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Abstract
The SnakeCLEF2023 competition aims to the development of advanced algorithms for snake species 
identification through the analysis of images and accompanying metadata. This paper presents a method 
leveraging utilization of both images and metadata. Modern CNN models and strong data augmentation 
are utilized to learn better representation of images. To relieve the challenge of long-tailed distribution, 
seesaw loss [1] is utilized in our method. We also design a light model to calculate prior probabilities 
using metadata features extracted from CLIP [2] in post processing stage. Besides, we attach more 
importance to venomous species by assigning venomous species labels to some examples that model 
is uncertain about. Our method achieves 91.31% score of the final metric combined of F1 and other 
metrics on private leaderboard, which is the 1st place among the participators. The code is available at 
https://github.com/xiaoxsparraw/CLEF2023.
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1. Introduction

Fine-grained visual categorization is a well-established and pivotal challenge within the fields of
computer vision and pattern recognition, serving as the cornerstone for a diverse array of real-
world applications [3]. The SnakeCLEF2023 competition, co-hosted as an integral part of the
LifeCLEF2023 lab within the CLEF2023 conference, and the FGVC10 workshop in conjunction
with the esteemed CVPR2023 conference, is geared towards advancing the development of a
robust algorithm for snake species identification from images and metadata. This objective
holds profound significance in the realm of biodiversity conservation and constitutes a crucial
facet of human health preservation.

In this paper, we introduce a method that addresses the recognition of snake species by
leveraging both metadata and images. ConvNeXt-v2 [4] and CLIP [2] are used to extract
images features and metadata features separately, and the image features and text features are
concatenated to be input of MLP classifier, thus getting better representation of examples and
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recognition results. Seesaw loss [1] are utilized in our method, thereby alleviating the long-
tailed distribution problem. Notably, our proposed method takes into careful consideration the
critical real-world need to distinguish venomous and harmless snake species by using the Real-
World Weighted Cross-Entropy (RWWCE) loss [5] and post-processing, resulting in exemplary
performance surpassing that of other solutions presented in this year’s competition. Experiments
and competition results show that our method is effective in snake species recognition task.

The subsequent sections of this paper provide a comprehensive overview of the key aspects.
Section 2 introduces the competition challenges and datasets, accompanied by the examination
of the evaluation metric utilized. Section 3 describes our proposed methodologies, offering a
comprehensive and detailed introduction to the techniques. Section 4 presents the implementa-
tion details, alongside a comprehensive analysis of the principal outcomes achieved. Finally,
Section 5 concludes this paper by summarizing the key findings and offering future research
directions.

2. Competition Description

Understanding datasets and metrics is an essential requirement for engaging in a machine
learning competition. Within this section, we aim to introduce our comprehension of the
datasets and provide overview of the evaluation metrics employed by the competition organizers.

2.1. Challenges of the Competition

Past iterations of this competition have witnessed remarkable accomplishments by machine
learning models [6, 7, 8, 9, 10, 11]. To further enhance the competition’s practical relevance
and address the exigencies faced by developers, scientists, users, and communities, such as
addressing post-snakebite incidents, the organizers have imposed more stringent constraints.
The ensuing challenges of this year’s competition can be summarized as follows:

• Fine-grained image recognition: The domain of fine-grained image analysis has long
posed a challenging problem within the FGVC workshop, deserving further investigation
and study.

• Utilization of metadata: The incorporation of metadata, particularly pertaining to the
geographical distribution of snake species, plays a vital role in their classification. Such
metadata is commonly employed by individuals to identify snakes in their daily lives.
Hence, utilization of location metadata holds significance and needs careful consideration.

• Long-tailed distribution: Long-tailed distributions are common in real-world scenarios,
and the distribution of snake species is no exception.

• Identification of venomous and harmless species: The distinction between venomous and
harmless snake species is meaningful, as venomous snake bites lead to large number of
death each year. Consequently, leveraging deep learning methodologies to address this
problem is of paramount urgency.

• Model size limitation: A strict limitation has been imposed on the model size, constraining
it to a maximum of 1GB.
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Figure 1: Long-tailed distribution of the SnakeCLEF2023 training dataset. The blue color means head
classes, which means most images in the dataset belong to these classes. The orange color means tail
classes, which means most classes in the dataset are tail classes.

2.2. Dataset

The organizers provide a dataset, consisting of 103,404 recorded snake observations, supple-
mented by 182,261 high-resolution images. These observations encompass a diverse range
of 1,784 distinct snake species and have been documented across 214 geographically varied
regions.

It is worth to note that the provided dataset is in a heavily long-tailed distribution, as shown
in Fig. 1. In this distribution, the most frequently encountered species have 1,262 observations
consists of 2,079 accompanying images. However, the least frequently encountered species is
captured by a mere 3 observations, showing its exceptional rarity within the dataset.

