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Abstract
Plant identification has received a significant improvement in recent years with the development of deep
learning. However, large-scale plant identifications still suffer such as the PlantCLEF2022 challenge,
and this paper aims to address this issue in the PlantCLEF2023 challenge. On one hand, we extend
an effective strategy, transfer learning, resorting to advanced pretrained methods with multi-modal
and self-supervised learning. On the other hand, training dataset size and quality are probed and their
impacts are compared to one of the advanced pretrained methods. The experimental results suggest that
advanced pretrained methods, bigger datasets, and noisy datasets are beneficial to plant identification.
Especially, the performance gain from the first one is inferior to the counterparts of the latter two,
with the dataset in the PlantCLEF2023 challenge. For example, employing a noisy dataset together
receives 0.0236 gains in performance whereas multimodal and self-supervised pretraining contributes
0.00792 gains. We hope that our results highlight the importance of collecting better datasets for plant
identification. Our codes are public at https://github.com/xml94/PlantCLEF2022.
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1. Introduction

Plant identification is an essential task in plant science, such as for maintaining biodiversity
and finding new plant species, which traditionally requires the involvement of human experts.
Because of the limitation of experts, plant identification is often not convenient and expensive.
Besides, it is also difficult to integrate the identification with other tasks. Resorting to RGB images
and computer vision methods, plant identification has achieved a significant improvement in
recent years. A commonly embraced paradigm is taking plant identification from the computer
vision community, with a basic inspiration that plants images resemble the images in general
computer vision tasks such as ImageNet-1k [1].
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Holding the paradigm, the methods and techniques in general computer vision tasks are
overwhelmingly borrowed to plant identification. Transfer learning is proven as one of the
most successful strategies, which directly adopts the models trained in the datasets from general
computer vision tasks. This paper extends this idea one more step by using advanced pretrained
methods. To be specific, a ViT-large model pretrained in multi-modal and self-supervised
is fine-tuned in the PlantCLEF2023 dataset. Multi-modal refers to using inputs in different
modality [2, 3, 4], such as text and image [5], by which more semantics are learned, whereas
self-supervised learning denotes a set of training strategies without using labels. One of the
most successful self-supervised learning methods is predicting the masked contents from the
original inputs [6, 7, 3]. Finally, we examine the effectiveness of the pretraining with multi-modal
and masked image modeling in the context of plant identification.

Simultaneously, we aim to point out the heterogeneity between general computer vision and
plant identification and argue that plant identification has its specificity [8]. For example, a
plant may be very similar to another plant. However, this heterogeneity should receive more
attention ranging from dataset collecting and algorithm designing, although some existing
papers cast plant identification into a fine-grained classification. In this paper, we aim to probe
the impact of size and quality of training datasets to identify plant species, and compare the impacts
to the one with advanced pretraining methods. We emphasize that the comparison is our ultimate
objective, rather than probing training dataset alone, in that scaling laws, enlarging capacities of
models and sizes of training datasets, already suggests its power in natural language processing
[9, 10, 11] and computer vision [4, 12].

Through experiments in PlantCLEF2023, we found that advanced pretraining methods slightly
contribute to plant identification, and a bigger dataset and noisy datasets may be more beneficial.
As shown in Table 4, employing noisy datasets together receives 0.0236 gains in performance
whereas multimodal and self-supervised pretraining contributes 0.00792 improvements. Based
on this observation, we think that collecting a better dataset and analyzing the challenges within
a collected dataset should receive more attention.

2. Material and Evaluation Metric

2.1. Datasets

Trusted and Web datasets. The PlantCLEF2023 challenge [13, 14] adopts the same dataset
as PlantCLEF2022 and the dataset officially consists of three parts, Trusted, Web, and Test.
We summarize some details and our analysis and understanding in Table 1. The Trusted and
Web datasets have labels and can be utilized to train proposed models but their reliabilities are
different. The Trusted dataset is annotated by experts whereas the Web one is collected from
the internet with some other post-processes to improve the quality.

We aim to analyze the Trusted and Web datasets and found distinct characteristics. First,
the two datasets are both in heavy class-imbalance where some classes have much more
number of images than other classes as shown in Figure 2 and Table 2 and 3, which may result
in lower performance for the classes with less number of images [15]. Second, the datasets have
huge intra-class variation [16, 15] in two factors: a plant species has multiple organs, such as
flowers and leaves; and images from an organ may have heterogeneity, such as multiscale and



Table 1
Details, analysis, and understandings towards the datasets in PlantCLEF2023 challenge.

