
Leverage Samples with Single Positive Labels to Train
CNN-based Models For Multi-label Plant Species
Prediction
Notebook for the LifeCLEF Lab at CLEF 2023

Huy Quang Ung1,*, Ryoichi Kojima1 and Shinya Wada1

1KDDI Research, Inc., Fujimino, Saitama, Japan

Abstract
Understanding the geographical distribution of plant species is useful in many scenarios related to
biodiversity management and conservation. By associating plant species occurrences with environmental
features of each location, we can model the relationship between an environment and the species.
However, the cost of multi-label plant species annotation for a large dataset is expensive and time
consuming, so it may only be possible to obtain a single positive label for each location. This type
of dataset is provided in the GeoLifeCLEF 2023 competition, where learning multi-labels from single
positive labels is the main challenge. In this report, we present our proposed models that achieved the
best performance in GeoLifeCLEF 2023. We proposed several CNN-based models and a training strategy
for learning samples with single positive labels. We conducted experiments to show the effectiveness of
our method compared to a simple baseline on the provided dataset.
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1. Introduction

Modelling species distribution is an essential task for monitoring and making conservation
decisions for a wide variety of species. Nowadays, the research community has generated
millions of geolocated species observations every year, covering tens of thousands of species,
which is a good opportunity to apply machine learning and deep learning based models. A
common approach is to build a species distribution model (SDM) [1], which uses the environ-
mental variables of the location (e.g. temperature, elevation, land cover, soil, etc.) to predict the
presence of species at that location.

Following the ongoing series of the GeoLifeCLEF competitions [2, 3, 4, 5, 6], the GeoLifeCLEF
2023 [7], which is a part of LifeCLEF 2023 [8], aims to predict the presence of plant species at
a given location and their change at different timestamps, providing a large scale dataset of
raster and time series based variables. The goal of GeoLifeCLEF 2023 is to predict multi-label
plant species for each location, while the last GeoLifeCLEF 2022 is to predict only a single
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label species. Furthermore, the main challenge of GeoLifeCLEF 2023 is that 98 percentages of
the samples provided have only single positive labels. Other difficulties include the long-tail
distribution of plant species, large-scale multi-modal learning, and a variety of plant species
classes.

Convolutional Neural Networks (CNNs) have achieved great performance in computer vision
in recent years. In the GeoLifeCLEF 2022 competition, several CNN-based SDM models have
been proposed for learning raster-based variables. However, it is difficult to train CNN-based
models by samples with single positive labels [9, 10, 11] for multi-label prediction task. Single
positive labels for multi-label prediction task are considered as noisy labels due to lack of other
positive labels [9].

In this technical report, we present several CNN-based models for multi-label plant species
prediction on the provided dataset of GeoLifeCLEF 2023. In addition, we introduce an efficient
three-step training strategy for leveraging samples with single positive labels to train our
proposed CNN-based model. We also present detailed experiments of our proposed method.

The remaining of this report is organized as follows. Section 2 presents related work of this
report. Section 3 describes the provided dataset and our main task in details. Section 4 describes
our preprocessing steps. Section 5 introduces our proposed method. Section 6 presents detailed
experiments and results. Finally, section 7 concludes this work.

2. Background and related work

2.1. Multi-label learning from single positive labels

To the best of our knowledge, there has been no study of learning multi-label prediction from
single positive labels for plant species prediction. However, Cole et al. [9] pointed out this
problem for the field of computer vision and proposed a method for estimating unobserved
labels. They also considered possible methods such as label smoothing to reduce the negative
impacts of negative labels assumed. Zhou et al. [10] introduced a pseudo-labelling method
for labelling unobserved positive labels and applied Expectation Maximization loss in their
training phase. Xie et al. [11] also proposed a pseudo-labelling method and a regularization
term to address this problem. Although these methods showed their effectiveness on learning
multi-labels from single positive labels, those were only experimented on benchmarks with less
than 200 classes.

