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Abstract  
This paper presents a deep learning approach for recognizing bird species in soundscape 

recordings using Convolutional Neural Networks (CNNs). The proposed method extends 

CNNs with a classification head that incorporates attention on frequency bands. The models 

are trained on a large dataset of bird sounds and employ various data augmentation techniques 

to improve performance and address the domain shift between training and test data. The 

effectiveness of the approach is evaluated in the BirdCLEF 2023 competition, hosted on 

Kaggle, where it achieves a macro-averaged mean average precision (cmAP) of 76.3 % on the 

official test set. This performance positions the method among the top 3 systems to accurately 

identify birds in wildlife monitoring recordings around Northern Mount Kenya. 
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1. Introduction 

The BirdCLEF 2023 competition focuses on recognizing vocalizing birds in Eastern African 

soundscape recordings. The main challenges to address in this year’s task edition include the imbalance 

in the number of training files per species, the domain shift between training and test data and the time 

limit of two hours to identify all birds in a large set of diverse soundscape recordings spanning over 30 

hours.  

The machine learning algorithms developed within the scope of this competition will help 

researchers to conduct pilot projects in selected areas of Northern Mount Kenya and evaluate the impact 

of different management strategies and degradation levels on bird biodiversity in rangeland systems. 

By accurately monitoring the effects of restoration efforts on biodiversity, they aim to establish financial 

mechanisms for widespread landscape restoration and protection. The advancements of systems for 

automated bird recognition will facilitate more effective evaluation of threats and adjustments to 

conservation actions, benefiting avian populations and supporting long-term sustainability. 

Further details about the BirdCLEF 2023 task are given in [1], [2] and [3]. The task is part of the 

LifeCLEF 2023 evaluation campaign [4,5] and the Conference and Labs of the Evaluation Forum [6,7]. 
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2. Implementation 

The implementation of the machine learning based system for bird species recognition presented in 

this paper builds upon solutions for previous BirdCLEF competitions and similar tasks [8,9,10,11,12]. 

Further details on own past developments and implementation methods can be found for example in 

[13], [14] and [15]. 

2.1. Data Preparation 

The official BirdCLEF 2023 training dataset consists of 16940 audio recordings provided by Xeno-

canto [16], covering 264 different bird species. To address the class imbalance and limited number of 

training files per species, the dataset is extended with recordings from previous competitions 

[17,18,19,20] and additional files from Xeno-canto (XC). Furthermore, soundscapes (SC) without bird 

activity from the DCASE 2018 Bird Detection Task [21,22] and other sources [23] are included as a 

'nocall' class and for noise augmentation. 

Table 1 gives an overview on the individual datasets utilized. The extended dataset encompasses a 

total of 659 classes, comprising 264 species from 2023, additional 394 species from previous years and 

the 'nocall' class. All in all, 141580 files are collected for training and augmentation with a total 

accumulated duration of approximately 78 days. 

 

Table 1: Datasets used for training and augmentation 
 

ID Name # Classes # Files  accum. Duration               

1 BirdCLEF 2023 XC 264 16940 8d 00h 24m 02s 
2 BirdCLEF 2023 XC ext.2 264 32729 21d 02h 38m 33s 
3 BirdCLEF 2020/21 XC 397 62874 40d 22h 29m 56s 
4 BirdCLEF 2020/21 XC ext. 182 6941 3d 05h 08m 04s 
5 BirdCLEF 2020/21 SC 49 20 03h 20m 00s 
6 BirdCLEF 2019 SC 69 64 2d 02h 17m 11s 
7 DCASE 2018 1 22012 2d 13h 08m 40s 

 Total 659 141580 78d 01h 26m 26s 

 
 

The original training set consists of audio files from Xeno-canto only, which were resampled to 32 

kHz, converted to mono and compressed to lossy Ogg format. To ensure consistent sampling rates and 

prevent resampling during training, files from other sources are also converted to 32 kHz. Additional 

files obtained from Xeno-canto [24] are converted to lossless FLAC format without mono mixing. The 

duration of each file is added to the training metadata to enable fast access of short audio segments 

within files at random position during training. Furthermore, the energy of 5-second segments, shifted 

by one second, is calculated for each file using the root-mean-square (RMS) of the signal amplitude in 

each segment. This information is later used to weight the selection of audio chunks and increase the 

probability of finding segments with bird activity. 

Xeno-canto files are weakly labeled, meaning that there is no precise information on the presence 

or absence of the labeled bird within the recording. However, there is typically a high probability of 

hearing the labeled bird at the beginning of each audio file, as recordists often trim their recordings 

accordingly before uploading them. To exploit this characteristic, the first 10 seconds of each recording 

are duplicated and also added to the training set. 

