for differ-
ent errors. Multi-Instance Learning [53] was applied to make use of more images per observation.

Medically important scenarios might be on to something. The final results on the private
dataset show an interesting behavior of the models. The best team (named word2vector)
achieved a macro F1 score of 53.58% with the competition score of 91.31%. The runner-up
(BBracke) actually achieved a much better F1 score of 61.39% but had a lower competition
score of 90.19%. We hypothesize that this was possible due to the post-processing step of the
team word2vector. They used a conservative strategy to prevent the most strictly penalized
misclassification of non-venomous species as venomous ones: whenever their top-5 results
contained a venomous species, the observation was classified as such.

Three months-long competition period is not enough. Given the complexity of this
task and considering additional requirements like the limit for memory footprint (max size of
1GB) and code submission, many participants were discouraged from participation and code
submission. Out of 58 registered teams, 15 submitted reasonable predictions, and just five
submitted code+model for final evaluation.
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