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Abstract
Fine-Grained Visual Classification (FGVC) has always been a significant direction in computer vision.
This paper describes our solution for the SnakeCLEF2023 competition. Firstly, we employ the MetaFormer
architecture to process both the meta information and image information of the data. Secondly, we
utilize ArcFace loss to address the issue of imbalanced data distribution. Next, we leverage the SimCLR
contrastive learning method to allow the model to fully utilize the information from the dataset. Lastly,
we employ data preprocessing techniques to enhance accuracy. Our approach achieved 88.30% on the
private-score-track1 and 1613 on the private-score-track2, securing the third position.
Github: https://github.com/BAOfanTing/SnakeCLEF2023
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1. Introduction

The human eye is an extraordinary organ capable of not only distinguishing broad cate-
gories of objects such as bikes, cats, and dogs but also further classifying them into specific
subcategories like Garfield cats, Tabby cats, British Shorthair blue cats, and so on. The process
of distinguishing different subcategories of cats within the broader category of cats is known
as fine-grained visual classification (FGVC). After the rapid development of computer vision,
people have attempted to use computer vision instead of human eyes for fine-grained visual
classification.

FGVC has applications in our daily lives, industries, and businesses. For example, when
taking a photograph of a bird, this technology can be utilized to identify the species of the
bird [1]. When capturing an image of a car, this technology can be utilized to determine its
brand, model, production year, and other relevant details [2]. FGVC technology is continuously
evolving and holds the potential for even more applications in the future.
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Figure 1: General image classification vs FGVC. We can see that general image classification focuses
on distinguishing broad classes of species, while FGVC focuses on subtle differences between classes.

FGVC faces several challenges. Challenge 1: Large intra-class variations. Individuals within
the same class can exhibit significant differences in appearance. As shown in Figure 2, the adult
and sub-adult plumages of the Red-crowned Crane have distinct coloration[3]. Challenge 2:
Small inter-class variations. Individuals within the different classes are very similar or closely
related in certain aspects. For example, the Coral Snake and the Milk Snake have striking
similarities in their appearance, both having bodies with black, red, and yellow bands. Their
colors and patterns are almost identical, except for the arrangement of bands. This competition
is the SnakeCLEF2023[4] competition in LifeCLEF2023[5, 6], which focuses on snake species
classification, both humans and machines face difficulties due to the large intra-class variations
and small inter-class variations in snake appearances. To distinguish them, it is necessary to
learn features from the head shape, body shape, appearance, skin texture, and eye structure [7].

（a） （b） （c） （d）

Figure 2: (a) Adult Red-crowned Crane, (b) Sub-adult Red-crowned Crane, (c) Coral Snake, (d) Milk Snake.
(a) and (b) show the problem of large intra-class variations. (c) and (d) show the problem of small
inter-class variations.



2. Related work

FGVC methods can be divided into two categories: methods that only use image information
and methods that incorporate meta information, such as geographic location, gender, and shape.
Using only image information. The mentioned network structures proposed various

approaches for image recognition. CMAL-Net [8] introduced a cross-layer mutual attention
learning network that enabled the model to focus on discriminative regions. Yong Hou et al. [9]
proposed a multilayer feature descriptors fusion CNN model that considered both second-order
and first-order local feature descriptors from different layers. P-CNN [10] employed a system
consisting of three modules: Squeeze-and-Excitation (SE) block, Part Localization Network
(PLN), and Part Classification Network (PCN) to enhance fine-grained classification performance.
RA-CNN [11] proposed a novel recurrent attention convolutional neural network that recursively
learned discriminative region attention and region-based feature representation at multiple
scales. MRA-CNN [12] improved RA-CNN by incorporating associations between multiple
feature regions. It also introduced a feature scale-dependent (FSD) algorithm to select optimal
features as input for the classifier. These network structures proposed different approaches and
techniques.

Moving on to snake image recognition, Amiza Amir et al. [13] proposed an image-based
method for the automatic identification of snake species, achieving an accuracy of 87%. However,
it was limited to identifying only 22 species of snakes. Z. Yang et al. [14] proposed using a
detection network to identify the snake’s area before classifying its species. Due to limited
training data, it could only distinguish 11 snake species. Patel et al. [15] modified and successfully
implemented four region-based convolutional neural network (R-CNN) architectures for image
classification, achieving an overall accuracy rate of around 75%.

Using mata information. Incorporating meta-information has proven effective. Zhai et al.
[16] proposed a joint graph regularized heterogeneous metric learning (JGRHML) algorithm
that integrated the structure of different media using joint graph regularization. Geo-Aware [17]
systematically investigated various ways of incorporating geolocation information into fine-
grained image classification, such as geolocation priors, post-processing, or feature modulation.
CVL [18] proposed a two-stream model combining vision and language (CVL) for learning
latent semantic representations. The visual stream learned deep features using convolutional
neural networks, while the language stream utilized natural language descriptions to indicate
distinctive parts or features of each image. The language stream provided a flexible and compact
encoding method for salient visual aspects, aiding in the discrimination of subcategories. These
models incorporated meta-information in different ways.

