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Abstract
This paper presents the methods and submissions made by our team to PlantCLEF 2023, an image-
based plant identification task involving 80,000 plant species. Like PlantCLEF 2022, the task aimed to
identify species based on 26,868 multi-image plant observations from a test set of 55,306 images. Given a
training dataset of 4 million photos, we trained several Inception-v4 and Inception-ResNet-v2 models
and submitted ten runs. Compared to the previous year, we experimented with more data augmentations,
different batching methods and trained separate organ models, specifically for the labels: bark, flower,
fruit, habit, and leaf. Our highest-performing run, comprising several ensembled models, achieved a
macro-averaged mean reciprocal rank of 0.61813, increasing from 0.6078 in last year’s performance
(PlantCLEF 2022) through increased data augmentations.
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1. Introduction

Accurate identification of plants on a global scale helps us understand and conserve Earth’s
biodiversity. It allows naturalists to study species diversity [1], assess the impact of environ-
mental changes, and predict ecological responses to climate change [2]. Besides this, it plays a
vital role in agriculture [3], food security [4], and medicinal research [5]. In many ways, plants
are beneficial to all life-form. Nevertheless, it remains a challenge to identify all plant species
on Earth [6]. Global plant-scale identification involves processing massive variations of plant
features, taxonomic information, and ecological attributes. Capturing subtle differences among
these species may require more effort for machine algorithms and even for human experts.
To tackle this problem, the PlantCLEF 2023 challenge [7, 8] was introduced to classify a large
multi-image dataset with 80,000 plant species. Likewise, the same training and test sets from
PlantCLEF 2022 [9] were provided. These datasets remain the largest plant dataset published
to date and represent a realistic global plant identification task concerning a vast number of
species, strongly unbalanced, partially incorrect identifications, duplications, and diversified
images.

This paper describes our training strategies, submissions, and results obtained in PlantCLEF
2023. In short, our training strategies include increasing data augmentation, applying bal-
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anced batching, and employing multi-organ and single-organ training schemes. Firstly, data
augmentation is a common technique to increase the training dataset by performing various
transformations on the images to tackle the class-imbalance problem and to avoid overfitting
[10]. In addition, it has been shown that simple augmentation methods can contribute consider-
ably to the results, which are very good relative to more complex methods in some cases [11].
Therefore, we experimented with increased augmentation during training by applying more
bi-cubic resizing, random hue, and random contrast to our dataset. Next, we employed class-
balancing in our batching method to deal with the long-tail characteristics of the PlantCLEF 2023
dataset, in which many classes have significantly lower training samples and fewer classes have
more training samples. Class re-balancing is easy to implement in principle among the various
long-tailed learning, but it can lead to comparable or superior results [12]. Consequently, we
limit the training images for a species to a maximum of 16 in an epoch in hopes of reducing any
bias towards the majority classes and preventing poor performance on the underrepresented
species. Lastly, multi-organ integrated training [13] has been shown to improve the model
performance compared to single-organ plant classification. Therefore, we utilised the available
manual and predicted organ tags to experiment with the multi-organ and single-organ training
schemes to evaluate how they would perform in the context of PlantCLEF 2023.

From the above approaches, we find that the data augmentation method enhances our model
the best and has helped us achieve a macro-averaged mean reciprocal rank (MA-MRR) of 0.61813,
increasing from 0.6078 in last year’s performance (PlantCLEF 2022), producing the second best
results in the PlantCLEF 2023 challenge.

2. Datasets

Two datasets were provided in PlantCLEF 2023, the training dataset and the test dataset. The
training dataset was grouped into two: Trusted and Web. The Trusted dataset comprised
2,886,761 higher-quality images from academic sources and collaborative platforms. On the other
hand, the Web dataset included 1,071,627 images from search engine queries suffering significant
inaccuracies. The Trusted and Web datasets contain metadata such as Class, Order, Family,
Genus, Species, manual tag, predicted tag, and predicted tag probability. Nevertheless, not all
images were annotated with the manual and predicted tags. Meanwhile, the test dataset consists
of 55,306 images categorised into 26,868 plant observations used for the challenge’s observation-
level plant classification. Like the Trusted and Web datasets, the test dataset contained the
manual tag metadata. In addition, we partitioned separate datasets from the training dataset
provided to cater to our multi-organ and single-organ training schemes. Since not all images
were annotated with tags, some images were not included in the single-organ training. We used
the images annotated with the tags of “bark”, “flower”, “fruit”, “habit”, and “leaf”. Furthermore,
we excluded the tags with less than 0.7 in their predicted probability score. Table 1 shows the
training datasets used for our multi-organ and single-organ training approaches. Note that we
pre-processed the training datasets and removed all additional duplicate images sharing the
same filename, resulting in a reduced training dataset size compared to the original training
dataset.



