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Abstract
FungiCLEF 2023 competition aims at automatically recognizing different species of fungi, which is a
challenging open-set, fine-grained task. In this paper, we propose an entropy-guided method for open-set
fine-grained fungi recognition. To deal with small inter-class variations in fine-grained recognition, we
adopt the MetaFormer as our baseline, which can use meta-information to help differentiate similarly-
looking species. Besides, we utilize a Seesaw loss to balance the training process between head classes and
tail classes. To handle with the challenge of open-set recognition, we propose an entropy-guided method
to discriminate unknown classes, since the entropy can measure the uncertainty of class predictions. By
combining these techniques, our method achieves superior F1 Scores, specifically 58.95% on the public
test set and 58.36% on the private test set, which ranks 1st place in FungiCLEF 2023 competition. Our
code will be available at https://github.com/RenHuan1999/FungiCLEF2023-UstcAIGroup.
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1. Introduction

FungiCLEF 2023 is a competition held jointly as part of the LifeCLEF 2023 [1] lab1 of the CLEF
2023 conference, and of the FGVC10 workshop2 organized in conjunction with CVPR 2023
conference. The competition aims to automatically identify and classify fungi species, which
helps raise awareness about fungi biodiversity and assists ecologists in species identification in
the wild [2, 3]. The training data for FungiCLEF 2023 comes mainly from the Danish Fungi 2020
dataset [4] which includes rich metadata such as habit, substrate, time etc. The competition
also releases a validation set containing some “Unknown Classes” which are never seen during
training. In practice, fungi recognition needs to capture fine-grained visual differences within
subordinate categories and identify both the known classes and unknown species. Thus, it is
considered as a fine-grained, open-set recognition task.

Fine-grained recognition, as opposed to generic object recognition, is a challenging task due
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to small inter-class variations and large intra-class variations [5]. To handle small inter-class
variations, existing methods can be roughly grouped into two categories, including part-based
methods [6, 7] and attention-based methods [8, 9], which make the network focus on the
most class-discriminative regions. However, these methods ignore additional meta-information
that is beneficial for recognition. For example, habitat and substrate are essential sources of
information that help differentiate similarly-looking species. Thus, to utilize meta-information
effectively for accurate fine-grained recognition, we take MetaFormer [10] as a strong baseline,
which is a hybrid network with convolutions to downsample the image and Transformers to
fuse visual and meta information. Besides, by analyzing the dataset, we observe a long-tailed
category distribution problem. Thus, we adopt a Seesaw loss [11] to balance the training process
between head classes and tail classes.

In open-set recognition, the training phase typically involves a set of known classes, and the
classifier learns to distinguish and classify instances belonging to these classes [12]. However,
during the testing phase, the classifier encounters instances that may belong to either the known
classes or unknown classes. The classifier needs to make predictions for the known classes
while having the ability to identify instances from unknown classes and assign them a separate
“unknown” label. To achieve open-set recognition, existing methods focus on developing open-
set classifiers [13, 14], but ignore the design of metrics for identifying known and unknown
classes. The entropy [15] can measure the uncertainty of class predictions for the current
input sample by a classification model. Based on this uncertainty, unknown classes can be
effectively identified since the uncertainty is high for unknown classes. Therefore, we propose
an entropy-guided unknown identifier for accurate open-set recognition.

The major contributions of this work can be summarized as follows: (1) We utilize MetaFormer
as a powerful baseline for fine-grained recognition and employ the Seasaw loss to address the
issue of long-tail distribution. (2) We propose a novel entropy-guided open-set recognition
method, which is highly effective in addressing open-set recognition challenges. (3) Extensive
experimental results demonstrate that the proposed method performs favorably against state-
of-the-art methods, and our method ranks 1st place in FungiCLEF 2023 competition.