2.2. Binary cross-entropy loss

First, let define a setting for a multi-label prediction. We assume that each input 𝑥 from 𝒳
corresponds to a vector label y from the label space 𝑌 = {𝑦𝑖}𝑖∈[1,𝐿] ∈ {0, 1}𝐿, where L is the
number of classes (i.e. species), an entry 𝑦𝑖 = 1 if the 𝑖-th class is relevant to 𝑥 (i.e. the species 𝑖
is present at the location encoded by 𝑥) and 𝑦𝑖 = 0 otherwise (i.e. the species is absent). The
main objective is to find a function 𝑓 : 𝒳 → 𝒴 that predicts the labels for each 𝑥.

The binary cross-entropy (BCE) loss is one of the most common loss for multi-label learn-
ing [12]. For an observed data point (𝑥𝑛, 𝑦𝑛) including full positive and negative classes, the



BCE loss is calculated as follows:

ℒ𝐵𝐶𝐸(𝑓𝑛, 𝑦𝑛) = − 1

𝐿

𝐿∑︁
𝑖=1

[1[𝑦𝑛𝑖=1] log(𝑓𝑛𝑖) + 1[𝑦𝑛𝑖=0] log(1− 𝑓𝑛𝑖)] (1)

where 𝑓𝑛 = 𝑓(𝑥𝑛) ∈ [0, 1] is the model predicted probability of presence for species i under
input 𝑥𝑛, and 1[.] denotes the indicator function, i.e., 1𝑘 = 1 if the assertion 𝑘 is verified, or 0
otherwise.

2.3. Assume negative loss

Suppose that we have partially observed data (𝑥𝑛, 𝑧𝑛), the label space is 𝒵 = {𝑧𝑖}𝑖=1,𝐿 =

{1, 0, ∅}𝐿 and suppose that all of the observed labels are positive i.e., if 𝑧𝑛𝑖 is known, then
𝑧𝑛𝑖 = 1. Here, we can formulate a loss function with the positive term of 1[𝑦𝑛𝑖=1] log(𝑓𝑛𝑖). For
unobserved labels, we cannot simply ignore them in the loss function since it could cause that
the trained model always results positive classes. The simple approach is to assume unobserved
labels are negative. This “assume negative” (AN) loss is calculated as follows:

ℒ𝐴𝑁 (𝑓𝑛, 𝑧𝑛) = − 1

𝐿

𝐿∑︁
𝑖=1

[1[𝑧𝑛𝑖=1] log(𝑓𝑛𝑖) + 1[𝑧𝑛𝑖 ̸=1] log(1− 𝑓𝑛𝑖) (2)

3. Task and dataset

The final goal of GeoLifeCLEF 2023 is to predict the set of plant species presence in a given
location and time using various related features: images and time-series data captured from
a satellite, time-series climatic data, and other rasterized environmental data: land cover,
human footprint, bioclimatic and soil variables. In this technical report, we present raster-
based variables used in our method, i.e., satellite raster images, aggregated human footprint
rasters, bioclimatic rasters, and soil-grid rasters. Other variables are described in detail at this
competition’s homepage1.

• Satellite raster images: There are RGB and Near Infra-Red (NIR) captured over a square
area of 1280 meter × 1280 meter. They are formatted in a size of 128 × 128 pixels. An
example is shown in Figure 1.

• Summarized human footprint rasters: A aggregated version of several low-resolution
rasters contain seven pressures of the environment which indicate the presence of human
being and their activities. The resolution is 1 kilometer per pixel. These rasters were
collected in 1993 and 2009. We used the data from 2009 in this report.

• Bioclimatic rasters: They are low-resolution rasters of 19 variables classically used in
species distribution modeling. Their resolution is around 1 kilometer per pixel.

• Soil-grid rasters: These consist of low-resolution pedological rasters of nine variables
related to soil properties, i.e., pH, clay content, organic carbon, nitrogen, bulk density, sand,

1https://www.kaggle.com/competitions/geolifeclef-2023-lifeclef-2023-x-fgvc10/data



Figure 1: An example of RGB and NIR at (Latitude=43.153, Longtitude=6.080).

silt, cation exchange capacity, and coarse fragments. These properties were measured
from 5 to 15-centimeter depth. Their resolution is 1 kilometer per pixel.