Dataset Classes Images Analysis and understandings
Trusted 80,000 2,885,052 It is annotated by human experts and can be regarded as

reliable. This dataset is in heavy class imbalance, as shown
in the first row of Figure 2 and Table 2. It owns a huge intra-
class variation in terms of two aspects: one plant species has
multiple organs such as flowers and leaves and, as shown
in Figure 1, one organ has heterogeneity such as leaves in
multiscale and flowers in the different growth stages.

Web 57,314 1,071,627 It is collected from the web and thus may be with noisy
and even wrong labels. Its class space is a proper set of the
Trusted dataset with less number of classes. This dataset is
also in heavy class imbalance, as shown in the second row
of Figure 2 and Table 3. The Web dataset is in a different
distribution from the Trusted dataset where the number of
images for one class is different as shown in Figure 3. We
randomly looked at several classes in the Web dataset and
found that most of the images seem in the correct classes
(we emphasize we are not domain experts and thus our
judgments may not be correct).

Trusted + Web 80,000 3,995,568 This dataset is the combination of the Trusted and Web
datasets. The total number of images is not the summation
of the Trusted and Web datasets and we guess that some im-
ages are shared in the two datasets. This combined dataset
has more images and may mitigate the class-imbalance im-
pact than their individual counterparts.

Test 7,339 55,306 The classification should be done at the observation level,
rather than the image level, where one observation refers to
one actual plant with several pictures taken from different
viewpoints. The task requires a strategy to combine the
predictions of multiple images for one observation. Besides,
the testing dataset only shares part of the plant identity in
the trusted training dataset.

Shared information Images have similar resolutions, around 450 × 600. Most
of the images are collected from real scenarios, rather than
laboratories. Class imbalance, huge intra-class variations,
and few-shot are the distinct characteristics of the datasets.

growth stage as shown in Figure 1. Third, the datasets have relatively less number of images
averaged by the classes and can be cast as a few-shot classification. For example, the Trusted
and Web datasets have approximately 36 and 18 images on average for each class.

Through our observation, the difference between the Trusted and Web datasets may be the
distribution of the number of images in one species, as shown in Figure 3. Several random
observations suggest that most of the images in the Web dataset are correctly annotated.
Therefore, the two datasets are combined as a potential training dataset with much more images
and less impact of class imbalance [15].
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Figure 1: Images of Aralia nudicaulis L. species from PlantCLEF2022 Trusted dataset. The pictures
show huge intra-class variation [17, 16, 15] and every triplet suggests an intra-class variation.

Table 2
Statistics of the Trusted dataset where the numbers of classes and images are counted. For example,
there are 28,681 classes with or more than 36 images, covering 2,381,264 images in total. 36 is the average
number of images for the classes.

Statistic term Classes Images
all 80,000 2,885,052
>=7 54,478 2,807,969
>=36 28,681 2,381,264
>50 24,284 2,194,912

>=100 9,122 920,774

Table 3
Statistics of the Web dataset where the numbers of classes and images are counted. For example, there
are 23,317 classes with or more than 18 images, covering 869,518 images in total. 18 is the average
number of images for the classes.

Statistic term Classes Images
all 57,314 1,071,617

>=18 23,317 869,518
>50 4,335 251,206

Test dataset and observation The Test dataset has no public labels and is formally adopted to
evaluate different methods. It has 55,306 images for 26,868 individual plants, termed observations
where a plant may have multiple images. According to the official report [18], the images cover
7,339 plant species, less than the total numbers in the Trusted and Web datasets, but the exact
information is not accessible. The observation-level classification requires the ability to make
decisions considering multiple predictions from a model, which may be beneficial to have higher
performance to recognize plant species.



Figure 2: Left up (1): number of images of every class in the Trusted dataset, sorted by their numbers.
More than 40,000 classes have less than 20 images. Right up (2): relation between number of images
and number of species. Two peaks are around 0 and 100 images in species. Left bottom (3): number of
images of every class in the Web dataset, sorted by their numbers. Right bottom (4): relation between
number of images and number of species.