Regarding snake image recognition with meta-information, Bloch L et al. [19] utilized YOLOv5
as a detection network and incorporated meta-information such as geographic information for
snake classification. However, the issue of imbalanced datasets remained unresolved. I Bolon
et al. [20] used Vision Transformer as the backbone and integrated geographic information
through binary masking.

In summary, these network structures and methods provide insights for improving image
recognition and snake species classification. However, each method has its strengths and
limitations. Some methods excel in snake species classification accuracy but are limited by
imbalanced data, while others can incorporate rich meta-information but may require more



computational resources. Therefore, it is crucial to consider these pros and cons and choose the
appropriate method based on specific requirements.

3. Method

3.1. Dataset

Through analyzing the sample distribution of different categories in the dataset, we discovered
a significant class imbalance issue in the dataset. Some classes have as many as 2000 samples,
while others have only a few samples. The distribution of images for each category is shown in
Figure 3, which exhibits a long-tail distribution pattern. Furthermore, we compared the dataset
with the dataset from the previous year and found an increase of over 200 snake species in
Table 1. However, the training set has fewer samples this year, with a reduction of 100000
samples. The increased number of classes and the decreased training samples further increase
the difficulty of this year’s task.

Figure 3: Samples count, with the y-axis representing the number of samples and the x-axis representing
the categories in descending order of quantity. It can be seen that the dataset sample numbers are
highly unbalanced.

EvaluationMetric:This year, the organizers calculated various metrics. First, they calculated
the standard Acc and macro-averaged 𝐹1. In addition, they calculated the toxicant confusion
error, which is the number of samples that confused toxicants as harmless divided by the number
of toxicants in the test set.

First consider a function 𝑝 such 𝑝(𝑠) = 1 if species 𝑠 is venonmous, otherwise 𝑝(𝑠) = 0. For



Table 1
Compositions of the 2022 and 2023 datasets were compared.We can find that the number of training
samples was much reduced.

2022 2023

Class 1572 1785
Train samples Around 270000 Around 180000
Test samples Around 48000 Around 14000

Meta information Endemic, Binomial name, Country, Code Endemic, Binomial name, Code
Image size 240×240, 500×500, Original Image

Image dimension RGB

a correct species 𝑦 and predicted species 𝑦, the 𝑙𝑜𝑠𝑠𝐿(𝑦, 𝑦) is given as follows:

𝐿(𝑦, 𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 𝑦 = 𝑦
1 if 𝑦 ̸= 𝑦 and 𝑝(𝑦) = 0 and 𝑝(𝑦) = 0
2 if 𝑦 ̸= 𝑦 and 𝑝(𝑦) = 0 and 𝑝(𝑦) = 1
2 if 𝑦 ̸= 𝑦 and 𝑝(𝑦) = 1 and 𝑝(𝑦) = 1
5 if 𝑦 ̸= 𝑦 and 𝑝(𝑦) = 1 and 𝑝(𝑦) = 0

(1)

The challenge meteric private-score-track2 is sum of 𝐿 over all test observations:

𝑝𝑟𝑖𝑣𝑎𝑡𝑒− 𝑠𝑐𝑜𝑟𝑒− 𝑡𝑟𝑎𝑐𝑘2 =
∑︁
𝑖

𝐿 (𝑦𝑖, 𝑦𝑖) (2)

The metric private-score-track1 is a weighted average between the macro 𝐹1-score and the
weighted accuracies of different types of confusion.

𝑝𝑟𝑖𝑣𝑎𝑡𝑒− 𝑠𝑐𝑜𝑟𝑒− 𝑡𝑟𝑎𝑐𝑘1 =

(𝑤1𝐹1 + 𝑤2 (100− 𝑃1) + 𝑤3 (100− 𝑃2) + 𝑤4 (100− 𝑃3) + 𝑤5 (100− 𝑃4)) /
5∑︁
𝑖

𝑤𝑖

(3)

where 𝑤1 = 1.0, 𝑤2 = 1.0, 𝑤3 = 2.0, 𝑤4 = 5.0, 𝑤5 = 2.0, are the weights of individual
terms. 𝐹1 is the macro 𝐹1-score, 𝑃1 is the percentage of wrongly classified harmless species
as another harmless species, 𝑃2 is the percentage of wrongly classified harmless species as
another venomous species, 𝑃3 is the percentage of wrongly classified venomous species as
another harmless species, and 𝑃4 is the percentage of wrongly classified venomous species as
another venomous species.