2. Related Work

2.1. Fine-grained Vision Classification

Vision-driven method. Current fine-grained vision classification methods can be categorized
into two directions: part-based methods [6, 16, 17] and attention-based methods [8, 9]. Part-
based methods try to learn discriminative parts to distinguish different species. Zhang et
al. [16] propose two deformable part descriptors to pool representations across pose and
viewpoint, in turn facilitating fine-grained recognition and attribute prediction. Ge et al. [6],
part models are built in a weakly supervised manner to retrieve information hidden in the object
proposals. Another line of work attempts to introduce attention mechanisms to boost image
recognition accuracy. RA-CNN [8] propose a recurrent attention convolutional neural network,
which recursively learns crucial region attention and region-based feature representation at
multiple scales. MA-CNN [9] jointly learns part proposals and the feature representations on
each part with a multi-attention convolutional neural network. TransFG [18] integrates all



raw attention weights of the Transformer into an attention map to select discriminative image
patches. However, these methods ignore some meta-information, making it difficult to recognize
vision-similarly species.

Multi-modality-driven method. Besides visual information, some works take advantage of
additional meta-information (e.g., spatio-temporal prior, attribute, and text description). Tang
et al. [19] first introduce additional information and naturally incorporate these features to
make final predictions. Dynamic MLP [20] is an efficient structure that exploit the additional
information as adaptive perceptron weights to interact with vision features. MetaFormer [10]
designs a hybrid structure backbone including convolution and Transformer to fuse vision and
meta information to establish joint representations. We choose MetaFormer as our baseline in
this competition.

2.2. Open-set Recognition

The objective of open-set recognition is to classify the known classes during the training process
and to identify the unknown classes which are absent in the training set while keep the ability
for known classification during the test process. Scheirer et al. [21] first present the open-set
classification problem and design open set classifiers under the one-vs-set setting to balance the
unknown classes. Jain et al. [22] calibrate SVM decision scores to posterior probabilities under
the multi-class classifier setting. Another pipeline [23, 24] utilizes uncertainty to measure the
feature difference between unknown and known objects. Denouden et al. [23] incorporate the
Mahalanobis distance in latent space to better capture these out-of-distribution samples. Liu et
al. [24] propose an energy-bounded learning objective to fine-tune the network and design an
energy score to better distinguish unknown classes. In this work, we present to use entropy, a
simple but effective way to measure uncertainty.

2.3. Fungi Species Classification

The 1st team’s paper [25] in FungiCLEF2022 [26] written by Xiong et al. use an ensemble of
MetaFormer [10] and ConvNext [27] networks. USTC-IAT-United [28] ensemble several CNN
and Transformer architectures, and explore the impact of data augmentation techniques and loss
functions. Shen et al. [29] design a novel architecture combined with large kernel convolution
and vision Transformer. However, these methods ignore the metrics for identifying known and
unknown classes, and we design an entropy-guided unknown identifier to recognize unknown
classes more accurately.

3. Our Method

3.1. Model Design

Deep learning model. Figure 1 shows the overall framework of our model. We employ
MetaFormer [10] as a strong baseline for fine-grained visual classification. Metaformer is a
hybrid framework where the first three stages are convolution blocks and the last two stages



Observation date: 2018-10-15

countryCode: DK

Substrate: dead wood (including bark)

Habitat: Unmanaged deciduous woodland
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Figure 1: Overview of our framework. We use images and meta data as input and train the MetaFormer
model with Seesaw loss. During testing, the proposed entropy-guided unknown identifier is employed
for open-set recognition.

Table 1
Detail settings of MetaFormer-0 and MetaFormer-2. L represents the number of blocks, and C represents
the channels of hidden features.

Stages S0 S1 S2 S3 S4
MetaFormer-0 L=3 C=64 L=2 C=96 L=3 C=192 L=5 C=384 L=2 C=768
MetaFormer-2 L=3 C=128 L=2 C=128 L=3 C=256 L=5 C=512 L=2 C=1024

are Transformer blocks. We combine two series of MetaFormer, namely MetaFormer-0 and
MetaFormer-2. The detailed settings are shown in Table 1. In addition, we also try some vision
classification models, like InternImage-L [30]. However, due to the memory limits, we do not
choose it as our baseline.

Meta information. In order to classify the similarly-looking species, we make full use of extra
meta-information to assist final decision. The meta-information and appearance information
are simply fused by relative attention [31] in Transformer layers. Intuitively, we consider
geographical, living habit and temporal information including Observe date (month and day),
countryCode, Substrate and Habitat. For temporal information, we map the Observe date
[𝑚𝑜𝑛𝑡ℎ, 𝑑𝑎𝑦] into [sin
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and living habit information, there are 34, 32 and 31 categories for countryCode, Substrate and
Habitat, respectively. We use one-hot encoding to encode meta-information according to their
meta category. Additionally, we employ a non-linear embedding technique to map the different
meta-embeddings into a C-dimensional space, which is consistent with the dimension of the
image features.