Table 1
Details of our training datasets partitioned for training.

Dataset Source No. of images No. of species

Multi-organ Trusted 2,821,933 80,000
Multi-organ Trusted & Web 3,893,560 80,000
Bark Single-organ Trusted & Web 54,937 19,430
Flower Single-organ Trusted & Web 358,969 45,346
Fruit Single-organ Trusted & Web 88,639 26,824
Habit Single-organ Trusted & Web 2,088,292 76,511
Leaf Single-organ Trusted & Web 89,001 21,771

Table 2
Details of our models’ hyperparameters.

Hyperparameter Values

Batch Size 128
Input Image Size 299× 299× 3
Optimizer Adam Optimizer
Initial Learning Rate 0.0001
Weight Decay 0.00004
Learning Dropout rate 0.2
Loss Function Softmax Cross Entropy

3. Method

3.1. Model Setup

Our models were set up using Tensorflow 1.12 and TF-Slim library with the hyperparameters
described in Table 2. Like our submissions to PlantCLEF 2022 [14], our models were based on
the Inception-v4 and Inception-ResNet-v2 architectures initialised on the weights pre-trained
from ImageNet. We added a batch normalisation layer and five fully-connected layers after the
final layers to cater to the taxonomy classifications: Class, Order, Family, Genus, and Species.
Since multi-task classification has been shown to improve classification compared to a single
label classification in our previous PlantCLEF submissions [15, 14], likewise, we implement
multi-task classification in our models catering to the five labels: Class, Order, Family, Genus,
and Species. In contrast to our PlantCLEF 2022 submissions, we experimented with several new
strategies: increased data augmentation, a balanced batching method, and a multi-organ and
single-organ training scheme.

Increased Data Augmentation
Our models were trained with random cropping, horizontal flipping, and colour distortion
applied to our images. In contrast to our models from last year, we increased the data augmen-
tations in our training by performing more bi-cubic resizing, random hue and random contrast
to our images.



Balanced Batching Method
In addition, we adopted a balanced batching method in training our models. We limit the
selection of training images for a species in an epoch to a maximum of 16 samples. We chose 16
as it would be suitable since the lowest sample number in the training dataset is 1, while the
highest sample number in the dataset is over 100. It aims to avoid bias towards any particular
species and prevents poor performance on underrepresented species.

Multi-organ and Single-organ Training Scheme
Furthermore, we implemented two training schemes: multi-organ and single-organ. In multi-
organ training, we trained our model with the entire dataset (like our submissions last year).
Using all the available organ parts, the classification is trained on the species. On the other
hand, in single-organ, we trained our model based on the individual organ tags provided as
mentioned in Section 2, which includes Bark, Flower, Fruit, Habit, and Leaf. The classification
of a single-organ model is based on the specific organ and their respective species.

3.2. Inference Methods

The model predictions are obtained by the Softmax function as well as the feature embedding
comparison method.

Softmax function
The softmax function is commonly used as the activation function in the output layer of a
neural network for multi-class classification. It allows the network to produce class probabilities
over multiple classes. It accepts a vector of input data and assigns a probability value to each
class. The probability generated is a vector of numbers between 0 and 1 and these values would
sum up to 1. The class with the highest probability indicates the most confident predicted class.
The Softmax function is represented in Equation 1 where x represents the input vector, and 𝑒𝑥

denotes the exponential function raised to the power of x. The denominator,
∑︀

𝑖 𝑒
𝑥
𝑖 , calculates

the sum of the exponentiated values over all elements of the input vector.

softmax(𝑥) =
𝑒𝑥∑︀
𝑖 𝑒

𝑥
𝑖

(1)

Feature embedding comparison
This method refers to comparing the test image’s features to the train images’ features. It involves
transforming the train and test images into lower-dimensional feature vectors (embeddings)
using the learned representation obtained from the fully-connected layers of our model, then
comparing them to measure their similarity. Essentially, this method include two processes: the
feature dictionary generation and feature similarity comparison.