For training and cross-validation, the entire dataset is split into 8 stratified randomized folds, 

ensuring that the primary species used in the 2021 and 2023 BirdCLEF editions are proportionally 

represented in each fold. 

 
2
This dataset also includes files from the official competition dataset (BirdCLEF 2023 XC) but with different preprocessing 



2.2. Feature Engineering 

The models are trained on 5-second audio chunks represented as spectrograms. The raw 1D audio 

signal is converted to a 2D log Mel spectrogram image using the melspectrogram and power_to_db 

functions of the librosa python library [25] with the following parameters: 

 

● sr = 32000 

● n_fft = 2048 

● hop_length = 512 

● n_mels = 128 

● fmin = 40 

● fmax = 15000 

● power = 2.0 

● ref = np.max 

● top_db = 100 

 

The resulting spectrogram image is then normalized to the unsigned integer range of 0 to 255, resized 

to a resolution of 312x128 pixels and converted to a 3-channel RGB image. This preprocessing yield to 

create images from audio close to the input format most Convolutional Neural Networks are original 

designed for and pretrained on. 

2.3. Training Methods 

The training process makes use of various tools and libraries. PyTorch [26] is utilized as the main 

framework, along with additional libraries such as timm [27] for CNN backbones and pretrained 

weights, SoundFile [28], librosa [25] and SciPy [29] for audio and signal processing, Audiomentations 

[30] for data augmentation and scikit-learn [31] for calculating metrics and creating training/validation 

data splits. 

All models adopt a common architecture consisting of a CNN backbone pretrained on ImageNet 

[32] as a feature extractor, combined with a custom classification head. The classification head is 

designed based on a modified Sound Event Detection (SED) head, which incorporates attention on 

frequency bands. This modification aims to leverage the fact, that birds in soundscapes usually occupy 

species specific frequency ranges. In the original SED architecture [33,34,35,36], feature maps 

representing frequency bands are aggregated via mean pooling and attention is applied on features 

representing time frames only. By applying attention to frequency bands instead, the model can better 

differentiate species vocalizing simultaneously but with different pitches. The modification involves a 

simple step of rotating the spectrogram image by 90 degrees before feeding it into the original SED 

network. For feature encoding, EfficientNet CNNs of the first and second generation [37,38] are 

employed (mainly timm’s tf_efficientnet_b0_ns and tf_efficientnetv2_s_in21k). Figure 1 illustrates the 

variation in class activation outputs between the original and modified SED architecture when presented 

with an input containing multiple bird species. In this simplified example, species c2 is better detected 

with frequency attention, because class activation doesn’t interfere with other species, like it would for 

example with species c0 in the case of using time attention. 

The training process involves multiple steps. Initially, the models are trained on all 8 cross-validation 

folds. During training, 5-second audio chunks are randomly selected from each file, either without 

weighting or weighted by signal energy to increase the likelihood of capturing segments with bird 

activity. The trained models are then used to create pseudo labels for successive 5-second intervals in 

all training files. This enables the selection of chunks in subsequent training steps not only based on 

signal energy weighting but also weighted by the probability of the primary (foreground) species 

assigned to the file. Pseudo labels are also used to add additional labels of possible background species 

to selected audio chunks during training. Up to 8 pseudo labels are added, depending on species 

probabilities, either as hard labels (if the species probability is above 0.8) or as soft labels using the 

probability derived from the pseudo label. If provided by Xeno-canto recordists, background species 

are included as soft target labels with a value of 0.3. 



         
Figure 1: Example of SED output (class activation) using either time or frequency attention 

 

During training, binary cross-entropy (BCEWithLogitsLoss) [39] serves as loss function, while 

Adam [40] is employed as optimizer. The learning rate scheduling follows the one-cycle 

CosineAnnealingLR [41] policy, starting with an initial learning rate of 0.001. Validation is performed 

using the first 5 seconds of files in the validation set and learning progress is tracked using evaluation 

metrics LRAP (label_ranking_average_precision_score) [42], cmAP [43] and F1 score [44]. 

For inference, predictions are reduced to the 2023 species set (264 classes) and multiple models are 

ensembled by averaging their predictions without weighting. 