3.2. Model

For the competition, we utilized the MetaFormer [21] architecture, which is a useful network
architecture for computer vision tasks. MetaFormer has designed a five-stage network structure.
The first stage S0 is a simple three-layer convolutional structure. S1 and S2 are MBConv blocks
[22] with squeeze-excitation. MBConv blocks are based on an inverted residual mechanism and



a bottleneck design. The inverted residual structure is designed to provide higher nonlinear
representation capability while keeping the model lightweight, and the bottleneck uses smaller
intermediate layers to reduce computation. S3 and S4 are Transformer blocks with relative
position bias. This bias alleviates the problem that the order of the tokens in the input sequence
cannot be used in the self-attention operation.

We modify the input meta information of MetaFormer. Specifically, the meta information is
modified to include the code, endemic, and binomial names. The workflow of MetaFormer is
shown in Figure 4[23].

· 
· vision token

class token

meta token

Relative 
Transformer

· 
·

classification

Non-Linear 
Embedding

Epdemic

Patch 
Embedding

Code

Binomial name

convolution

Endemic:False
Code:VE
Binomial name: 
Xenoxybelis argenteus

Xenoxybelis argenteus

one-hot

Figure 4: The model employs convolutional layers to extract visual features and then transforms the
image features into visual tokens through Patch Embedding. The Code, Endemic, and Binomial name
meta information are one-hot encoded and passed through a Non-Linear Embedding layer to obtain
meta tokens. The visual tokens, meta tokens, and class tokens are fused using Relative Transformer
Layers. The fused tokens are continuously aggregated in the following attention blocks. The final output
class token is used for category prediction.

3.3. Long-Tailed loss

In order to address the issue of imbalanced sample distribution in the dataset, we employed a
long-tail loss function. There are several commonly used loss functions to cope with the class
imbalance problem. ArcFace loss [24] is designed for face recognition tasks. Other loss functions
include the Class-Balanced Loss [25], which calculates a small neighborhood associated with
each sample for computation. Seesaw Loss [26] mitigates the risk of increased misclassification
due to gradient attenuation in negative samples. Equalization Loss v2 [27] discovers a novel
gradient-guided reweighting mechanism.

Compared with other loss functions, ArcFace Loss optimizes the measure of feature space
by introducing angle cosine values, so that the angles between feature vectors can reflect the
similarity between samples. By normalizing the feature vectors and introducing an adjustable
parameter, ArcFace Loss enhances the distinguishability of the features and reduces the differ-
ence in magnitude of the feature vectors. These features make ArcFace Loss a good performer
in fine-grained classification tasks, so we adopt it as our loss function.



ArcFace loss’s formula is as follows:

𝐿arcface (𝜃) = − 1

𝑁

𝑁∑︁
𝑖=1

log
𝑒𝑠(cos(𝜃𝑦𝑖+𝑚))

𝑒𝑠(cos(𝜃𝑦𝑖+𝑚)) +
∑︀𝑛

𝑗=1,𝑗 ̸=𝑦𝑖
𝑒𝑠 cos 𝜃𝑗

(4)

where 𝑁 represents the number of samples, 𝑛 represents the number of classes, 𝑦𝑖 is the true
class of the 𝑖-th sample, 𝜃𝑦𝑖 is the angle between the feature vector of the 𝑖-th sample and its
true class, and 𝜃𝑗 is the angle between the feature vector of the 𝑖-th sample and the 𝑗-th class. 𝑠
represents the scale parameter. 𝑚 represents the margin parameter, which is the inter-class
distance. In both the numerator and denominator, a margin is added to each individual term,
represented by 𝛼 and 𝛽 in Figure 5. By calculating the loss with this margin, the margin increases
gradually, resulting in the compression of the region for each class. This effectively enlarges
the inter-class distance while reducing the intra-class distance.

result

Figure 5: The results of ArcFace loss on the MNIST dataset have shown significant improvements in
classification performance. Each point in the figure represents a sample, and each color represents a
class.

3.4. SimCLR self-supervised learning

SimCLR [28] is a self-supervised learning framework that has gained significant attention in
the field of computer vision. The main goal of SimCLR is to learn meaningful representations of
unlabeled data by maximizing agreement between different augmented views of the same image
while minimizing agreement between views of different images. The framework’s workflow is
shown in Figure 6. By maximizing the similarity between the representations of positive image
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Figure 6: The framework of SimCLR involves the following steps:1) Take an input image and apply ran-
dom transformations to generate two augmented images, denoted as 𝑥𝑖 and 𝑥𝑗 . 2) Pass the augmented
images through an encoder to obtain image representations, ℎ𝑖 and ℎ𝑗 respectively. 3) Use a non-linear
fully connected layer to map the data to the representation space, 𝑧. 4) Maximize the similarity between
𝑧𝑖 and 𝑧𝑗 , the representations of the positive image pair.

pairs, SimCLR encourages the model to learn meaningful and discriminative features of images.