1. Feature dictionary generation
First, we generated a list of train images (feature dictionary) to compare with the test
images. Since the training data consists of over 3 million images and it is computationally
intensive to compare all the photos, we only selected a maximum of ten images for



each of the 80,000 plant species from the Trusted training dataset. Consequently, our
feature dictionary is made from a list of 592,258 training images. These images are then
transformed into feature embeddings and averaged according to their respective classes.
Therefore, the feature dictionary is composed of 80,000 feature embeddings.
Note that to obtain the feature embedding of each training image, we applied ten crops
to the image and then averaged them to get a single feature embedding. The ten crops
involve cropping the top-left, top-right, bottom-left, bottom-right, and centre, all of which
are also horizontally flipped to get ten variations. The total feature embeddings of each
species are then averaged over the total number of images it has in the list of the dictionary,
making a feature dictionary of 80,000 feature embeddings.

2. Feature similarity comparison
After acquiring the train feature dictionary of 80,000 feature embeddings, we obtain the
test image embeddings by performing the same ten crops technique to the test images.
Since the test images’ classes are unknown, the embeddings are averaged according to
the test observation id instead of the species class id as in the train feature dictionary
generation. Therefore, since there are 26,868 observation ids, the total test embeddings
generated result in 26,868 test feature embeddings.
Next, we used cosine similarity to measure the similarity between the train feature
dictionary and the test feature embeddings. The calculated cosine similarity score is then
transformed with Inverse Distance Weighting into probabilities for ranking the classes.
The weights for the transformed embedding vector were calculated as in Equation 2
where 𝑃𝑖 is the weight assigned to a specific test feature embedding, 𝑑𝑖 is the distance
between the test feature embedding and the dictionary feature embedding, 𝑑𝑛𝑘 is the
distance between the test feature embedding and the dictionary feature embedding 𝑘,
raised to the power of 𝑛, while

∑︀
𝑘 is the sum over all dictionary feature embeddings.

Similar to the Softmax function method, the class with the highest probability indicates
the most confident predicted class.

𝑃𝑖 =
( 1
𝑑𝑖
)∑︀

𝑘(
1
𝑑𝑛𝑘
)

(2)

4. Submissions

4.1. Model Variations

We submitted ten runs to PlantCLEF 2023, consisting of several models described in Table 3.
Essentially, they differ in their network architecture, data augmentation, batching method, and
training data. The evaluation metric implemented in this challenge is the Macro Average (by
species) Mean Reciprocal Rank (MA-MRR). The MA-MRR is a statistic measure for evaluating
any process that generates a list of possible responses to an index of queries ordered according
to the likelihood of correctness as defined in [7].



Table 3
Details of our trained models. “IR” refers to the Inception-ResNet-v2 model, while “‘I” refers to the
Inception-v4 model.

Model
Network Increased Balanced Training data
architecture augmentation batching

Multi-IR (Trusted) IR No No Multi-organ (Trusted)
Multi-I I No No Multi-organ (Trusted & Web)
Multi-IR IR No No Multi-organ (Trusted & Web)
Multi-IR-AUG IR Yes No Multi-organ (Trusted & Web)
Multi-IR-AUG-B IR Yes Balanced Multi-organ (Trusted & Web)
Single-IR-AUG-B-Bark IR Yes Balanced Single-organ (Trusted & Web)
Single-IR-AUG-B-Flower IR Yes Balanced Single-organ (Trusted & Web)
Single-IR-AUG-B-Fruit IR Yes Balanced Single-organ (Trusted & Web)
Single-IR-AUG-B-Habit IR Yes Balanced Single-organ (Trusted & Web)
Single-IR-AUG-B- Leaf IR Yes Balanced Single-organ (Trusted & Web)

Table 4
Performance of our submitted runs. The ones with (Feature embedding matching) indicates the predic-
tions were made by the feature embedding method. Otherwise, they were obtained using the Softmax
funtion.

