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Abstract

This paper outlines the participation in the LifeCLEF-SnakeCLEF 2023 challenge for automated
identification of snake species. A metric-weighted ensemble loss function was introduced. The
proposed loss function was put to test with various deep learning architectures, including Data
Efficient Image Transformers (DEiT), EfficientNet and DinoV2. The SnakeCLEF 2023 challenge offers a
substantial database comprised of images and associated recording locations for 1,784 snake species,
serving as a resource to address this identification problem. The DEiT model trained with proposed
loss outperformed the EfficientNetB0O model trained with focal loss by 49% in terms of the F1 score
(macro). In the context of the SnakeCLEF2023 challenge, highest F1 score (macro) of 0.36 was achieved.
Notably, our experiments forego the usage of metadata such as region or country, focusing solely on
image based classification. The development of such a system holds significant potential to reduce
snakebite induced mortality and morbidity, aligning closely with global health and biodiversity objectives.
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1. Introduction

Ophidian Envenomation (OE), recognized as the second most fatal neglected tropical disease,
presents a significant global health crisis. Each year OE impacts approximately 1.8 to 2.7 mil-
lion individuals [1], predominantly those residing in underdeveloped, remote, and politically
marginalized tropical regions. The annual death toll from OE ranges from 81,410 to 137,880,
while around 400,000 [1] survivors endure permanent physical and psychological trauma, under-
scoring the urgent necessity for focused attention on this health issue. Ophidian envenomation
predominantly impacts individuals in Africa, Asia, and Latin America. Asia alone witnesses
up to 2 million cases [1] of snake venom intoxication annually. Concurrently, Africa records
an estimated 435,000 to 580,000 [2] instances each year that necessitate medical intervention
due to snake bites. The appropriate administration of antivenoms can be a lifesaver, yet it often
depends upon the correct taxonomic identification (family, genus, and species) of the snake in
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Figure 1: Exponentially Decreasing Distribution of Class IDs in the Train Dataset showcases the
long-tailed distribution of example classes. The x-axis represents the unique class I1Ds, while the y-axis
represents the frequency of each class ID in the dataset. It can be observed that a small number of
classes have a high frequency but the majority of classes have a significantly lower frequency with
many appearing just a few times which indicates a significant class imbalance.

question. An automated system capable of providing a preliminary identification to healthcare
professionals using a low quality photograph could expedite the treatment process.

The SnakeCLEF2023 challenge [3, 4, 5] urged participants to experiment upon different
deep learning methodologies for an accurate classifier for snake species, adaptable to diverse
conditions. This challenge was integrated into the LifeCLEF 2023 research platform, which
is dedicated to the automated identification of species [6, 7] across five unique challenges.
The approach for loss function implemented in this paper draws inspiration from the metric,
venomous species confusion error, mentioned in the challenge [8, 9]. The objective of the
SnakeCLEF challenge [3, 4, 5, 8, 9]is to enhance the robust and accurate identification of snake
species from photographs. An operational system proficient in snake species recognition from
images could substantially enrich the data on snakebite ecoepidemiology, clinical management
(like precise antivenom administration), and patient outcomes [10, 11, 12, 13, 14]. Despite the
fact that only about 20% of global snake species are medically significant [12], understanding of
their epidemiological relevance (like the count of snakebites each species is accountable for in
different regions) remains limited. Moreover, the knowledge about the geographical distribution
of various snake species is far from complete. It is not uncommon for the majority of images
of a particular snake species to come from a small group of countries or even a single country
which in turn bias the model and model trained on snake species in one region is not detected
in another region because of environmental difference causing the difference in the appearance.
On the other hand, several snake species resemble species from other continents, with which
they share no overlap in their geographic distribution.

2. Related Work

The automated identification of snake species utilizing machine learning remains an infrequently
explored field, primarily due to the scarcity of annotated image datasets. James et al. [15]
proposed a semi-automated technique that involved extracting taxonomical features from
images to discriminate among six different species. Amiza Amir et al. [16] introduced Image
Classification for Snake Species Using Machine Learning Techniques, where they investigated
the accuracy of five state-of-the-art machine learning techniques — decision tree J48, nearest



neighbors, k-nearest neighbors (k-NN), backpropagation neural network, and naive Bayes —
for image-based snake species identification problem. They showed backpropagation neural
network and nearest neighbour are highly accurate with greater than 87 % accuracy. Recent
studies have employed automated feature extraction strategies, such as texture features [16] or
deep learning methodologies [7, 17, 18, 19] as manual feature extraction of snake species data is
time taking and requires some expertise in the feature engineering and in-depth understanding
of the dataset.