This competition provides a large-scale training set of about 5 million samples of plant
occurrences in Europe. This training set, where only a single positive class is labeled, is so-
called presence-only data (PO in short). A validation set consists of 5,948 samples with all the
present species (multi-labels of both positive and negative classes), which is so-called presence-
absence data (PA in short). Here, we used a part of the PA data to train our models. A testing
set consists of 22,404 samples. The testing set is implicitly divided into a public set and a private
set for evaluation. The total number of plant species is 10,039 classes.

4. Preprocessing data

For preprocessing data, we used the source code2 provided by the organizers. The raster-based
variables, which consist of bioclimatic rasters, summarized human footprint rasters, and soi-grid
rasters are formed into the size of 128 × 128 pixels (the same as the sizes of satellite raster
images). The resolutions of them are the same as the above-mentioned. Each satellite raster
image and raster-based variable are applied the standard normalization before inputting to our
models, where their average and standard deviation values are calculated on training samples.

5. Proposed method

This section presents the architectures of our proposed models, a method for combining them,
and an efficient training strategy.

5.1. Model architectures

To address this multi-label plant species prediction, we experimented with three CNN-based
models with the ResNet [13] backbone, i.e., BioResNet50, FusResNet34, and FusResNet50. The
overview of three proposed models is shown in Figure 2.
2https://github.com/plantnet/GLC



The BioResNet50 model with the ResNet50 backbone receives bioclimatic rasters as the input.
We use available 19 channels of bioclimatic rasters. The FusResNet34 model with three branches
of the ResNet34 backbone is a multi-modal late fusion network, which combines bioclimatic
rasters (19 channels), satellite imagery (3-channel RGB and 1-channel NIR), a human footprint
raster of summary version (1 channel), and soil rasters (9 channels). In FusResNet34, we change
the ResNet34 backbone to the ResNet50 one and obtain the FusResNet50 model. Those models
are trained in an end-to-end manner.

We simply combine three proposed models by calculating the average output of them. Figure 3
illustrates our ensemble method.

5.2. Three-step training strategy

Training our CNN-based models simultaneously using both the PO and PA data (shown in
Figure 4(a)) is not an effective method due to the negative impact of assuming negative labels
of PO (shown in our experiment). We propose an efficient training strategy that can improve
the performance using the samples with single positive labels (the PO data). Our method is a
three-step training strategy as shown in Figure 4(b).

First, we train our models on the PA data only, using the BCE loss, since PA has fully observed
labels. This is a kind of warming-up step for multi-label prediction. Secondly, we continue to
train the models obtained in the first step using only the PA data with the cross-entropy (CE)
loss [14]. The CE loss is one of the most common losses for multi-class classification tasks,
where the objective of this task is to obtain a single class per an input sample. In this step,
we expect that our models can learn specific features for each class since PO has only single
positive labels. Finally, we continue training the models obtained in the second step using only
the PA data with the BCE loss. Here, the models were able to adjust their activation units for
the multi-label prediction and utilize the specific features learned in the second step.

6. Experimental results

This section presents experiment settings and shows the effectiveness of our models and training
strategy. In addition, we perform an ablation study for our proposed training strategy.

6.1. Experimental settings

We divided the training and validation set as described in Table 1. Our baseline model was to
train a CNN-based model simultaneously using both PO and PA with the AN loss as described
in Figure 4(a).

We implemented our models using the PyTorch [15] framework. The detailed settings of
our proposed models and the baseline are described in Table 2. The pre-trained weights of
ResNet-34 and ResNet-50 on ImageNet [13] were used to initialize the backbones of our models
in the training phase of Step 1 and our baseline case. Due to resources limitation and the
time-consuming of the training phase, we only trained our models by 10 and 20 epochs in Step 2
and the baseline, respectively. In steps 1 and 3, we stopped the training phase at epoch 30th due
to time constraints, while the validation loss was slightly improved. However, the results could



Figure 2: Overview of proposed models’ architectures.

Figure 3: Ensemble method.

be improved if we continue training the models in further epochs. In the inference step, given
an input, the models will output the top-20 species with the highest probabilities for evaluation.