Long-tailed Distribution. As shown in Figure 2, the training set provided by the Fungi-
CLEF2023 challenge has a long-tailed class distribution. Among them, the most frequent species
has 1913 images while the least frequent species has only 31 images. The imbalanced class



Figure 2: Class distribution of the training set of FungiCLEF2023.

distribution will make the training process dominated by head categories, and further lead to
misclassification for tail categories. To cope with this challenge, we adopt Seesaw loss [11]
instead of cross entropy loss. Seesaw Loss can dynamically decrease the gradients of negative
samples for each category by modifying the cross entropy loss as:

ℒ𝑆𝑒𝑒𝑠𝑎𝑤(𝑙) = −
𝐶∑︁
𝑖=1

𝑦𝑖 log 𝑝𝑖,

𝑝𝑖 =
𝑒𝑙𝑖∑︀𝐶

𝑗 ̸=𝑖 𝑆𝑖𝑗𝑒
𝑙𝑗 + 𝑒𝑙𝑖

,

(1)

where 𝑙 represents the output logits of the model, 𝑦 is the one-hot class label and 𝑆 is a tunable
balancing factor across classes. For more details, please refer to [11].

Data augmentation. We use a composed sequence of some common augmentation tech-
niques to improve the results. In the training process, a random cropping is first performed
on the image, where the size of the cropped region is randomly chosen between 8% and 100%
of the original image size. Afterward, the slice is resized by the bicubic interpolation method
and flipped horizontally with a probability of 50 %. Additionally, we adopt RandAugment [32]
following the setting of Swin Transformer [31]. This includes both photometric augmentation
(Brightness, Contrast, Color, Sharpness, etc.) and geometric augmentation (Shear, Rotate, Translate,
etc.). Finally, a random erasing [33] is used to mask out a random region of images with a
probability of 25%. It is worth noting that Mixup [34] and Cutmix [35] are not used in the
pre-processing pipeline. During the inference process, we use multi scale & ten crop to perform
test time augmentation.



3.2. Entropy-guided Unknown Identifier

In the open-set scenario, the model needs not only to correctly classify between training known
categories, but also to identify whether an image is from a previously unseen class, considered an
“unknown” category. While existing literature proposes several classical approaches to identify
the unknown, such as MSP[13, 36], MLS[37], we introduce a more effective entropy-guided
unknown identifier. We next briefly review the previous approaches and then present our
method.

Maximum Softmax Probability (MSP). Given a network consisting of a backbone 𝑔 and
a classifier ℎ, the output logits of an image 𝑥 is denoted as 𝑙(𝑥) = ℎ(𝑔(𝑥)). The predicted
probabilities 𝑝(𝑥) that sum to one can then be derived by applying the softmax to logits. The
model is trained for closed-set classification, specifically, using the cross-entropy loss between
the true class labels 𝑦 and the predicted probabilities 𝑝(𝑥). During testing, the maximum softmax
probability 𝑝𝑚𝑎𝑥(𝑥) = max(𝑝(𝑥)) is taken for open-set recognition[13, 36]. If 𝑝𝑚𝑎𝑥(𝑥) is above
the threshold 𝜏 , the image is identified as the corresponding known category, otherwise it is
considered to be the unknown.

Maximum Logit Score (MLS). Although most of the literature adopts MSP as the baseline,
Vaze et al.[37] suggest using the maximum logit score 𝑙𝑚𝑎𝑥(𝑥) = max(𝑙(𝑥)) instead, and
similarly, using threshold 𝜏 for 𝑙𝑚𝑎𝑥(𝑥) to determine known/unknown categories. It has
been observed that open-set samples tend to have lower feature magnitudes than closed-
set ones[38, 39]. Since the softmax operation normalizes out most of the feature magnitude
information in the logits, they indicate that using the raw logits would lead to better open set
detection results.