Run Model(s) MA-MRR

9 Multi-I + Multi-IR + Multi-IR (Trusted) + Multi-IR-AUG 0.61813

7 Multi-I + Multi-IR + Multi-IR (Trusted) + Multi-IR-AUG 0.61561

10 Multi-IR + Multi-IR (Trusted) + Multi-IR-AUG 0.61406

5 Multi-IR-AUG 0.5504

1 Multi-IR-AUG 0.54242

2 Multi-IR-AUG-B 0.46606

6 Multi-IR-AUG (Feature embedding matching) 0.46476

8 Multi-IR-AUG (Feature embedding matching) 0.4591

3 Multi-IR-AUG (Feature embedding matching) 0.45242

4 Single-IR-AUG-B-Bark + Single-IR-AUG-B-Flower + Single-IR-AUG-B-Fruit +
Single-IR-AUG-B-Habit + Single-IR-AUG-B-Leaf

0.33926

4.2. Results and Discussion

Our runs are tabulated in Table 4. Run 1, 2, 3, 5, 6, and 8 were based on the predictions from a
single model, while Run 4, 7, 9, and 10 were based on several models ensembled. As expected, the
ensembled models are more accurate than a single model prediction. Our highest-performing
run (Run 9), an ensembled model, obtained an MA-MRR score of 0.61813. From the new strategies
experimented with, we found that increasing data augmentation helped improve the models’
accuracy. It is confirmed by comparing our run from PlantCLEF 2022 (Run 7 MA-MRR: 0.6078)



and our current run (Run 9 MA-MRR: 0.61813), which differ by only adding the new model
(Multi-IR-AUG), which is trained with increased augmentations.

On the other hand, the balanced batching method did not help in improving the model’s
performance. Comparing Run 1 and 2, we see that the model without the balanced batching
strategy (Run 1 MA-MRR: 0.54242) achieved a higher MA-MRR score compared to the model
with the balanced batching method (Run 2 MA-MRR: 0.46606). Although it was not what
we expected, it could be due to the reduction of training samples which may be inherently
more important than others. Furthermore, the single-organ training scheme did not help in the
predictions. Run 4, which comprised the single-organ models (bark, flower, fruit, habit, and leaf),
performed the worst among all other runs based on the multi-organ training scheme. It suggests
that training with multi-organ data is more effective than single-organ data as a combination
of organs can provide more information to the model. Finally, we show that the predictions
obtained by the feature embedding matching method (Run 3, 6, and 8 MA-MRR: 0.45242, 0.46476,
0.4591) are lower compared to the predictions obtained by the Softmax function method (Run
1 and 5 MA-MRR: 0.54242, 0.5504). It is likely due to the clearer decision boundary obtained
when using the Softmax function, as this approach relies on the confidence of the network’s
prediction. On the other hand, feature embedding comparison might involve more nuanced
comparisons between feature vectors, which can lead to a loss of discriminative information.
This loss could result in reduced accuracy and lower performance.

5. Conclusion

We trained several Inception-v4 and Inception-ResNet-v2 models and submitted ten runs to
PlantCLEF 2023. To improve our performance in this year’s challenge, we tried several new
strategies that differed from our previous submissions in PlantCLEF 2022. These strategies
included three key approaches: increased data augmentation, a balanced batching method,
and a multi-organ and single-organ training scheme. Among these approaches, increased data
augmentation improved our model predictions by increasing our MA-MRR score from 0.6078 to
0.61813. The balanced batching method did not work out as intended but is possibly the result
of the degradation of the head classes with many training samples at the expense of improving
the tail classes with fewer training samples from under-sampling [12]. Moreover, the lower
performance of the ensembled single-organ training models is likely due to the reduction of
training data in the single-organ training scheme. Since not all training images were tagged
with their organ details and we did not utilise the images with a predicted tag score of less
than 0.7, there was a significant loss of information compared to using the entire dataset in
multi-organ training.
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