The GeoLifeCLEF 2023 competition used the micro F1-score (↑) for evaluation. The micro
F1-score (denoted as MF1-score) is calculated as follows:

𝐹1 =
1

𝑁

𝑁∑︁
𝑗=1

𝑇𝑃𝑗

𝑇𝑃𝑗 + (𝐹𝑃𝑗 + 𝐹𝑁𝑗)/2
(3)

where 𝑇𝑃𝑗 , 𝐹𝑃𝑗 , and 𝐹𝑁𝑗 are the true positive, the false positive, and the false negative of the
𝑗-th input sample, respectively. 𝑁 is the number of samples for evaluation.



Figure 4: Three-step training strategy.

Table 1
Settings for training and validation sets in training phases.

Subset
Step 1&3 Step 2 Baseline
PO PA PO PA PO PA

Training set - 80% 98% - 100% 80%
Validation set - 20% 2% - 0% 20%

Table 2
Hyper-parameters of our proposed models and the baseline model.

Hyper-parameters Step 1&3 Step 2 Baseline

Batch size 128 96 96
Optimizer Adam [13] Adam Adam
Learning rate (Lr) 0.001 0.003 0.003
Lr scheduler MultiStep, - MultiStep,

epoch 15 and 20 epoch 15
Lr decay rate 0.1 - 0.1
Maximum#epochs 30 10 20

6.2. Comparison among proposed models

This section presents a comparison among our proposed models and the baseline method which
is simultaneously trained on PO and PA using the AN loss. We only implemented the baseline
BioResNet50 (denoted as BioResNet50-base) to compare with our BioResNet50 trained by our
training strategy. In addition, we tried to train the FusResNet50 in step 2 by 20 epochs (denoted
as FusResNet50*) to observe the performance.

Table 3 shows our experimental results. Our BioResNet50 significantly outperforms
BioResNet50-base, indicating the effectiveness of our three-step training strategy. Among
our proposed models, the multi-modal FusResNet34 and FusResNet50 models achieve better
performance than the BioResNet50. The MF1-score values of FusResNet50* are slightly lower



Table 3
Performance of proposed models on the testing set.

Models One-step training #Epochs in step 2
MF1-score ↑

Public Private

BioResNet50-base ! - 0.060 0.058

BioResNet50 - 10 0.243 0.239
FusResNet34 - 10 0.254 0.249
FusResNet50 - 10 0.254 0.249

FusResNet50* - 20 0.248 0.242

Ensemble method: BioResNet50 +
- - 0.276 0.270

FusResNet34 + FusResNet50

Table 4
Ablation study of FusResNet50 on the training strategy.

Step 1 Step 2 Step 3
MF1-score ↑

Public Private

! - - 0.200 0.196
- ! - 0.059 0.058
! ! - 0.073 0.073
- ! ! 0.226 0.221
! ! ! 0.254 0.249

than those of FusResNet50, indicating that further training of the model in step 2 could not
improve the performance. The combination of BioResNet50, FusResNet34, and FusResNet50
by the ensemble method achieves the best performance of 0.276 and 0.270 on the public and
private testing sets, respectively.

6.3. Ablation study for our proposed training strategy

We conducted an ablation study for our proposed training strategy using the FusResNet50
model. Table 4 presents the detailed results. Overall, applying the three-step training strategy
achieves the best performance of around 0.25 on both public and private testing sets. The
performance of step 1 alone is around 0.2 on these two testing sets. Without step 3, step 2 alone
and the combination of step 1 and step 2 achieve significantly lower performance. Without step
1, the performance of step 2 and step 3 alone is lower 0.03 MF1-core points than that of the
combination of these three steps.

7. Conclusion

This technical report presents working notes on the GeoLifeCLEF 2023 competition. For multi-
label plant species prediction, we presented our proposed CNN-based models, i.e., BioResNet50,



FusResNet34, and FusResNet50. In addition, we presented a three-step training strategy to
improve the prediction performance from learning samples with single positive labels. Our
experiments show that FusResNet34 and FusResNet50 achieved the best and comparable perfor-
mance of around 0.25 on both public and private testing sets. Furthermore, we have also shown
the effectiveness of our three-step training strategy.
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