2.3. Evaluation Metric

In addition to the conventional evaluation metrics of Accuracy (Acc) and Mean F1-Score, this
year’s competition incorporates a novel evaluation metric, denoted as “public_score_track1”
on the leaderboard. This metric combines the F1-Score with an assessment of the confusion
errors related to venomous species. It is calculated as a weighted average, incorporating both
the macro F1-score and the weighted accuracy of various types of confusions:

𝑀 =
𝑤1𝐹1 + 𝑤2 (100− 𝑃1) + 𝑤3 (100− 𝑃2) + 𝑤4 (100− 𝑃3) + 𝑤5 (100− 𝑃4)∑︀5

𝑖 𝑤𝑖

, (1)

where 𝑤1 = 1.0, 𝑤2 = 1.0, 𝑤3 = 2.0, 𝑤4 = 5.0, 𝑤5 = 2.0 are the weights of individual
terms. The metric incorporates several percentages, namely 𝐹1 representing the macro F1-
score, 𝑃1 denoting the percentage of harmless species misclassified as another harmless species,



𝑃2 indicating the percentage of harmless species misclassified as a venomous species, 𝑃3

reflecting the percentage of venomous species misclassified as another harmless species, and
𝑃4 representing the percentage of venomous species misclassified as another venomous species.
This metric is bounded below by 0% and above by 100%. The lower bound is attained when all
species are misclassified, including misclassification of harmless species as venomous and vice
versa. Conversely, if the F1-score reaches 100%, indicating correct classification of all species,
each 𝑃𝑖 value must be zero, leading to an overall score of 100%.

3. Method

In this section, we shall introduce the methodologies employed to address the task of snake
species classification.

3.1. Data Preprocessing

Data preprocessing plays a crucial role in machine learning, as it influences not only the final
performance but also the feasibility of problem resolution. Upon obtaining the dataset provided
by the competition organizers, several issues emerged. For instance, certain images listed in
the metadata CSV file were found to be nonexistent within the corresponding image folders.
To address this, we generated a new metadata CSV file by eliminating the affected rows from
the original file. Additionally, a subset of images within the dataset was found to be corrupted,
potentially due to network transmission or other factors. To mitigate this concern, we utilized
OpenCV to read the problematic images and subsequently re-wrote them to the file system,
thereby solving the corruption issue.

The SnakeCLEF dataset includes valuable metadata pertaining to the observation locations.
Leveraging this location information is of great significance, as certain snake species inhabit
geographically confined areas. However, the metadata presents the location in the form of
country or region codes, which cannot be directly utilized as inputs for convolutional neural
network (CNN) or Vision Transformer (ViT) [12]. To address this challenge, we employ CLIP [2]
to extract location features without engaging in fine-tuning. Subsequently, Principal Component
Analysis (PCA) [13] is employed to reduce the dimension of the resulting feature vectors.

Data augmentation serves as a key technique in computer vision tasks. Within our methodol-
ogy, we leverage fundamental image augmentation methods from Albumentations [14]. These
methods encompass RandomResizedCrop, Transpose, HorizontalFlip, VerticalFlip, ShiftScaleRo-
tate, RandomBrightnessContrast, PiecewiseAffine, HueSaturationValue, OpticalDistortion, Elas-
ticTransform, Cutout, and GridDistortion. Furthermore, we incorporate data mixing augmenta-
tion techniques, such as Mixup [15], CutMix [16], TokenMix [17], and RandomMix [18], during
the course of the competition. These data augmentation methods provide strong regularization
to models by softening both images and labels, avoiding the model overfitting in training dataset.

3.2. Model

Throughout the competition, we explored various models, including both classical and state-
of-the-art architectures, such as Convolutional Neural Networks and Vision Transformers.
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Figure 2: Architecture of our model. Take ConvNeXt-v2 [4] as the backbone, which is made up of 4
stages, feature vector extracted from metadata (𝑣1), original feature vector (𝑣2) and feature vector from
middle stage of the backbone (𝑣3) are concatenated to get the final feature vector 𝑣, a MLP classifier is
followed to get the final classification results.

Models employed during the competition include ResNet [19], VOLO [20], ConvNeXt [21], BEiT-
v2 [22], EVA [23] and ConvNeXt-v2 [4]. The implementation of these models was facilitated
using the timm [24] library. In light of the imposed limitations on model parameters and the
consideration of the model representation capabilities, we selected ConvNeXt-v2 [4] as the
backbone architecture in our final method.