2.4. Data Augmentation 

Several data augmentation techniques are applied during training, especially to address the 

challenges posed by weak and noisy labels, as well as to compensate for the domain shift between 

training and test data. Many of these techniques have been successfully employed in previous 

approaches. For a more detailed description of each method and its impact on model performance, 

please refer to [13] and [15]. Here is a concise overview of the augmentation methods used in this 

competition: 

 

● Random cyclic shift of the audio signal 

● Application of audio signal filter with random transfer function 

● Mixup in time domain by adding chunks of same species, random species and nocall/noise 

● Random gain adjustment of signal amplitude for individual chunks before mixing 

● Random gain adjustment for the mixed signal 

● Pitch shift and time stretch (both local and global in time and frequency domain) 

● Addition of Gaussian/pink/brown noise 

● Insertion of short noise bursts 

● Addition of reverb (see remarks below) 

● Utilization of different interpolation filters for spectrogram resizing 

● Application of color jitter (brightness, contrast, saturation, hue) to the spectrogram image 

 

A novel augmentation method introduced in this year's task is reverb augmentation. In soundscapes, 

recordings often capture birds from a large distance, resulting in weaker sounds with more reverb and 

attenuated high frequencies compared to the typically cleaner sounds in Xeno-canto files, where the 

microphone is directly targeted at the bird. To address this difference between training and test data, 

reverb is added to the training files using impulse responses recorded from the Valhalla Vintage Verb 

audio plugin [45]. During training, randomly selected impulse responses are convolved with the original 

audio signal with a probability of 20%, employing a dry/wet mix control that ranges from 0.2 (almost 

dry signal) to 1.0 (only reverb). Figure 2 provides examples, illustrating the influence of reverb 

augmentation on the resulting spectrogram image. 

                          
                         

  

  

  

            

                
  

  

                           
                              

 

 

  

  

  

  

  

 

 

   

  
 
 
 
 
 
  



     
 

       
 

Figure 2: Reverb augmentation examples (left: original, mid.: dry/wet mix 0.5, right: dry/wet mix 0.8) 
 

3. Results 

The approach described in this paper secured the 3rd place among a total of 1189 participating teams 

and the 1st place on public leaderboard, representing a smaller subset of the test data. Final scores on 

private and public leaderboard (LB) and ranking of the top 10 teams are presented in Table 2. By 

combining several diverse models (including different CNN backbones, training hyperparameters and 

dataset folds) a macro-averaged mean average precision score (cmAP) of 76.3 % was achieved on the 

complete test set (see team 'adsr' in Table 2).  

Due to differences in Kaggle’s hardware (particularly CPU types) used to run inference notebooks, 

the number of models that could be ensembled to identify all birds in the test set in the given time 

varied. To prevent submission errors, a timer was implemented in the notebook to ensure completion 

within the 2-hour limit. If the timer reached approximately 118 minutes, inferencing was halted and 

results were collected for all models and predicted file parts up to that point. Predictions from unfinished 

models or file parts were masked before averaging. This approach makes it difficult to determine the 

exact number of models that can be ensembled. Initially, only 3 models could be ensembled without 

risking timeouts. Later, inference speed was prioritized over model diversity by using models with the 

same inputs (consistent FFT size, number of Mel bands, etc.). This allowed pre-calculation and saving 

of Mel spectrogram images to memory for all files in advance, which were then reused for each model. 

Additionally, models were converted to TorchScript and the preprocessing of test files was parallelized 

using multiple CPU threads. With these optimizations, at least 7 models could be ensembled, depending 

on the backbone architecture, without setting a timer (e.g., 4 EfficientNetB0 + 3 EfficientNetV2s). 

A fairly good cmAP of 74.2% on the complete test set (Kaggle’s private leaderboard) can be 

achieved with a single, small and very fast EfficientNetB0-based model (see M6 in Table 3). The best 

single model, which utilizes a ResNet50 backbone, achieves a score of 74.8% on the private leaderboard 

(M8 in Table 3). On public leaderboard, the highest score is achieved by a model with an 

EfficientNetV2s backbone (M9 in Table 3). The overall best system was not submitted for the final 

ranking. It achieves a cmAP score of 76.4 % with an ensemble of 8 models (5 EfficientNetB0 + 3 

EfficientNetV2s). 

 

 

 

 

 



Table 2: Competition results of the top 10 teams (with solution of team adsr describes in this paper) 
 

Rank Team Name on Kaggle cmAP [%] 
(priv. LB) 

cmAP [%] 
(publ. LB) 

1 Volodymyr 76.392 84.444 
2 griffith 76.369 84.292 

3 adsr 76.309 84.735 

4 atfujita 75.688 84.096 
5 Yevhenii Maslov 75.498 83.847 
6 anonamename 75.384 83.391 
7 MSU+YSDA+HSE 75.347 83.442 
8 furu-nag 75.285 83.735 
9 Synergy 75.201 83.474 

10 LeonShangguan 74.962 83.181 

 