2.2. Evaluation metric

Macro averaged mean reciprocal rank (MA-MRR) is utilized to evaluate different submissions
for the PlantCLEF2022 challenge. The challenge requests a submission with a rank based
on the score with a given length for each testing observation, and the rank is thirty for the
challenge. Assume there are 𝑁 classes in the testing dataset and class 𝑛 has 𝑂𝑛 observations.
Mathematically, MA-MRR can be formalized as1,2:

𝑀𝐴−𝑀𝑅𝑅 =
1

𝑁

𝑁∑︁
𝑛=1

1

𝑂𝑛

𝑂𝑛∑︁
𝑖=1

1

𝑟𝑖
, (1)

where 𝑟𝑖 refers to the rank position of the first relevant ground-truth label for the 𝑖-th

1https://en.wikipedia.org/wiki/Mean_reciprocal_rank
2https://androidkt.com/micro-macro-averages-for-imbalance-multiclass-classification/



Figure 3: Number difference between the same class in the Trusted and Web dataset, sorted by the
difference. It suggests a distinct distribution gap between the Trusted and Web datasets that most of
the classes have different numbers of images.

observation from one class. Conceptually, if all of the observations are classified correctly in the
first, then MA-MRR is one where the accuracy is hundred percent. In contrast, if MA-MRR is
smaller then the model is worse. Intuitively, the observation level enables us to observe different
parts of plants, while MA-MRR allows more than one chance to recognize plant species for
a specific image, 30 chances in the PlantCLEF2023 challenge. In general, MA-MRR is slightly
higher than the actual accuracy, a widely used metric to evaluate image classification.

3. Methods

In this section, a combination method for observation-level image classification is first described.
Second, our two main strategies, relevant to pretraining and fine-tuning, for the PlantCLEFF2022
challenge are introduced. Our results are summarized in Table 4.

3.1. Strategy towards observation

Let 𝑟𝑗𝑠𝑐𝑜𝑟𝑒 denote the testing probability score rank of the 𝑗-th image of one observation. Similarly,
𝑟𝑗𝑐𝑙𝑎𝑠𝑠 is the testing class rank with the same length. Besides, 𝑟𝑐𝑙𝑎𝑠𝑠𝑖 and 𝑟𝑠𝑐𝑜𝑟𝑒𝑖 are the 𝑖-th
class-score pair and mean the class and the corresponding probability score, respectively. The
rank requires 𝑟𝑠𝑐𝑜𝑟𝑒𝑝 > 𝑟𝑠𝑐𝑜𝑟𝑒𝑞 if 𝑝 ∈ R+ < 𝑞 ∈ R+. A final desired output {𝑟𝑠𝑐𝑜𝑟𝑒, 𝑟𝑐𝑙𝑎𝑠𝑠}, pair
of class and corresponding score can be formulated as

{𝑟𝑐𝑙𝑎𝑠𝑠, 𝑟𝑠𝑐𝑜𝑟𝑒} = {(∪𝑛
𝑗=1({𝑟

𝑗
𝑐𝑙𝑎𝑠𝑠, 𝑟

𝑗
𝑠𝑐𝑜𝑟𝑒})), (2)

where { means an integration function and the observation has 𝑛 corresponding images. ∪
suggests the union of the 𝑛 images.

Following our observation in the last year [17], the multi-sorted method contributes to a
relatively higher performance, where multi means that the final rank pair is from multiple
images, rather than a single image, and sorted means that the predicted species with higher



Table 4
Our official results, the best showing in the boldface. We fine-tune the models in the PlantCLEF2023
dataset. Except for run 9 and 10, fine-tuned by 10 and 50 epochs respectively, all models are fine-tuned
by 100 epochs, following MAE. Same with our last year’s experiment [17], we executed the experiments
with the code of MAE, which means the same training strategies. The Trusted and Web datasets are
short as T and W. The number after num suggests the statistics term. For example, T@num36 denotes
the images from the classes with exact or more than 36 images. MAE-IN1k suggests that an MAE model
is pretrained in ImageNet-1k (IN1k). EVA-IN21K and EVA-IN21k-IN21k denote that an EVA model is
pretrained in ImageNet-21k (IN21k) and fine-tuned in IN21k once more, respectively. EVA-IN21k-IN21k-
PlantCLEF@T+W is fine-tuned model of EVA-IN21k-IN21k in PlantCLEF2023 Trusted and Web datasets.
Our official run with ID 7 is not here because we wrongly uploaded the same result.