Entropy. We first try to adopt the MLS as our baseline. To determine the optimal threshold
𝜏 , we plot the distribution of the maximum logit values, as shown in Figure 3(a). As can be
seen in the third column, there is no clear boundary for the distribution on the test set, so the
threshold 𝜏 can only be set based on the prior information about the number of the unknown
samples[40]. Even with additional training on the validation set, the distribution boundary on
the test set is still not obvious, as shown in the fourth column. We therefore conclude that the
open-set detection performance is very sensitive to the choice of hyperparameter 𝜏 , which is
not robust enough. To solve this problem, we propose an entropy-guided unknown identifier.
Specifically, we first calculate the entropy of the predicted probabilities, defined as:

𝑒(𝑥) = −
𝐶∑︁
𝑐=1

𝑝𝑐(𝑥) log 𝑝𝑐(𝑥), (2)

which is then used for open-set recognition with threshold 𝜏 . The entropy measures the
uncertainty of the predictions of the classifier on the input samples. In general, the model is
more confident for the known categories, corresponding to a lower entropy. Whereas for the
unknown categories the uncertainty is higher and hence the entropy will be higher. Thus, we
can effectively distinguish between known/unknown categories based on entropy. As shown in
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Figure 3: The distribution of the maximum logit values and the entropies on the validation and test
set. The sources of training data are noted in parentheses.

the fourth column of Figure 3(b), after additional training on the validation set, there is a clear
boundary in the entropy distribution on the test set, making the choice of threshold 𝜏 more
intuitive and robust.

3.3. Important Strategies

Training with the validation set additionally. Since the final evaluation is on the test set,
it is a common trick to additionally use the data from the validation set for training. For this
competition this trick is helpful because the validation set also contains some samples from
the unknown category. With these unknown samples, we can estimate the data distribution
of unknown categories and achieve better known/unknown separation. Specifically, for the
unknown samples in the validation set, we constrain the known classifier to yield a uniform
distribution for them, with the target in the corresponding cross-entropy loss formulated as
𝑦 = 1

𝐶1𝐶 , where 1𝐶 denote vectors of ones in dimension of 𝐶 categories.

Enhanced identification of poisonous species. There are some poisonous species of fungi
that exist in nature and are dangerous if eaten by mistake. For these poisonous categories, the
model should try to identify them, so there should also be an edible/poisonous identification.
If a poisonous observation is misclassified as edible, the corresponding cost should increase.
To enhance the identification of poisonous species, we design a poisonous classification loss.
Specifically, the set of poisonous categories is denoted by 𝒞𝑝𝑜𝑖, and the set of remaining edible
species is denoted by 𝒞𝑒𝑑𝑖. For those poisonous samples, we index out and then average the
top-𝑘 of the classification logits corresponding to 𝒞𝑝𝑜𝑖, as well as the top-𝑘 corresponding to
𝒞𝑒𝑑𝑖. A poisonous/edible classification loss is then used as an additional supervision. The whole
process is formulated as:

𝑙𝑠𝑒𝑡(𝑥) = mean
(︁
top-k

(︀
{𝑙𝑐(𝑥)|𝑐 ∈ 𝒞𝑠𝑒𝑡}

)︀)︁
, 𝑠𝑒𝑡 ∈ {𝑝𝑜𝑖, 𝑒𝑑𝑖}, (3)



ℒ𝑝𝑜𝑖(𝑥) = − log
𝑒𝑙𝑝𝑜𝑖(𝑥)

𝑒𝑙𝑝𝑜𝑖(𝑥) + 𝑒𝑙𝑒𝑑𝑖(𝑥)
, 𝑦(𝑥) ∈ 𝒞𝑝𝑜𝑖. (4)

Model ensemble. Model ensemble is a well proven trick in competitions. However, the
organizers of this competition claim that large models are less practical and therefore limit the
maximum model size to 1 GB. Within the limitation of the model size, we experiment with
ensemble of the MetaFormer-0 (150 MB) and MetaFormer-2 (393 MB) models. The ensemble
model (543 MB) can further improve performance while meeting the model size limit.