Image-Based Classification of Snake Species Using Convolutional Neural Network (CNN)
by Isa Setiawan et al. [20] experimented with three CNN architectures using a dataset of 415
snake images from five common hazardous venomous snake species in Indonesia where snake
images are classified the snake images with a high accuracy of 82%. Patel et al. [17] deployed
deep learning strategies to create a smartphone application that could distinguish images of
nine snake species native to the Galapagos Islands in Ecuador. They have fused three data
sources together resulting a total of 250 images for the training dataset. After testing various
model architectures for object detection and image classification, the model based on the Faster
Region-based Convolutional Neural Network (Faster R-CNN) [21] ResNet [22] demonstrated the
highest classification accuracy at 75%. However, the authors emphasized the necessity for larger
training samples for further research in this area. Chamath Abeysinghe et al. [23] experimented
classification using Siamese Networks [24] and explored the applicability of single shot learning
techniques along with deep neural networks to solve the snake image classification problem.
An artificial intelligence (AI) model to identify snakes from across the world: Opportunities
and challenges for global health and herpetology, Isabelle Bolon et al., [25], they developed
an Al model based on Vision Transformer (ViT) [26]. Snake Detection and Classification
using Deep Learning by Zihan Yang et al. [27] used different deep learning models, YOLO v3,
Tiny YOLO, Faster RCNN ResNet and others for snake detection and classification problem on
Australian snake dataset. The dataset used in [27] paper was a collection from Google Image
through web crawling and ImageNet dataset. In SnakeCLEF Challenge 2020, FHDO BCSG[28]
used combination of image and location information for snake species identification using
object detection and EfficientNets. In SnakeCLEF Challenge 2022, GG [29] introduced a novel
architecture CoLKA- Net based on VAN [30] and CoAtNet [31].

3. Dataset

In SnakeCLEF challenge 2023 [5, 9], a comprehensive developed dataset, which comprises 103,404
snake observations with a total of 182,261 photographs. These images represent 1,784 unique
snake species sighted across 214 countries. The data was gathered from online biodiversity
platforms, namely iNaturalist and Herpmapper. It is important to note that the provided dataset
exhibits a pronounced long-tailed class distribution, with the most frequently observed species,
Natrix Natrix, represented by 1,262 observations (encompassing 2,079 images), while the least
observed species have merely 3 recorded observations [8]. This dataset also includes metadata
that is country code and name of the species. This dataset is bifurcated into two components,
serving as training data where one part includes commonly observed species, while the other
contains data pertaining to rarer snake species. Note that in this work, the metadata is not
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Figure 2: The dataset has variety of images which are quite challenging samples. Some snakes in
the image are less distinguishable w.r.t the surface itself. These variations further complicate the
classification process.

included to maintain simplicity and considering the scenario when metadata might not be
available.

As displayed in Figure 1, the bar plot representing absolute class frequencies, the distribution
of snake species in the dataset exhibits a pronounced imbalance. Despite the considerable size
of this dataset, it contains numerous challenging examples that make classification a daunting
task. For instance, Figure 2 presents images of snakes demonstrating a significant variation in
the surfaces on which they are found and some snake species are less distinguishable w.r.t the
surface itself. These variations further complicate the classification process.

4. Metric-Weighted Ensemble Focal Loss

Focal loss and equalized focal loss are often used to handle imbalanced datasets because they are
designed to give more weight to hard, misclassified examples and less weight to well-classified
examples.

Focal loss was introduced in the paper Focal Loss for Dense Object Detection by Lin et al.,[32]
as a way to address the class imbalance issue in object detection. It was designed to address the
one-stage object detection scenario in which there is an extreme imbalance between foreground
and background classes during training. The central idea of the focal loss is to reduce the
contribution of well classified examples, allowing the training process to focus more on hard
examples. This is achieved by adding a modulating factor (1 — p;)? to the cross entropy loss,
with tunable focusing parameter v > 0, that decreases the weight of well-classified examples.