Run ID Pretraining
Fine-tuning

MA-MRR
Dataset cls img

[17] MAE-IN1k T 80,000 2,885,052 0.64079
3 EVA-IN21k T 80,000 2,885,052 0.64871
1

EVA-IN21k-IN21k

T@num100 9,122 920,774 0.33239
4 T@num50 24,284 2,194,912 0.54846
2 T@num36 28,681 2,381,264 0.57514
6 T@num7 54,478 2,807,969 0.64201
5 T 80,000 2,885,052 0.65035
8 T+W 80,000 3,995,568 0.67395
9

EVA-IN21k-IN21k-PlantCLEF@T+W
T@epoch10 80,000 2,885,052 0.66330

10 T@epoch50 80,000 2,885,052 0.65695

probabilities after sorting all predictions from all images aligning to the same observation are
adopted to evaluate. With the multi-sorted strategy, the scores of all images from the same
observation are sorted: 𝑠𝑜𝑟𝑡(∪𝑛

𝑗=1 ∪𝑙
𝑖=1 𝑟

𝑗
𝑠𝑐𝑜𝑟𝑒𝑖) where 𝑙 is the length of the ranges (30 in the

PlantCLEF2023 challenge); and then, after removing duplicates of same classes, the first required
length of class-score pair are taken as the final ranking pair.

3.2. Advanced pretraining models

As mentioned before, the PlantCLEF2023 challenge can be recognized as a few-shot image
classification. Even if the Trusted and Web datasets are combined, each class has only about 50
images on average, much less than the counterpart in the ImageNet [1] dataset. To address this
issue, employing a pretrained model is one of the most effective and efficient methods across
many different tasks [16, 15], especially in the eras of large language models such as ChatGPT [7]
and foundation models [2]. Therefore, we aim to probe the impact of state-of-the-art pretrained
models.

MAE [6] is self-supervised trained in ImageNet-1k (IN1k), label information not being used,
where the input is randomly blocked and the objective is reconstructing the blocked pixels,
as shown in Figure 4. We employed MAE with ViT-large [19] model in the last year and
obtained a first place for the PlantCLEF2022 challenge [17]. Another widely adopted pretraining
strategy involves multi-modal, such as CLIP [5], in which the learning loss is to maximize the
relationships between paired text and images and minimize the counterparts of the unpaired



Figure 4: Architectures of MAE [6],can be adopted as pre-training method without using annotations.

Figure 5: Training architecture of CLIP [5], trained with paired images and texts.

ones. As shown in Figure 5, this pretraining employs multimodal information simultaneously
and thus may learn semantics better than using vision information alone [3].

MVP [3] integrates the strategies in MAE and CLIP to improve the pretraining performance.
As shown in Figure 6, MVP freezes the image encoder from CLIP and trains the parameters from
the vision part. To be specific, the loss function is to minimize the distance between the feature
from the frozen CLIP image encoder and the feature from the vision model with randomly



Figure 6: Architectures of MVP [3] which can be deemed as a combination of MAE and CLIP.

Figure 7: Highlights of EVA [4], a scaled version of MVP.

blocked images as inputs. In this way, a vision model in MVP can learn more semantics from
the frozen CLIP image encoder that is pretrained in 400 million image-text pairs. Furthermore,
as highlighted in Figure 7, EVA [4] scales MVP by using bigger models with more parameters
and more datasets, by which better performance is achieved across different downstream tasks.

Inspired by the success of EVA, we extend it from general computer vision tasks to plant
species identification on a large scale. Because of the limitation of GPUs, we only consider the
scaling of EVA with more datasets and the model architecture is still ViT-large [19]. Specifically,
EVA-L pretrained in ImageNet-21k, rather than ImageNet-1k, is leveraged, which is denoted
EVA-IN21k. We also utilized its finetuned version, finetuned once more in ImageNet-21k in a
supervised manner, mainly because it has better performance in ImageNet-1k and empirically,
a model with higher performance in ImageNet-1k may have a better performance in the target



dataset with transfer learning strategy [20]. This pretrained model is denoted as EVA-IN21k-
IN21k.