However, relying solely on the visual backbone is insufficient for effectively addressing the
task at hand. Given the availability of metadata in the competition and the inherent challenges
associated with fine-grained image classification, it becomes necessary to modify the architecture
of the vision model to achieve superior performance. The architectural design of the model
employed in our final submission is illustrated in Fig. 2.

Following the completion of the third stage of ConvNeXt-v2 [4], the intermediate-level
feature map is combined with the high-level image features after the final stage, along with
the metadata features. This concatenation process yields a comprehensive representation that
captures both the image and metadata information. To mitigate overfitting, we have incorporated
MaxPooling [25], BatchNorm [26], and Dropout [27] techniques into our methodology. Once
the comprehensive representation is obtained, a classifier comprising two linear layers and
ReLU [28] activation functions follows and generates classification results.

3.3. Optimization Procedure

Addressing long-tailed recognition is another challenge encountered in the competition. To
tackle this issue, we extensively explored various techniques implemented in BagofTricks-
LT [29]. In our final submission, we incorporated the seesaw loss [1] as a key component. The
seesaw loss formulation can be expressed as follows:



𝐿seesaw (z) = −
𝐶∑︁
𝑖=1

𝑦𝑖 log (̂︀𝜎𝑖) ,
with ̂︀𝜎𝑖 = 𝑒𝑧𝑖∑︀𝐶

𝑗 ̸=𝑖 𝒮𝑖𝑗𝑒𝑧𝑗 + 𝑒𝑧𝑖
,

(2)

where z denotes the output obtained from the fully connected layer, 𝐶 represents the total
number of classes, and 𝑦𝑖 corresponds to the one-hot label of the image. The hyper-parameters
𝒮𝑖𝑗 are carefully set based on the distribution characteristics inherent in the dataset.

Distinguishing between venomous and non-venomous snake species and the consequential
assignment of varying costs to different classification errors are of great importance in this
year’s challenge, as demonstrated by Eq. 1. In accordance with these requirements, loss function
that effectively models the real-world costs associated with mislabeling [5] is utilized by us. To
align with this objective, we incorporate the Real-World Weighted Cross-Entropy (RWWCE)
loss function [5] during the final three epochs of training, employing a reduced learning rate.

In addition to the choice of loss functions, the selection of an optimizer and an appropriate
learning rate decay strategy are important in the training of our models. For optimization, we
adopt the AdamW optimizer [30]. To enhance convergence speed and overall performance, we
implement cosine learning rate decay [31] coupled with warmup techniques during the training
process. These strategies collectively facilitate more effective and efficient model convergence.

3.4. Post-processing

In this year’s challenge, the task requires the solution to accurately identify the venomous
nature of snakes, particularly focusing on distinguishing the venomous species, with the limited
model capacity. It is challenging but fortunately, the organizers provided a metadata repository,
with a particular focus on geographical information. In practical contexts, where reliance
solely on visual cues may prove insufficient performance on fine-grained classification, the
supplementation of geographical details assumes a crucial role in assisting human experts
in making judgment. Thus, the integration of geographical information within the metadata
exhibits the potential to enhance the decision-making prowess of classification models.

Inspired by [32], assuming the above-mentioned trained model as 𝑓 , we developed a simple
prior model denoted as 𝑔. This prior model is simple but efficiently, composed of three fully
connected layers with non-linear activation function and employed dropout regularization. In
the training process of this light model, we adopt the AdamW [30] optimizer and performed
balanced sampling on the training data, to mitigate the impact of the long-tail distribution in
the dataset. The objective of this training process was to minimize the following loss function:

ℒ𝑙𝑜𝑐(x, r,O, 𝑦) =𝜆 log (𝑠 (𝑔(x)O:,𝑦)) +

𝐶∑︁
𝑖=1
𝑖̸=𝑦

log (1− 𝑠 (𝑔(x)O:,𝑖))+

𝐶∑︁
𝑖=1

log (1− 𝑠 (𝑔(r)O:,𝑖)) ,

(3)



where the metadata features extracted from CLIP is denoted as x. O is the category embedding
matrix, where each column is the prototype of different category, pre-computed by our trained
model 𝑓 , e.g., ConvNeXt-v2 [4]. Furthermore, r signifies a uniformly random location data
point, and 𝜆 serves as a hyper-parameter for weighting positive observations. It is important to
note that if a category 𝑦 has been observed at the spatial location x within the training set, the
value of 𝑠 (𝑔(x)O:,𝑦) should approximate 1. Conversely, if the category has not been observed,
the value should approximate 0.