4. Ablation Study 

Table 3 illustrates the contributions of important aspects and novel approaches described in this 

paper on model performance. Model M1 serves as a baseline for comparison, utilizing an 

EfficientNetB0 backbone with the modified SED head mentioned earlier. Initially, audio chunks were 

selected without any weighting and only official competition data from this and previous years were 

used for training. As the model progressed from M1 to M2 and M4, by incorporating pseudo labels and 

adopting weighted audio chunk selection, there was a noticeable increase in performance. The use of 

EfficientNetV2s backbones improved the score on the public but not necessarily on the private 

leaderboard (M3 vs. M2 & M9 vs. M6). The inclusion of additional files from Xeno-canto in the training 

data slightly contributed to score improvement (M5 vs. M4). Notably, the introduction of reverb 

augmentation significantly enhanced performance and proved to be an effective method to compensate 

for the domain shift between Xeno-canto files and soundscapes (M6 vs. M5). The modified SED 

version, with attention on frequency bands, surpassed the original SED architecture, which focused on 

time frames (M6 vs. M7). Although ResNet-based models achieved commendable scores (M8), they 

were not included in the final ensembles due to less favorable tradeoffs between model accuracy and 

inference time compared to EfficientNet-based architectures. 

 

 

 

Table 3: Influence of individual methods and network architectures on model performance 
 

ID Description cmAP [%] 
(priv. LB) 

cmAP [%] 
(publ. LB) 

M1 Baseline (EfficientNetB0, chunk selection unweighted) 71.553 80.949 
M2 M1 w. chunk selection weighted 75 % RMS, 25 % pseudo label 71.786 81.289 
M3 M2 with EfficientNetV2s 71.713 81.853 
M4 M3 w. chunk selection weighted 45 % RMS, 15 % pseudo label 73.010 82.299 
M5 M4 with EfficientNetB0 and extended 2023 Xeno-canto data 73.733 82.808 
M6 M5 with reverb augmentation 74.246 83.164 
M7 M6 with original SED head using attention on time frames 74.002 82.897 
M8 M6 with ResNet50 74.820 83.288 
M9 M6 with EfficientNetV2s 74.104 83.386 

 



5. Discussion 

The BirdCLEF 2023 task introduced some interesting and welcome changes compared to previous 

years. The competition's focus on cmAP as the evaluation metric eliminated the need for threshold 

tuning, while the inference time constraint encouraged the development of efficient models with a good 

balance between accuracy and speed. 

While this paper discusses successful approaches, several other methods were explored but didn't 

yield satisfactory results. These included for example experimenting with different loss functions, 

creating model soups [46], applying knowledge distillation, finetuning models with data containing 

only species of the test set or further optimizing CPU inference by converting models to ONNX [47] or 

OpenVINO [48] formats. Advanced postprocessing techniques, such as adjusting probabilities in 

neighboring audio segments or weighting model predictions in the ensemble, also did not lead to further 

score improvements. 

Modifying the original SED architecture to incorporate frequency instead of time attention proved 

effective in recognizing birds in soundscapes, where multiple species vocalize at the same time but in 

different frequency ranges. However, the frequency dimensionality of the SED output is much smaller 

than the frequency resolution of the input spectrogram due to multiple max pooling operations in the 

CNN encoder. Increasing the frequency resolution by adjusting preceding layers in the feature encoder 

could further improve identification performance for recordings with a high degree of overlapping 

sounds. Exploring models that combine time and frequency attention within the same network would 

be also a promising avenue for future research. In addition to pure classification, such models would 

allow to annotate individual sound events in both time and frequency within the spectrogram. 

The performance of models heavily relies on the quantity and quality of the training data. If the 

model is deployed to identify birds in soundscapes, the training data should be representative of that 

scenario. But unlike recordings with only a few birds and good signal to noise ratio, annotating 

soundscapes can be very time-consuming and requires expert knowledge. In addition to mixing audio 

segments with different sounds and noise characteristics, incorporating reverb into the audio signal can 

help to bridge the gap between clean recordings and soundscapes. If a system is designed to identify 

birds in a specific area or habitat it might be worth to create impulse responses of the target location 

and use those for reverb augmentation during training to simulate the characteristics of sound 

propagation in that area. 

A model similar to the ones developed for this competition, trained to identify European bird species, 

is available at https://code.naturkundemuseum.berlin/tsa/birdid-europe254-2103. The model adopts the 

modified SED architecture and many of the training methods described in this paper. It has already been 

successfully implemented in various projects to assess avian biodiversity [49, 50,51,52] and is part of 

Naturblick [53], a mobile application for discovering and learning about nature in urban areas. 
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