4. Experiment

4.1. Experimental Settings

Dataset. The training data for the FungiCLEF2023 challenge is primarily derived from the
Danish Fungi 2020 dataset[4], which contains 295,938 training images belonging to 1,604
categories. Besides the observed images, a wealth of metadata is also provided, such as habitat,
substrate, time, location, country, etc. The validation set contains 60,832 images from 30,131
observations belonging to 2,713 categories, where multiple images may be taken for observations
of the same object. The public test set contains 60,225 images from 30,130 observations and
has a similar data distribution to the validation set, with an unknown number of categories.
To ensure the fairness of the competition and prevent participants from overfitting to the
leaderboard, there is another private test set that has not been released by the organizers. The
final performance evaluation is conducted on the test set.

Implementation Details. We employ the pre-trained MetaFormer[10] as our backbone
network, fine-tune it and learn a set of meta tokens and a classification head. Our model is
trained using the AdamW[41] optimizer with a cosine decay learning rate scheduler. The
learning rate is initialized to 5𝑒−5 and the weight decay is 0.05. We follow most of the data
augmentation and regularization strategies from Swin Transformer[31] in our training. We
conduct all the experiments with NVIDIA RTX 3090 (24G) GPU. The threshold 𝜏 for the entropy-
guided unknown identifier is set to 4, and the 𝑘 in Equation (3) is 5 in our case.

4.2. Evaluation Metrics

The FungiCLEF2023 challenge uses five evaluation metrics to measure performance from
different perspectives, including F1-Score (higher is better) and four costs (lower is better).
Note that during evaluation, all categories not present in the training set are treated as a single
“unknown” category, indexed by “−1”. Given prediction 𝑞(𝑥𝑖) over observation 𝑥𝑖, ground-truth
labels 𝑦𝑖, and a cost function 𝑊𝑛(𝑦

𝑖, 𝑞(𝑥𝑖)), the 𝑛-th cost is calculated by averaging the cost
function over all observations:

𝐶𝑜𝑠𝑡𝑛 =
1

𝑁

𝑁∑︁
𝑖=1

𝑊𝑛(𝑦
𝑖, 𝑞(𝑥𝑖)). (5)



𝐹1-Score. The 𝐹1 score for the 𝑐-th category is the harmonic mean of the precision and recall,
which is formulated as:

𝐹 𝑐
1 = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 · 𝑟𝑒𝑐𝑎𝑙𝑙𝑐

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑐
=

2𝑇 𝑐
𝑝

2𝑇 𝑐
𝑝 + 𝐹 𝑐

𝑝 + 𝐹 𝑐
𝑛

, (6)

where 𝑇𝑝, 𝐹𝑝, 𝐹𝑛 represent true-positive, false-positive and false-negative, respectively. The
final macro 𝐹1-Score is calculated by averaging the 𝐹1 scores over all categories:

macro𝐹1 =
1

𝐶

𝐶∑︁
𝑐=1

𝐹 𝑐
1 . (7)

Track1: Standard Classfication with “unknown” category. The standard classification
cost is obtained by averaging the predicted category error over all instances, and the cost
function is defined as:

𝑊1(𝑦
𝑖, 𝑞(𝑥𝑖)) =

{︃
0, 𝑦𝑖 = 𝑞(𝑥𝑖)

1, 𝑦𝑖 ̸= 𝑞(𝑥𝑖)
. (8)

Track2: Cost for confusing edible species for poisonous and vice versa. There is a
function 𝑑 that indicates poisonous species as 𝑑(𝑦) = 1 if species 𝑦 is poisonous and 0 otherwise.
The cost function for poisonous/edible confusion is formulated as:

𝑊2(𝑦
𝑖, 𝑞(𝑥𝑖)) =

⎧⎪⎨⎪⎩
0, 𝑑(𝑦𝑖) = 𝑑(𝑞(𝑥𝑖))

𝑐𝑃𝑆𝐶 , 𝑑(𝑦𝑖) = 1 and 𝑑(𝑞(𝑥𝑖)) = 0

𝑐𝐸𝑆𝐶 , 𝑑(𝑦𝑖) = 0 and 𝑑(𝑞(𝑥𝑖)) = 1

, (9)

where 𝑐𝐸𝑆𝐶 = 1 and 𝑐𝑃𝑆𝐶 = 100 because it is more dangerous for a poisonous observation to
be misclassified as edible.