As shown in Table 4, EVA-IN21k pretrained model outperforms MAE-IN1k slightly and
EVA-IN21k-IN21k has also a tiny improvement. Our results suggest that better pretrained
models and better performance in ImageNet-1k may have superiority in plant identification,
same observations in [21].

3.3. Bigger training dataset

Considering that the Trusted dataset has 80,000 classes but the Test dataset only has 7,339
classes, training models in the whole Trusted dataset seems a waste of computing resources.
A desired strategy is to find the class in the Test dataset and then just use the corresponding
images in the Trusted dataset. However, the desired classes are not given. Instead, we assume
that the frequencies of plant species in the Trusted and Test datasets are similar. Therefore, we
just choose the classes from the Trusted dataset based on the number of samples. For example,
those classes having 100 images or more are selected, denoted as T@num100, as shown in Table
4.

To our surprise, the test performance monotonically shrinks when the number of images
reduces. Especially, training the model in the whole Trusted dataset leads to the best performance.
We emphasize that this phenomenon may result from two factors: the number of images and the
number of classes. When the number of images increases, some classes in the Test dataset may
be included. However, these classes just have a few images, such as less than 7 if the training
dataset replaces T@num7 with T.

We further directly utilized the Web dataset along with the Trusted because of our previous
observation that the main difference is the frequency as shown in Figure 3. The corresponding
performance is further improved by 3.6% than using the Trusted alone. As the Web dataset
is assumed to have noise, the trained model with the Trusted and Web datasets undergoes
fine-tuning once more, 10 and 50 epochs as run ID 9 and 10 respectively. We are shocked that
the performance degrades with the fine-tuning process. We conjecture that most of the images
in the Web dataset are labeled correctly.

We emphasize that the experiment to change the training datasets is not trivial in that it
resembles the process in real applications. The test scenario is not always fully understood
and the training dataset is getting bigger gradually when projects continue. Sometimes, a
training dataset may be along with noisy labels, and the strategies to use them should be further
considered.

3.4. Discussion

Transfer learning and its advanced version are slightly beneficial for plant identifi-
cation. Transfer learning has contributed to many tasks and our work proves that advanced
transfer learning, such as foundation models, has an extra contribution. Therefore, utilizing
a better pretrained model is one of the potential strategies. But we emphasize that it may
also hinder performance such as when the labeled data in the target task is scarce [22, 23].
Simultaneously, foundation models may also suffer when the distributions of the source dataset



to pretrain a model and the target dataset is diverse [24]. As far as we know, the images of
PlantCLEF2023 are far different from the datasets, ImageNet-1k and ImageNet-21k, to pretrain
MAE and EVA models. New methods to leverage the pretrained model are the potential to make
further improvements.

Collecting a better dataset is still promising for plant identification. In the Plant-
CLEF2023 challenge, the Trusted and Web datasets are both in heavy class imbalance and some
classes of the datasets have only one or two images. Our experimental results suggest that more
data make better performance, even if some noisy data are leveraged directly. Compared to the
gains from transfer learning methods and bigger datasets, we believe that collecting a bigger
dataset could be more effective.

Limitations and social impacts. Our experiments have used enormous computing resources
although we obtained a decent record for the challenge. To be honest, we used 16 RTX 3090
GPUs for almost three months. It is actually not fair to other teams without enough GPUs. On
the other hand, we hope our analysis and understandings are useful for the community, such as
dataset analysis and the comparison between transfer learning and bigger dataset.

4. Conclusion

We first analyzed the given datasets in the PlantCLEF2023 challenge and found that class
imbalance and huge intra-class variation are the main characteristics. Simultaneously, the
challenge can be taken from a few-shot perspective. Furthermore, the Trusted and Web datasets
are compared, with an observation that their image distribution is much different and the noise
in the Web dataset may be exaggerated. Two strategies are executed for the challenge, different
pretrained models and different sizes of the training dataset. Both strategies contribute and,
even with noisy data, a bigger training dataset is more beneficial to the challenge. We hope
that our results highlight the importance of collecting bigger datasets for plant identification.
Simultaneously, we emphasize the heterogeneity between plant identification and general
computer vision.
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