We also adopted the InfoNCE [29] loss function, commonly used in contrastive learning. It
places positive samples in the numerator and negative samples in the denominator, aiming to
maximize the similarity of positive samples while minimizing the similarity of negative samples.
The formula for InfoNCE is expressed as follows:

𝐿𝑞 = − log
exp (𝑞 · 𝑘+/𝜏)∑︀𝑘
𝑖=0 exp (𝑞 · 𝑘𝑖/𝜏)

(5)

where 𝑘+ represents the positive samples for 𝑞 while the remaining 𝑘 denotes the negative
samples. 𝜏 refers to the temperature hyperparameter, which we set to 0.25 in our subsequent
experiments.

3.5. Pre-post-process

Data Preprocessing: In order to enhance the generalization ability of the method, we applied
image augmentation techniques to the input images, including resizing and center cropping.
We also introduced random vertical flipping, random horizontal flipping, and random 45-degree
rotation to augment the training dataset.

Data Postprocessing: During the testing phase, we employed the Test Time Augmentation
(TTA) strategy. TTA augments the input test data with operations such as expansion, flipping,
and rotation to obtain a set of data for an image and take the mean value of the final predictions.
For the csv file of the test dataset, each observation-id corresponds to multiple images, and the
model predicts one class for each image, so there may be multiple different predicted classes
for each observation id. For each observation id, we select the class with the most occurrences
as the final prediction result. We also adopt an integrated learning strategy to improve the
accuracy by fusing the results of MetaFormer-0, Metaformer-2, and Metaformer-2 with SimCLR



three models. For each observation-id, we select the class with the most occurrences from the
csv files generated by the three models as the final prediction result.

4. Experiments

4.1. Implementation Details

We conducted all the experiments with one NVIDIA GeForce RTX 3090. We used the
AdamW[30] optimizer with a weight decay of 0.05 and a base learning rate of 5e-5. The
batch size is determined by the maximum number that the GPU can handle, usually an integer
multiple of 2. We use the batch size of 22. And the initial learning rate is modified according
to batch size (That is, the learning rate multiplied by the batch size multiplied by the number
of GPUs divided by 512.). Also, set the number of training epochs to 100. During training, we
used data augmentation and rotation. We also use the CosineLRScheduler of the timm library
to modify the learning rate. At first the learning rate increases from the warmup learning rate
5e-8 to the base learning rate, and then enters the cosine annealing phase, where the learning
rate is adjusted by the cosine function, decreasing with increasing epochs until it decreases to
min learning rate 5e-7.

4.2. Ablation Studies

Firstly, we attempted the approach based on EfficientNet [31], the loss function used was
CrossEntropy Loss. However, we found the model couldn’t incorporate meta information,
resulting in lower accuracy than expected. Therefore, we switched to the MetaFormer model.
Comparison of above two models is shown in Table 2. The results demonstrated the superiority
of the MetaFormer backbone. Thus, we use MetaFormer-2 as the backbone of our method.

Table 2
Results of different models. Accuracy is the number of samples correctly predicted in the validation
dataset divided by the total number of samples in the validation dataset.

Model Accuracy Size of image Parameters

EfficientNet-B7 0.675 384×384 66M
MetaFormer-0 0.726 384×384 28M
MetaFormer-2 0.764 384×384 81M

To further enhance accuracy, we employed the SimCLR contrastive learning method to train
the model and fine-tuned it with an input of size 512x512. As shown in Table 3, our highest
accuracy was achieved using the SimCLR contrastive learning method. The results show the
effectiveness of the contrastive learning method SimCLR.

5. Conclusion

In this paper, we presented our solution for the snakeCLEF2023 competition. We adopted the
MetaFormer architecture to incorporate effective meta information, utilized the ArcFace loss



Table 3
Results of SimCLR and input of size 512x512. We found that using 512×512 large size fine tuning does
not work very well.

Model Accuracy Epochs

SimCLR+MetaFormer-2 0.838 100
MetaFormer-2 0.734 100

function to address the issue of long-tail data distribution, employed the SimCLR contrastive
learning method with pre-trained models to improve accuracy, and applied data augmentation
techniques to enhance the model’s generalization ability.

Our solution achieved 88.30% on the private-score-track1 and and 1613 on the private-score-
track2, securing the third position. Due to time and resource constraints, we were unable to
further explore the long-tail loss function and new contrastive learning methods. However, the
results demonstrate the effectiveness of our approach and highlight the potential for further
improvements. Future work could involve the following aspects: 1) Exploring or designing new
long-tail loss functions. 2) Investigating other contrastive learning methods, such as the MAE
[32] pre-training method, to further enhance the performance of pre-training.
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