Track3: A user-focused loss composes of both the classification error and the poi-
sonous/edible confusion. The cost function is given as:

𝑊3(𝑦
𝑖, 𝑞(𝑥𝑖)) = 𝑊1(𝑦

𝑖, 𝑞(𝑥𝑖)) +𝑊2(𝑦
𝑖, 𝑞(𝑥𝑖)). (10)

Track4: Cost for missing “unknown” species is higher; misclassifying for “unknown” is
cheaper than confusing species. The cost function is a variant of the standard classification
cost, increasing the weight of the cost of missing an unknown category and decreasing the
weight of the cost of wrongly detecting an unknown category, which is written as:

𝑊4(𝑦
𝑖, 𝑞(𝑥𝑖)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, 𝑦𝑖 = 𝑞(𝑥𝑖)

𝛼, 𝑦𝑖 = −1 and 𝑞(𝑥𝑖) ̸= −1

𝛽, 𝑦𝑖 ̸= −1 and 𝑞(𝑥𝑖) = −1

1, 𝑦𝑖 ̸= 𝑞(𝑥𝑖) and 𝑦𝑖 ̸= −1 and 𝑞(𝑥𝑖) ̸= −1

, (11)

where 𝛼 = 10 and 𝛽 = 0.1.



Table 2
Public leaderboard of FungiCLEF2023 competition. We rank 1st place.

Rank Team Name 𝐹1 (↑) Track1 (↓) Track2 (↓) Track3 (↓) Track4 (↓)
1 meng18 58.95 0.2072 0.1742 0.3814 1.4762
2 stefanwolf 56.27 0.3528 0.2133 0.5662 2.9296
3 word2vector 55.46 0.3519 0.2561 0.6080 2.8167
4 SSSAMMMM 52.76 0.4124 0.3270 0.7395 3.3302

Table 3
Private leaderboard of FungiCLEF2023 competition. We rank 1st place.

Rank Team Name 𝐹1 (↑) Track1 (↓) Track2 (↓) Track3 (↓) Track4 (↓)
1 meng18 58.36 0.2409 0.1269 0.3702 1.771
2 stefanwolf 55.31 0.3473 0.1904 0.556 1.9045
3 word2vector 54.34 0.3601 0.2324 0.6034 2.9269
4 SSSAMMMM 51.67 0.4408 0.3264 0.7673 3.6493

4.3. Comparison on the Leaderboard

Table 2 and Table 3 show the performance of our team compared to other teams on the leader-
board of FungiCLEF 2023 competition. The leaderboards are divided into public and private test
sets, in both of which we win 1st place, outperforming the 2nd place by a significant margin.
For example, in the public leaderboard in Table 2, our 𝐹1-Score exceeds that of the 2nd place by
more than 2%, indicating that our method can better solve the open-set fine-grained recognition
problem. On both the standard classification cost represented by Track1 and the unknown
classification cost represented by Track4, our cost is reduced by nearly half compared to the 2nd
place, demonstrating that our method is better at identifying unknown species. Our method
also achieves a lower cost on the poisonous classification cost denoted by Track2, indicating
that our method discriminates the poisonous/edible category better. Similar performance gains
can be observed in the private leaderboard in Table 3.

4.4. Ablation Studies

To analyze the impact of each design, we conduct a series of ablation studies on the public test
set, as detailed below.

Model architecture. Table 4 shows the impact of the model architecture on performance.
The comparison between ❶ and ❷ reveals that the accumulated steps in the training process
does not have a significant impact on performance. Certain performance gains are achieved
by performing model ensemble for ❶ and ❷. InternImage[30], a recent model that uses pure
images to classify, performs worse compared to MetaFormer, indicating the importance of meta-
information for fine-grained classification. By performing model ensemble on MetaFormer and
InternImage, performance is higher than ❸, indicating that ensemble is more effective with
different model architectures. However, in our final submission, we do not employ InternImage
due to the model size limit.



Table 4
Ablation studies about different model architectures. Accu4 means that the accumulated steps is set to
4 during training. We use the maximum logit scores to identify the unknown and do not use additional
validation set for training.

Model Architecture 𝐹1 (↑) Track1 (↓) Track2 (↓) Track3 (↓) Track4 (↓)
❶ MetaFormer-2 (accu4) 55.94 0.3530 0.2160 0.5690 2.9591
❷ MetaFormer-2 (accu8) 55.97 0.3550 0.2398 0.5948 2.9412

❸ Ensemble (❶ + ❷) 56.68 0.3499 0.2263 0.5762 2.9283
❹ InternImage 54.32 0.3598 0.2265 0.5863 2.9543

❺ Ensemble (❶ + ❹) 56.50 0.3486 0.1962 0.5448 2.9159

Table 5
Ablation studies about different sources of training data. We use the maximum logit scores to identify
the unknown with MetaFormer-2.