The mathematical formulation of Focal Loss is -

FL(pt) = —au(1 — pt)7 log(pt) (1)

where F'L(p;) presents Focal loss, oy is a balancing factor (usually set to 0.25) that balances
the importance of positive and negative samples ( "positive" and "negative" samples are also
often used to refer to true positive and false positive), 7 is a focusing parameter (usually set to 2)
and p; is the model’s estimated probability for the true class at observation t. In the observations
mentioned in Lin et al.,[32], when an example is misclassified and p; is small, the modulating
factor is near 1 and the loss is unaffected. As p, — 1, the factor goes to 0 and the loss for
well-classified examples is down-weighted. Also, the focusing parameter v smoothly adjusts
the rate at which easy examples are downweighted.

Another variation of Focal loss, Equalized focal loss [33], on the other hand, was designed
to address another imbalance, which is the within-class sample imbalance, a common issue
in long-tailed classification problems. In a multi-class classification setting, applying a single
modulating factor uniformly across all classes (as done in focal loss) might not be the best
approach, especially when there is a large class imbalance. This is because the modulating
factor does not take into account the relative frequency of the classes in the dataset. In this type
of problem, some classes have a lot more examples than others. Equalized focal loss tries to
mitigate the issue by estimating class-wise weights to balance the influence of each class. This
makes the model focus more on the under represented classes. The Equalized focal loss for the
j-th category as-

EFL(py) = —oq(1— p)" log(py) (2)

Here, a; and p; are identical to those in the original focal loss. The parameter 77 acts as
the focusing factor for the j-th category, paralleling the role of v in traditional focal loss. As
mentioned in Lin et al.,[32], varying values of y correspond to different degrees of imbalance
between positive and negative instances. For rare categories positive-negative imbalance, a
larger 4/ is employed. In cases of categories with minor imbalance, a smaller 77 is suitable.
In equalised focal loss [33], the focusing factor 7/ is decomposed into two parts, namely, a
category-agnostic parameter 7, and a category-specific parameter Yo

Vi =+ (3)

Here, 7, signifies the focusing factor in a balanced data scenario, regulating the fundamental
behavior of the classifier. On the other hand, v} > 0 is a variable parameter tied to the imbalance
degree of the j-th category. It dictates the extent to which the learning focus is on addressing
positive-negative imbalance issues.

In this paper, both loss functions are utilized. As mentioned in Eq.(1), focal loss equally treats
the learning of all categories with the same modulating factor, so it is element-wise multiplied
with the weights obtained by the metric mentioned in [8, 9] for Metric Weighted Ensemble
Focal Loss. The metric representation is -



L ify =1,
1.5 ify#4y and ply)=0 and p(y) =0
Ly,y)) =<2 ify#9§ and ply)=0 and p(y) =1 (4)
2 ify#y and ply)=1 and p(y)=1
5 ify#y and ply)=1 and p(y) =0

where p is a function and p(s)=1 if species is venomous, p(s)=0, when it is non-venomous, y
is target class and § is predicted class. Note that there is a small change done on the original
orig — L(y, y) metric for the purpose of using it as a weight. After the calculation the final
formulation of the proposed Metric-Weighted Ensemble Focal Loss is -

MWEFL = EFL(pt) + L(y,9) © FL(pt) (5)
where MWEFL, Metric-Weighted Ensemble Focal Loss.

5. Sampling Strategy

In a normal random sampling scenario, every data point in the dataset has an equal chance
of being included in a batch. This can cause problems if the dataset is imbalanced, which is
our case, meaning some classes have more samples than others. If a model is trained on these
batches, it might perform poorly on the under represented classes simply because it didn’t see
enough of those examples during training.

This is where WeightedRandomSampler [34] is used in this paper. It assigns each data point in
the dataset a weight. The probability that a data point gets included in a batch is proportional to
its weight. The idea of weighted random sampling is a general statistical technique which uses
multinomial distribution for sampling and is not tied to a specific paper or proposal. That said,
many papers in machine learning that deal with imbalanced datasets will make use of weighted
sampling or similar techniques e.g., Learning from Imbalanced Data by He and Garcia [35].
Please note that paper, Learning from Imbalanced Data [35], discusses a variety of techniques,
not just weighted sampling.