During the inference stage, our prior model efficiently calculates the prior class embeddings
denoted as P. Utilizing the following equation:

S′ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(P)⊙ S, (4)

where S is the prediction score computed by 𝑓 . We derive the final class scores S′ by computing
the joint probability of predictions from the two models 𝑓 and 𝑔. In real-world scenarios,
misclassifying a non-venomous snake as venomous carries significant consequences and is
deemed unacceptable. To address this concern, we implement a robust post-processing approach.
When the predicted confidence of an image x is relatively low, we analyze its top-5 predictions.
If any of these predictions include a venomous class, we classify the image as venomous. This
post-processing technique represents a well-considered compromise between precision and
recall. Notably, this approach enable us to get the 1st place in the private leaderboard. We firmly
believe that this strategy possesses considerable advantages for practical applications.

4. Experiments

In this section, we will introduce our implementation details and main results.

4.1. Experiment Settings

The proposed methodology is developed utilizing the PyTorch framework [33]. All models
employed in our approach have been pre-trained on the ImageNet dataset [34], readily available
within the timm library [24]. Fine-tuning of these models was conducted across 4 Nvidia
RTX3090 GPUs. The initial learning rate was set to 2× 10−5, and the total number of training
epochs was set to 15, with the first epoch dedicated to warm-up, employing a learning rate of
2×10−7. To optimize model training, we utilized the AdamW optimizer [30] in conjunction with
a cosine learning rate scheduler [31], setting the weight decay to 2× 10−5. During inference
on the test dataset, we adopted test time augmentation. Furthermore, considering that an
observation may consist of multiple images, we adopted a simple averaging approach to obtain
a singular prediction for each observation.

4.2. Main Results

In this section, we present our primary findings attained throughout the challenge, as illustrated
in Tab. 1. The “Metric” column within the table corresponds to the public track1 metric featured
on the leaderboard.



Table 1
Main results of SnakeCLEF.

Backbone Resolution Metric (%) Comments

ResNet50 [19] 224× 224 72.22 baseline
BEiT-v2-L [22] 224× 224 82.59 stronger backbone
BEiT-L [35] 384× 384 88.74 cutmix
EVA-L [23] 336× 336 86.82 cutmix

Swin-v2-L [36] 384× 384 88.19 cutmix
VOLO [20] 448× 448 88.50 cutmix

ConvNeXt-v2-L [4] 384× 384 88.98 seesawloss + randommix
ConvNeXt-v2-L [4] 384× 384 89.47 seesawloss + cutmix
ConvNeXt-v2-L [4] 512× 512 90.86 seesawloss + cutmix + metadata

ConvNeXt-v2-L [4] 512× 512 91.98
seesawloss + cutmix

+ metadata + middle-level feature

ConvNeXt-v2-L [4] 512× 512 93.65
seesawloss + cutmix + metadata

+ middle-level feature + post-processing

As indicated by Tab. 1, the model parameters and image resolution hold crucial significance
in image recognition tasks, aligning with conventional expectations. An increase in model
parameters and image resolution corresponds to improvement in the public leaderboard score.
Furthermore, data augmentation plays as a key factor in enhancing the generalization capacity
of models. Notably, CutMix [16] outperforms alternative data mixing augmentation techniques,
such as RandomMix [18], based on our experimental observations.

Metadata plays a pivotal role in the recognition of snake species, enabling models to acquire
enhanced representations of observations and thereby achieve superior classification results. In
our experiments, the utilization of metadata facilitated the acquisition of enriched contextual
information, leading to improved model performance. Additionally, the incorporation of the
Seesaw loss [1] demonstrated notable efficacy in mitigating the challenges posed by long-tailed
distributions, surpassing the conventional CrossEntropy loss. Moreover, the integration of
middle-level features proved effective in alleviating the complexities associated with fine-grained
image recognition, enabling more precise discrimination between similar snake species.

Given that the final evaluation metric takes into account the demands of real-world applica-
tions and imposes greater penalties for misclassifying a venomous snake species as harmless
compared to misclassifying a harmless species as venomous, we place significant emphasis on
post-processing techniques. Specifically, when the model exhibits uncertainty in its predictions
for a particular observation, we adopt a cautious approach and classify it as a venomous snake
species based on the top-5 predictions. This post-processing strategy has proven highly advan-
tageous, leading to substantial improvements in both the public leaderboard and the private
test data performance, as evidenced by Tab. 1.



5. Conclusion

Fine-grained visual analysis holds great practical significance, particularly in accurately dis-
cerning the toxicity of snakes within the domain of snake sub-classification. This paper focuses
on addressing the snake classification problem by harnessing the valuable metadata present
in the dataset for posterior filtering. Additionally, a robust post-processing technique is em-
ployed to facilitate toxicity identification. These approaches have culminated in our noteworthy
achievement of securing the first-place position in the challenge, attaining an impressive overall
evaluation score of 91.31% on the private leaderboard.
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