Training Data 𝐹1 (↑) Track1 (↓) Track2 (↓) Track3 (↓) Track4 (↓)
train 55.94 0.3530 0.2160 0.5690 2.9591

train+val 54.98 0.3381 0.1896 0.5277 2.8853

Table 6
Ablation studies about different unknown identifier. MLS indicates the Maximum Logit Score. We use
additional validation set for training MetaFormer-2.

Unknown Identifier 𝐹1 (↑) Track1 (↓) Track2 (↓) Track3 (↓) Track4 (↓)
MLS 54.98 0.3381 0.1896 0.5277 2.8853

entropy 57.84 0.2101 0.2544 0.4645 1.4815

Training data. Table 5 shows the impact of different training data sources on performance.
As can be seen from the table, the additional use of the validation set for training can lead to
performance gains on the Track1-Track4 metrics. It can also be seen in Figure 3 that adding the
validation set for training can improve the discrepancy between known/unknown categories
on the validation set and further generalize to the test set for better open-set recognition.

Unknown identifier. Table 6 demonstrates the impact of different unknown identification
methods on performance. As can be seen from the table, the proposed entropy-guided unknown
identifier can lead to a significant performance improvement, especially for the identification of
unknown categories, as indicated by Track1 and Track4. Furthermore, as shown in Figure 3,
entropy is more discriminative for known/unknown categories than MLS, indicating that entropy
is more suitable for open-set recognition. However, it is worth noting that when utilizing entropy,
Track2 (poisonous identification) exhibits a higher value compared to MLS. This discrepancy
arises due to the fact that the “poisonous identification” task only focuses on “known categories”,
while entropy encourages the model to identify more samples as unknown classes. As a result,
the model’s performance in the “poisonous identification” task for known categories may be
compromised. To address this issue and enhance the identification of poisonous species, we
have designed a specific poisonous/edible classification loss, which is elaborated upon in detail
in Section 3.3.



Table 7
Ablation studies about the enhanced identification of poisonous species. We employ the entropy-guided
unknown identifier and use additional validation set for training MetaFormer-0.

ℒ𝑝𝑜𝑖 F1 (↑) Track1 (↓) Track2 (↓) Track3 (↓) Track4 (↓)
✗ 57.80 0.2088 0.2865 0.4953 1.4256
✓ 58.11 0.2069 0.2067 0.4136 1.3936

Table 8
Performance comparison of the final submitted models on the public test set.

Submitted Model 𝐹1 (↑) Track1 (↓) Track2 (↓) Track3 (↓) Track4 (↓)
MetaFormer-0 (150M) 58.11 0.2069 0.2067 0.4136 1.3936
MetaFormer-2 (393M) 57.63 0.2123 0.1943 0.4066 1.4984

Ensemble (543M) 58.95 0.2072 0.1742 0.3814 1.4762

Poisonous/edible identification. Table 7 demonstrates the impact of the poisonous/edible
classification loss ℒ𝑝𝑜𝑖 on performance. As can be seen from the table, Track2 is significantly
reduced with the incorporation of explicit poisonous/edible classification supervision, indicating
a stronger identification of poisonous categories.

Submitted models. Table 8 shows a comparison among the performance of the three submit-
ted models on the public test set. Within the limitation of the maximum model size of 1GB, we
employ the ensemble of MetaFormer-0 and MetaFormer-2, yielding further performance gains.

5. Conclusion

In this paper, we propose an entropy-guided method for open-set fine-grained fungi classi-
fication. The proposed method is based on a modern model MetaFormer, which can utilize
meta-information to differentiate similarly-looking species for accurate fine-grained recogni-
tion. We also explore the Seesaw loss for long-tail recognition. More importantly, we propose
an entropy-guided unknown identifier to discriminate unknown classes with the support of
open-set scenarios. Extensive results demonstrate the effectiveness of the proposed method,
and our method ranks 1st place in Fungi2023 competition.
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