The mathematical steps for the WeightedRandomSampler as mentioned in pytorch are-

+ Normalize the weights to create a discrete probability distribution-

P(i) = Z“’iw - Vj € dataset (6)
5 Wy

 Then, draw a sample index i from the discrete distribution:
i~ P(i) o)

« The final output is a sequence of indices, with a total length equal to to the sampled data
points. It’s worth noting that because this sampling process is inherently probabilistic,
different runs will generally yield different results unless a consistent random seed is
used.



Figure 3: Saliency Object Detection - DEIiT model

Figure 4: BoundingBox on Augmented Data

6. Implementation

6.1. Object Detection

Before feeding the images into the model, they are pre-processed using a saliency-based object
detection method proposed by Rail Chamidullin in 2022, [36, 37]. Given the challenging nature
of the dataset, where differentiating a snake from its surrounding environment can be arduous,
this process proves beneficial. By eliminating irrelevant sections of the image, the model is
more likely to focus on the features of the snake, thus enhancing its performance. Figures 3
and 4 showcase some of the outputs generated by this saliency-based object detection method
(36, 37].

6.2. Exploring Different Architectural Designs Through Experimentation

In order to address this imabalanced data classification task, a series of experiments were
conducted. These experiments included DEiT [38], EfficientNets [39], and DinoV2 [40]. Among
these, DEIT [38] emerged as the most proficient when using an input image size of 384 x 384.
An exploratory analysis involving DinoV2 [40] was also conducted, primarily focusing on the
PCA [41] features, as exhibited in Figure 5.

These figures demonstrate the model’s adeptness at learning accurate features. Additionally,
DinoV2 [40] was trained for a single epoch, a process that took approximately two and a
half hours, yet yielded a commendable macro F1 score at first pass than other experimented
models. This performance surpassed the first epoch results of other models. However, due to
the substantial time consumption, this model was not further pursued in the current study.
Nonetheless, its promising initial results mark it as a potentially worthwhile experiment for
future research. These models were trained using the proposed loss function. Individually focal
loss [32] and equalized focal loss [33] were also being utilized for training experiments.

The GPUs utilized for this research were the A6000 48 GiB GPU with 45 GiB RAM from
Paperspace and the A100 from Colab. It is significant to mention that due to limited resources,
the number of training epochs was kept under 30. Apart from the Metric Weighted Ensemble
Focal Loss (MWEFL), other loss functions such as the Equalized Focal Loss [33](eFocal) were
also explored.
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Figure 5: Fig (a) represents Original image of snake on which Dinov2 is executed for feature analysis.
Fig (b) represents PCA features components extracted from Dinov2 model exhibiting features learned
from the original image on the left side. Here, Dinov2 model feature extraction PCA anaysis exhibits
well learned spacial and texture features of the original snake image.

Table 1
Table presents training loss, validation loss, F1 scores (macro), top-3 score of training different models
(with pre-trained weights) with proposed loss and individual losses

Model loss train loss  val loss snake score  mac-f1 score top 3
DEit eFocal 0.46 4.59 - 0.36 0.72
DEit MWEFL 0.64 8.06 7165 0.35 0.72
DinoV2 Focal 2.04 3.44 15666 0.15 0.45
EfficientNet(b0) Focal 0.03 3.18 - 0.24 0.55
7. Results

Table 1 presents the performance comparison of various model architectures used in the ex-
periments. Each model is evaluated on three distinct metrics — F1 score (macro), snake score
(a custom metric employed as a weight in our MWEFL loss function and introduced in the
challenge [8, 9]), and top-3 accuracy. The tabulated results provide a clear understanding of
the strengths and weaknesses of each architecture in tackling the given classification task.
Despite the fact that the highest macro F1-score was achieved by the DEiT model trained using
eFocal loss (F1-score (macro) 0.36), the DEiT model trained with MWEFL (F1-score (macro) 0.35)
outperformed the others in terms of the lowest snake score.

8. Conclusion and Future Work

The research conducted in this study involved numerous experiments, which could be further
improved with access to a larger and more balanced dataset and by running more epochs.
Specifically, for those species with a smaller number of samples, one could artificially boost
their representation through offline augmentation techniques.



Another promising direction for future work could be to treat this problem as a similarity
search task. In this approach, we could construct a database of embeddings for different
appearances of all species. Then, for a new image, we calculate the similarity score between
the new image and the images in the database. This method could potentially make the model
more robust and improve its accuracy by leveraging a more comprehensive understanding of
the variability in appearances among species.
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